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Abstract– Automated image processing techniques have the ability to assist in the early detection 

of diabetic retinopathy disease which can be regarded as a manifestation of diabetes on the retina. 

Blood vessel segmentation is the basic foundation while developing retinal screening systems, 

since vessels serve as one of the main retinal landmark features. This paper proposes an automated 

method for identification of blood vessels in color images of the retina. For every image pixel, a 

feature vector is computed that utilizes properties of scale and orientation selective Gabor filters. 

The extracted features are then classified using generative Gaussian mixture model and 

discriminative support vector machines classifiers. Experimental results demonstrate that the area 

under the receiver operating characteristic (ROC) curve reached a value 0.974, which is highly 

comparable and, to some extent, higher than the previously reported ROCs that range from 0.787 

to 0.961. Moreover, this method gives a sensitivity of 96.50% with a specificity of 97.10% for 

identification of blood vessels.           
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1. INTRODUCTION 
 

With the fast advances in computing technology, there has been considerable and increasing interest in 

developing automatic medical diagnosis systems to improve the service provided by the medical 

community. Reliable and accurate medical diagnosis requires knowledge of changes in different clinical 

symptoms due to health degeneration and disease deterioration. 

The focus of this paper is on the automated identification of blood vessels in color retinal images. 

These images are taken by making photographs from the back of the eye. We are interested in vessel 

detection for the purpose of diabetic retinopathy screening. Diabetes is a disease that affects about 5.5% of 

the population worldwide, a number that can be expected to increase significantly in the coming years [1]. 

About 10.0% of all diabetic patients have diabetic retinopathy, which is the primary cause of blindness in 

the working population. Since this type of blindness can be prevented with proper treatment at its early 

stage, the World Health Organization advises yearly screening of patients. Thus, an automatic system can 

facilitate this screening process.   

The characteristic features of diabetic retinopathy are Microaneurysms, Haemorrhages and Exudates. 

Microaneurysms are discrete localized distension of the weakened capillary walls and are presented as 

small, circular red ‘dots’ on the retina. Haemorrhages, or impairments of the blood-retina barrier, appear 

either as a red ‘dot’ or appear ‘flame-shaped’. In the latter case, they have a characteristically ‘feather-

shaped’ edge. Hard exudates are caused by proteins and lipids leaking from the blood into the retina via 

damaged blood vessels. These appear in retinal images as white or yellow areas, sometimes in a ring-like 

structure around leaking capillaries. 
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The main features of a fundus retinal image are defined as the optic disc, fovea and blood vessels. The 

optic disc is the entrance and exit region of blood vessels to the retina and its localization and 

segmentation is an important task in an automated retinal image analysis system. Indeed, the fovea 

corresponds to the region of retina with highest sensitivity.  

The blood vessels network is an important anatomical structure in the human retina. Several vascular 

diseases, such as diabetic retinopathy, have manifestations that require analysis of the vessels network. In 

other cases, e.g. pathologies like retinal microaneurysms and hemorrhages, the performance of automatic 

detection methods may be improved if regions containing vessels can be excluded from the analysis [2]. 

Indeed, the position, size and shape of the vessels provide information which can be used to locate the 

optic disk and the fovea (central vision area).  

So far several methods have been developed for vessel segmentation, but visual inspection and 

evaluation by ROC analysis shows that there is still room for improvement [3]. In addition, it is important 

to have algorithms that do not critically depend on configuring many parameters so that untrained 

community health workers may utilize this technology. These limitations of state of the arts algorithms 

have motivated the development of the framework described here, which depends on the manually 

segmented images for training purposes only.      

Previous works on blood vessel detection and segmentation can be mainly divided into 3 categories: 

window-based [4-6], classifier-based [7-11] and tracking-based [12, 13]. Window-based approaches, such 

as edge detection, estimate a match at each pixel for a given model against the pixel’s surrounding 

window. In [4], the cross section of a retinal vessel was modeled by a Gaussian shaped curve, and then 

detected using rotated matched filters. In [5] a standard gradient filter was used to detect pixels on the 

boundaries of vessels for subsequent grouping. In [6], a window surrounding a vessel pixel was modeled 

by a neural network trained on user-selected examples. 

Classifier-based algorithms usually proceed in two steps. First, a low-level algorithm produces a 

segmentation of spatially connected regions. These candidate regions are then classified as being vessel or 

not vessel. In [7], regions segmented by a user-assisted threshold were classified as vessel or lesion 

according to their length to width ratio. In [8], regions segmented by the method [4] were classified as 

vessel or not, based on many properties, such as their response to a classic operator [14]. In [9] the 

application of mathematical morphology and wavelet transform was investigated for identification of 

retinal blood vessels. In a followup work [10], a two dimensional Gabor wavelet was utilized to initially 

segment the retinal images. A Bayesian classifier was then applied to classify the extracted feature vectors 

to either vessel or non-vessel class. In [11], three classifiers i.e. K nearest neighbor (KNN), linear and 

quadratic classifiers were utilized to classify the blood vessels. The extracted features were mainly based 

on the Gaussian and its derivatives up to order 2 at multiple scales.     

Tracking-based approaches utilize a profile model to incrementally step along and segment a vessel. 

In [12], a Hough transform is used to locate the papilla in retinal images. Vessel tracking proceeds 

iteratively from the papilla, halting when the response to a one-dimensional matched filter falls bellows a 

given threshold. In [13], the tracking method was driven by a fuzzy model of a one-dimensional vessel 

profile. One drawback to these approaches is their dependence upon unsophisticated methods for locating 

the starting points, which must always be either at the optic nerve or at subsequently detected branch 

points. 

In [15-16], blood vessels were detected by means of mathematical morphology. In [17], the a priori 

distribution of pixel labels is modeled by a Markov random field, and the posterior probability of labeling 

decisions is maximized by simulated annealing. The effectiveness of these approaches can, however, be 

affected when the contrast levels between small blood vessels and their background diminish. In [18, 19], 

matched filters were applied in conjunction with other techniques e.g. genetic algorithms and piecewise 

thresholding. Another important application of automatic retinal vessel segmentation is in the registration 
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of retinal images of the same patient taken at different times [20]. In [21], Jiang et al. proposed an adaptive 

thresholding framework based on verification-based multithreshold probing scheme. Retinal vessels 

cannot be segmented using a global threshold because of gradients in the background of the image. 

Instead, Jiang et al. suggested probing the image with different threshold values where at each of the 

probed thresholds all binary objects in the thresholded image were extracted.         

In this paper, we propose a novel vessel segmentation approach to efficiently locate and extract blood 

vessels in color retinal images. More to the point, this study is concerned with developing fast 

(computationally efficient) methods while achieving high accuracy. Supervised methods requiring suitable 

pre-labeled training datasets and with efficient training time can be easily adjusted to new populations. 

Thus, here we use a Bayesian classifier with class conditional probability density functions described as 

Gaussain mixtures, yielding a fast classification, while being able to model complex decision surfaces. 

Our method consists of three major steps: multiscale analysis using Gabor filters, feature extraction based 

on principal component analysis (PCA), and classifying the image pixels using their corresponding feature 

vectors by either Gaussian mixture models (GMMs) or support vector machines (SVMs) classifiers. 

Finally, the accuracy of our optimum classifiers are evaluated using ROC curves analysis and sensitivity 

and specificity measurements.  

Many of the previously published vessel detection methods have not been evaluated on large datasets 

or fail to give satisfactory results for large numbers of images as encountered in a routine clinical 

screening program [22]. As another novelty of this work, we assess the diagnostic accuracy of our 

proposed method on a large dataset of retinal images comprising 90 normal and abnormal color retinal 

images. Indeed, in order to compare our proposed method with previous vessel extraction techniques, the 

efficiency of our method is also validated using a publicly available image dataset i.e. DRIVE which 

contains 40 retinal images.       

In the next section, we will describe the properties of our images, and present a major in-depth review 

of the algorithm including application of Gabor filters and classification schemes. In Section 3, the 

experimental evaluation and results are presented and discussed, followed by our conclusions in the last 

section. 

 

2. MATERIALS AND METHODS 
 
a) Image acquisition 
 

In this work, we have constructed a dataset of 90 images for the training and evaluation of our proposed 

method. This image dataset was acquired using a Cannon non-mydriatic 3CCD camera (CR6-45NM) with 

a 45º field of view. Each image was captured using 24 bit per pixel (standard RGB) at 760 x 570 pixels.  

Of the 90 images in the dataset, 40 are of patients with no pathologies (normal) and the remaining 

images contain pathologies (such as microaneurysms, hemorrhages and exudates) that can obscure or 

confuse the blood vessel appearance in varying positions of the image (abnormal). This selection is made 

for two reasons. First, most of the referenced methods have only been tested against normal images which 

are easier to distinguish. Second, some level of success with abnormal vessel appearances must be 

established to recommend clinical usage. (See Fig. 1 for an example of both a normal and an abnormal 

retinal image). As can be seen, a normal image consists of blood vessels, optic disc, fovea and the 

background, but the abnormal image also has multiple artifacts of distinct shapes and colors caused by 

different diseases.  

 The image dataset is carefully labeled by an expert to produce ground truth manual vessels 

segmentation. A typical example of manual segmentation is shown in Fig. 2. The process of labeling an 

image takes several hours, depending on the expert and image. Overall, the expert marked 13.5% of all 

pixels as vessel based on our image dataset of 90 retinal images.  
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                                                        (a)                                                                       (b) 

Fig. 1. Digital retinal images. a) a normal image from our image dataset shows blood vessels, optic disc and 

fovea components, b) an abnormal image with exudate and hemorrhage lesions 
 
b) Pixel-level learning dataset building 
 

In this work, the image pixels of the retinal images are considered as objects represented by their 

feature vectors, so that we can apply statistical classifiers in order to classify the image pixels. Here, we 

assume a binary multi-dimensional classification approach to distinguish the vessel pixels from other 

anatomical-pathological structures and artifacts, which we refer to collectively as non-vessels. Our chosen 

data for the learning stage consists of typical pixels, which are representative of our classification 

problem. To make-up such a dataset, examples, including vessels and non-vessels are labeled manually 

and then used to train and test the classifiers (Fig. 2). The obtained labeled examples (feature vectors) are 

mapped into the feature space, and their labels are utilized to obtain those subspaces which correspond to 

our two different classes i.e. vessel and non-vessel. 

             
                                                      (a)                                                                         (b) 

Fig. 2. Manual blood vessel segmentation. a) A typical normal image, b) manually segmented vessels 
 

A nearly balanced learning dataset of vessel and non-vessel pixels was established to eliminate any 

possible bias towards either of the two classes. Our representative learning dataset is comprised of 250000 

vessel and 251000 non-vessel pixels. 
 
c) Two dimensional Gabor filters 
 

Gabor filters have been broadly used for multi-scale/multi-directional analysis in image processing. 

These filters have specifically shown high performance as feature extractors for discrimination purposes 

[23, 24]. Due to Gabor filters directional selectiveness capability in detecting oriented features and fine 

tuning to specific frequencies and scale, these filters act as low-level oriented edge discriminators and are 

especially important in filtering out the background noise of the images.  
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Mathematically, a two-dimensional (2D) Gabor function, g, is the product of a 2D Gaussian and a 

complex exponential function which in general form is given by: 
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which represent scale value at orthogonal directions. However, with this parameterization, the Gabor 

function does not scale uniformly when σ  changes. Thus, it is preferable to use a new parameter 

σ
λγ = instead of λ , so that a change in σ  corresponds to a true scale change in the Gabor function. 
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By convolving a Gabor function g�,�,� with image patterns f(x,y), we can evaluate their similarities. 

Here, we define the Gabor response at the point ( )00, yx  as follows: 
 

      ( ) ( )( ) ( ) ( )dxdyyyxxgyxfyxgfyxG −−=∗= � 00,,00,,00,, ,,,, σγθσλθσγθ      (3) 

 

where * represents convolution. In Fig. 3, we illustrate the variation of parameters (γ ,θ ,σ ) in the shape of 

the Gabor function. 
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Fig. 3. Examples of Gabor functions. Each sub figure shows the real part of Gabor 

 function for different values of a) γ , b) θ , and c) σ  
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There are two major ways to optimally choose the parameters of a Gabor filter i.e. supervised and 

unsupervised. In a supervised manner, several sets of parameters are tried to find out the optimum filter 

(or a few filters) for a given problem. Whereas in an unsupervised approach, a filter bank which spreads 

throughout the frequency plane can be used. The unsupervised method is more general and more popular; 

however dealing with a filter bank means a higher computational cost and a larger feature space [25]. 

Here, in order to tune the Gabor filter response to particular patterns such as blood vessels, it is 

necessary to adjust Gabor filter bank parameters, namely orientations, frequencies/wavelengths, and scales 

properly. This issue will be discussed in more detail in the next section. 
 
d) Feature extraction and normalisation 
 

When the RGB components of the retinal images are visualized separately, the green channel 

represents the best vessel-background contrast, whereas the red and blue channels are low contrast and 

noisy. Thus, the green channel was selected to be processed by the Gabor filters. Moreover, before the 

application of the Gabor filters to images, we invert the green channel of the image so that the vessels 

appear brighter than the background. 

In order to initially locate the blood vessels from the retinal images we used a Gabor filter bank 

σγθ ,,G arranged in 12 orientations (θ  spanning from 0
o
 up to 165

o
 at steps of 15

o
), 3 wavelengths (� = 1.5, 

2.5, 3.5) and 3 scales ( 7,5,3=σ ). The wavelength and scale values were experimentally tuned according 

to our prior knowledge of retinal image characteristics and in such a way to assign stronger responses to 

pixels associated with the blood vessels of all possible widths. The response of such a filter bank to an 

input image is a set of filtered images. In fact, for each considered set of wavelengths and scale 

parameters, we were interested in the Gabor filter response with the maximum value over all possible 

orientations. These maximum values were then taken as the main components of the pixel feature vectors. 

Figure 4 shows a typical retinal image and its corresponding maximum Gabor filter response for 2 

different scale values. Having primarily extracted the candidate blood vessels network based on Gabor 

filter responses, the filtered image pixels were then classified in terms of vessels and non-vessels.  

  
                                      (a)                                                  (b)                                                    (c) 
          

Fig. 4. Gabor filters taking the maximum response for all orientationsθ = 0o up to 165o at steps of 15o. 

      a) Inverted green channel of a typical retinal image, b) maximum Gabor filter response values  

withγ =2.5,σ =1, c) maximum Gabor filter response values withγ =2.5,σ =5 

 

To improve the discrimination ability of the classifiers, contextual information is utilized. To do that, 

an odd-sized square window was centered on each underlying pixel x0 in the original image. Then the Luv 

color components [26] of the pixels in the window (in an 8-connectivity manner) were composed into the 

feature vector of x0. There might be no constraint on the neighborhood window size in theory, but it is 

assumed that most contextual information is presented in a small neighborhood of the x0 pixel. Thus the 

window must be chosen large enough to contain blood vessels, but small enough to avoid potential 

interference from the neighboring non-vessel pixels.  
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A small window size is also favorable for computational reasons. In this study, to determine the 

optimal window size, we examined various window sizes and obtained the best results with a 3x3 window. 

The total number of features for each typical image pixel was therefore 3x3+9x3=36, comprising 9 

maximum Gabor filtered responses (3x3) and 27 Luv color components of the 9 pixels (9x3) in the 

considered local window. This resulted in a computationally demanding high dimensional feature space. 

Thus, we used a feature extraction approach to obtain a lower dimensional feature space, combating the 

curse of dimensionality while retaining sufficient accuracy of representation. A limited by prominent 

feature set can simplify both the vessels representation and the classifiers that are built on the selected 

features. Therefore, the designed classifier will be faster and require less memory. 

We defined dimensionality reduction as the transformation of a p dimensional vector xi
p
 to a q 

dimensional vector xj
q
, where q<< p using the PCA technique. The PCA began by computing the mean of 

feature vectors x
n
 and then subtracting the means off [27]. The covariance matrices were evaluated next 

and then we calculated the eigenvectors and eigenvalues of the covariance matrices for vessels and non-

vessels. The output of the PCA was a set of eigenvectors and eigenvalues, with the eigenvalues 

representing the amount of variance over the whole dataset of pixels for each vector. A central issue in 

PCA is choosing the number of principal components to be retained. Here, we conducted an experiment 

and projected our chosen pixel dataset onto the subspace of the principal components which accounted for 

more than 95% of the total variance. The first 15 vessel eigenvalues contained 95.1% of total variance, 

whereas the first 21 non-vessel eignvalues captured 95.6% of the total variance.  

Given the dimensional nature of the new features now forming the feature space, this might cause 

errors in the classification process, as the units chosen might affect the distance in the feature space. A 

new way to obtain a new random variable with zero mean and unit standard deviations, yielding, in 

addition, dimensionless features, is to apply the normal transformation to the feature space as follows: 

                                                            

j

jj

j

x
x

σ

µ−
=                                                                          (4) 

     where  xj  is the  j
th
 feature assumed by each pixel, µ j is the average value of the  j

th
  feature and 

jσ  is 

the associated standard deviation. 
 

e) Supervised pixel-level blood vessel classification 
 

Machine learning-based classification methods provide a formal approach for manipulating 

nondeterministic models by describing or estimating a probability density over the variables in question. 

Within this generative density, one can specify a priori partial knowledge and refine the partially specified 

model using empirical observations and data [28]. Thus, given a system with variables x1, . . . , xT, this 

system can be specified through a joint probability distribution over all the significant variables within it 

p(x1, . . . , xT ). This is known as a generative model since given this probability distribution; we can 

generate samples of various configurations of the system.  

Ironically, the flexible generative models have been recently outperformed in many cases by 

relatively simpler models estimated with discriminative algorithms. Unlike a generative modeling 

approach where modeling tools are available for combining structure, priors, variables and data to form a 

good joint density tailored to the domain at hand, discriminative algorithms directly optimize a relatively 

less domain-specific model for the classification or task at hand. For example, support vector machines 

[29-30] directly maximize the margin of a separator between two sets of points in an Euclidean space.  

In this study, we analyzed the performance of several classifier models to select the one with the most 

accurate results. Here, we chose one very commonly used model for every type of generative and 

discriminative based approach, i.e. Gaussian mixture model and support vector machines towards our 

pixel-level blood vessel recognition task. 
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Following the learning stage and tuning the model parameters, each classifier was quantitatively 

evaluated by independent unseen test sets; otherwise the evaluation would become biased and would not 

represent a fair assessment of the classifier performance. To assess the classifier generalisation ability and 

thus measure the classification error, a 5-fold cross validation technique was employed [27]. Moreover, to 

have a fair comparison between different classifiers, the training and validation descriptions were kept 

constant for all classification experiments, which are described in the next two sections.  
 

1. Mixture model classification: GMM classifiers have been utilized in various applications of computer 

vision and medical imaging [31]. They are widely used in applications where data can be viewed as a 

combination of different populations mixed in varying proportions. Basically, in a mixture model 

distribution, the data density is represented as a linear combination of component densities in the form:  

                                                ( ) ( ) ( )k

K

k

kki wPwxpxp �
=

Θ=
1

;|                                                  (5) 

 

where K represents the number of components and each component is defined by wk and parameterised by 

�k (mean and covariance density function parameters). The coefficient P(wk) is called the mixing 

parameter and corresponds to the prior probability that the d-dimensional feature vector x is generated by 

the component k. We benefited from the theory behind these models and used two separate mixtures of 

Gaussians to estimate the class densities p(x|Ci ,�) of vessels and non-vessels, as follows:  
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µk and �k denote the mean and covariance of the k
th
 component of the mixture density of class Ci. Ki 

denotes the number of components in class i, and Ci refers to either the vessel or non-vessel class. The 

final decision regarding the class affiliation of each new feature vector x was taken using Bayes rule [27].   

Various procedures have been developed to determine the parameters of a GMM 

( ( ){ }kkk wP,,�=Θ µ ). The Expectation Maximisation (EM) algorithm is the one most widely used [29]. 

This algorithm consists of two major steps: the Expectation (E-step) and the Maximisation (M-step). The 

EM algorithm requires an initialization step which assigns primary values to the model's parameters. 

These primary values have an essential effect on the algorithm’s convergence and the obtained accuracy. 

Here, these parameters are initialised using a K-means clustering algorithm [32].  

K-means algorithm has an important parameter i.e. K (number of clusters) which needs to be defined 

beforehand. We will return back to this issue in the next section. Indeed, we need to decide on the form of 

the component densities or equivalently the form of the component covariance matrices. Basically, three 

different forms of covariance matrices can be defined for the mixture components i.e. spherical, diagonal 

and full [33]. Here, we assume a full covariance matrix for each mixture component, since these types of 

matrices have higher flexibility in estimating the underlying distributions.  

After these initialisation settings, the K-means clustering is iteratively applied for 20 iterations. The 

mixing parameters are computed from the proportion of examples belonging to each cluster. Having 

estimated the location of the component centres, the covariance matrices are then calculated as the sample 

covariance of the points associated with the corresponding centres. Then the EM algorithm is then iterated 

for 30 iterations, which is enough for convergence in our application.  

It is worth noting that all described steps are applied separately on vessel and non-vessel pixel 

datasets and then the two estimated distributions are unified through a maximum, a posterior decision rule 

[34]. Experimental results follow in section 3 to demonstrate the accuracy of the proposed classification 



Automatic blood vessel segmentation in… 
 

April 2009                                                                                 Iranian Journal of Science & Technology, Volume 33, Number B2 

199 

scheme. Before that we describe a procedure for the selection of the optimum number of GMM 

components. 
 

-Selection of optimum number of components: The number of mixture components (K) in GMMs relies 

on a combination of good modeling, a sensible number of parameters, and avoidance of a highly complex 

model. Choosing too few mixture components produces a model that cannot accurately model the vessels 

and non-vessels. With an increasing number of components, the probability that the model fits the dataset 

better will be increased, but the model will also lose its capability to generalise well. In this work, the 

appropriate number of components was chosen by repeating the density model estimation and evaluating a 

criterion by varying the number of components. The evaluation measurement was the Minimum 

Description Length (MDL) principle [35]. The appropriate number of components can be found using the 

following formula: 

( ) ( ) ( ) NKogKMDL log
2

1
υ+Θ−= �

                                                      (7) 

Where ( )Θ− og�   shows the pixel data log likelihood, N refers to the total number of data points and ( )Kυ  

denotes the mixture model dimension or the number of free parameters in a mixture model. There are 

( ) 21+dd  free parameters for each full covariance matrix component where d is the dimensionality of the 

feature space. Each mean vector µ  has d free parameters and the mixing parameters P(wk) require another 

K-1 parameter. Thus, the dimension of a GMM is written as: 
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The selection of an optimal number of components, i.e. K , is performed by choosing the argument K that 

minimises Eq. (7). In this work, by varying the number of components within a range of 1 to 15 we could 

acquire the optimum number of mixture components (K) for our vessel and non-vessel pixel datasets 

separately. These were 5 and 8 components for vessel and non-vessel pixel datasets, respectively. Figure 5 

illustrates the MDL values for both vessel and non-vessel pixel datasets. A trend seen from Fig. 5 suggests 

a higher number of components for estimating the non-vessel distribution compared to the vessels. This 

could be due to the greater variability which existed amongst the non-vessel sample points. 
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Fig. 5. Minimum description length value of vessel and non-vessel pixel datasets  

for choosing appropriate number of clusters 
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2. Support vector machines classification: Discriminative SVMs have become an increasingly popular 

tool for machine learning tasks involving classification and regression [30]. Here, we investigate the SVMs 

application to our medical decision support task of classifying the retinal image pixels to vessel and non-

vessel classes. The SVMs demonstrate various attractive features such as good generalisation ability 

compared to other classifiers. Indeed, there are relatively few free parameters to adjust and it is not 

required to find the architecture experimentally.  

The SVMs algorithm separates the classes of input patterns with the maximal margin hyperplane. This 

hyperplane is constructed as: 
 

                                                                bxwxf += ,)(                                                                  (9)                   

where x is the feature vector, w is the vector that is perpendicular to the hyperplane, and 1−
wb specifies 

the offset from the beginning of the coordinate system. To benefit from non-linear decision boundaries, 

the separation is performed in a feature space F, which is introduced by a nonlinear mapping ϕ  of the 

input patterns. This mapping is defined as follows: 
 

                                                   ( ) ( ) ( ) Χ∈∀= 212121 ,,, xxxxKxx ϕϕ                                            (10) 

for some kernel function K(·, ·). The kernel function represents the non-linear transformation of the 

original feature space into the F. However, to guarantee that the resultant hyperplane separates the classes, 

the following constraints must be satisfied: 
 

( ) nibxwy iiii ,...1,0,1,. =≥−≥+ ξξ                                      (11) 

where { }1,1−∈iy  denotes the class label corresponding to the input pattern xi. The variables iξ  are utilized 

to allow for the training of the classifier on linearly non-separable classes. The slack variables must be 

penalized in the minimization term. Consequently, the learning of the SVMs classifier is equivalent to 

solving a minimization problem with the objective function of the form: 
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2
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1
min ξ                                                              (12) 

The penalty C is a regularization parameter that controls the trade-off between maximizing the margin 

and minimizing the training error. This approach is called soft margins [30]. Using the Lagrange 

multiplier technique, we can transform this optimization problem to a dual form: 
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In the above formulation, the { }nαααα ,..., 21=  is the vector of Lagrange multipliers. The Lagrange 

multipliers that solve the Equation (13) can be used to compute the decision function: 
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,α                                                         (15) 

where   
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3. EXPERIMENTAL EVALUATION AND RESULTS 
 

The performance of a medical diagnosis system is best described in terms of sensitivity and specificity. 

These criteria quantify the system performance according to the false positive (FP) and false negative 

(FN) instances. The sensitivity gives the percentage of correctly classified abnormal cases while the 

specificity defines the percentage of correctly classified normal cases. 

Here, the performance of the selected GMMs was quantified based on its sensitivity, specificity and 

the overall accuracy (fraction of correctly classified pixels).The best overall classification accuracy 

obtained was 95.24%, with 96.14% sensitivity and 94.84% specificity based on the optimum number of 

components.  

Alternatively, we classified our manual segmented vessel and non-vessel pixels dataset using SVMs 

with a different number of kernels and parameters. Specifying a SVMs classifier requires two parameters: 

the kernel function and the regularization parameter C. In this study, the SVMs classifiers were evaluated 

independently for the following three kernel functions: 

- Linear kernel: ( ) yxyxK ,, =  

- Polynomial kernel of order 4: ( )( )4
, γσ +yx   

- Gaussian radial basis function (RBF) kernel: 
22σ

yx
e

−−
 

In order to obtain the optimal value for the SVMs regularization parameter C and parameters of kernel 

functions, we experimented with different SVMs classifiers for a range of values using a 5-fold cross 

validation technique. The performance of the selected SVMs was again measured based on its sensitivity, 

specificity and the overall accuracy. In the first experiment, with no restrictions on the Lagrange 

multipliers (hard margin), we achieved an optimum overall accuracy of 94.45% with 93.42% sensitivity 

and 95.51% specificity for �=2.5 using a RBF kernel.  

Figure 6a illustrates the generalization performance of the optimum classifier against varying values 

of � in each case. This classifier represents a good performance over vessel and non-vessel cases. The 

obtained classification accuracies for different kernel functions are presented in Table 1. As is evident, the 

highest accuracy in both hard margin and soft margin cases was achieved when using the Gaussian RBF 

kernel.  

SVM Generalization Ability for Vessel Detection

50

55

60

65

70

75

80

85

90

95

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

RBF (Sigma)

P
e

rf
o

rm
a

n
c

e

Sensitivity
Specificity

Overall Accuracy

 

SVM* Generalization Ability for Vessel Detection
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(a)                                                                               (b) 

Fig. 6. Generalization performance of the Gaussian RBF SVMs classifiers against 

a) different � values, b) different C values 
 

In the second experiment, to illustrate the effect of the soft margins approach, we evaluated the 

generalization ability of the different SVMs classifiers on the training set with � fixed at 2.5 and for a wide 

range of C values which were applied as an upper bound to �i (Fig. 6b). Afterwards, for each of the kernel 
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functions we selected the value of regularization parameter C that yielded the highest classification 

accuracy. Using the same approach we selected the values for the � parameter. 
 

Table 1. Optimum values of kernels and regularization parameters used in SVMs classifiers 
 

 

 

Kernel 

function 

Kernel 

parameters 

Regularization 

parameter C 
Sensitivity Specificity 

Overall 

accuracy 

Linear - - 93.04 % 92.15 % 93.34 % 

Polynomial � = 0.9 � = 0.2 - 94.87 % 92.18 % 93.60 % 
Hard 

Margins 

 
RBF � = 2.5 - 93.42 % 95.51 % 94.45 % 

Linear - C = 5.3 93.15 % 93.90 % 94.55 % 

Polynomial � = 0.9 � = 0.2 C = 8.1 94.11 % 95.00 % 94.02 % 
Soft 

Margins 

RBF � = 2.5 C = 7.0 96.50 % 97.10 % 96.75 % 
 

The results of the parameter study are summarized in Table 1. As can be seen, the best overall 

accuracy, using the soft margins technique (referred to as SVM*), increased to 96.75% with 96.50% 

sensitivity and 97.10% specificity at C=7.0 based on a Gaussian RBF kernel.   

Table 2 summarizes both GMM and SVMs results. These are the best results from a selection of 

configurations used for training the classifiers. Although the diagnostic accuracy of the SVM* classifiers is 

slightly better than the GMMs, the classifier performances are very close and there is a good balance 

between sensitivity and specificity in both cases.  
 

Table 2. Performances of optimum classifiers for blood vessel pixels classification 
 

Classifier Sensitivity Specificity Overall accuracy Az 

GMM with 5 vessel and 13 

non-vessel components 

 

96.14 % 

 

94.84 % 

 

95.24 % 

 

0.965 

SVM*  � = 2.5, C = 7.0 96.50 % 97.10 % 96.75 % 0.974 

 

In most medical applications the overall accuracy may not be a sufficient measure to choose the 

optimal configuration. Thus, in order to assess and analyze the behavior of the optimum classifiers 

throughout a whole range of the output threshold values, ROC [36] curves shown in Fig. 7 have also been 

produced (with true-positives plotted against the false-positives describing the tradeoff between sensitivity 

and specificity). The bigger the area under the ROC curve (Az), the higher the probability of making a 

correct decision. Therefore, Az can be used as a single measure of the performance of each method.  
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Fig. 7. ROC curves for blood vessel pixels classification using classifiers in Table 2. 
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Here, both GMM and SVM* classifiers achieved high performances with areas 0.965 and 0.974, 

respectively (Table 2). However, as Fig. 7 illustrates, the SVM* classifier shows, to some extent, a higher 

performance over the entire ROC space. 

So far we have discussed pixel-level classification. We can use our trained classifiers to evaluate the 

effectiveness of our proposed approach by assessing the whole image pixels. To do this, we considered a 

population of 40 (20 normal and 20 abnormal) new unseen retinal images. Each image was evaluated 

using the SVM* classifier and a final decision was made to discriminate the vessel pixels. The 

classification result for each image pixel was a real value and these values were then utilized to create the 

final classified images. Figure 8 illustrates two typical normal retinal images and an abnormal image from 

our image dataset that have been classified at pixel-level using the optimum SVM* classifier. The original 

images, ground-truths and the final identified blood vessels are shown in this figure. 
 

 
(a) Original normal image          (b) Manually segmented vessels       (c) SVM* based classified vessels 

 
(d) Original normal image          (e) Manually segmented vessels       (f) SVM* based classified vessels 

     
(g) Original abnormal image          (h) Manually segmented vessels       (i) SVM* based classified vessels 

 
Fig. 8. Retinal blood vessel pixel classification results produced by the optimum 

 SVM* classifier for typical normal and abnormal images 
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As is evident from Fig. 8, our proposed vessel segmentation algorithm could locate and extract the 

blood vessels effectively (Fig. 8 (c, f, i)). Although, the majority of large and small vessels are detected, 

there is some erroneous false detection of noise and other artifacts. The major errors are due to 

background noise and non-uniform illumination across the retinal images, border of the optic disc and 

other types of pathologies (such as false positive pixels in Fig. 8(i)) that present strong contrasts. Another 

difficulty is the lack of precision to capture some of the thinnest vessels that are barely perceived by 

human observers. In fact, small retinal vessels usually have poor local contrast and they almost never have 

ideal solid edges.    

In order to compare our results with the most related works in the literature, the publicly available 

benchmark DRIVE dataset [22] was also used for evaluating the performance of the presented method. 

This database contains 40 images in which the blood vessel structures have been manually segmented. 

Here, the performances of five different algorithms which have all been evaluated using this dataset are 

compared. These are Chandhuri et al. [4], Soares et al. [10], Niemeijer et al. [11], Zang et al. [20] and 

Jiang et al. [21]. Table 3 shows an overview of the results for different methods in terms of the area under 

the ROC curve (Az). As is evident, the area under the ROC curve for our method reached a value 0.965 

which is highly comparable and slightly higher than the best previously reported accuracies that range 

from 0.787 to 0.961. 
 

Table 3. Comparison of our proposed technique against 

        past five vessel identification methods 
 

Blood vessel identification method Az 

Chandhuri 

Soares 

Niemeijer 

Zang 

Jiang 

Our method 

0.787 

0.961 

0.929 

0.898 

0.911 

0.965 
 

A possible explanation for the fact that the pixel classification outperforms the other methods is that 

the Soares, Niemeijer and our method are the only supervised methods (i.e. trained with examples). For a 

segmentation problem as complicated as the one at hand it is very hard to establish rules which work in all 

types of situations that can occur in a large set of images.    

The proposed segmentation algorithm was performed on a 3.4 GHz PC with 2GB RAM. All 

implementations are in Matlab and there is room for optimizations. Indeed, our SVM based classifier was 

trained using only 50000 training pixels (from DRIVE images) instead of the 1 million used by Soares et 

al. [10]. Thus, our method significantly lowered the training time (about 45 minutes compared to the 9 

hours) with an average image classification time around 30 seconds. Therefore, the presented algorithm is 

more suitable when the system needs to be adapted for new datasets and also tends to generalize well 

when applied to data outside the training set. 

 

4. CONCLUSION 
 

In this paper, we present a novel automatic blood vessel detection algorithm for retinal images acquired 

from diabetic retinopathy screening programs. The results we have obtained suggest that pixel-level 

classification in conjunction with Gabor filter responses, feature extraction and SVMs classifiers can 

provide robust and computationally efficient blood vessel segmentation while suppressing the 

backgrounds. 

Through a comprehensive optimization process of operational parameters, our proposed scheme does 

not require any user intervention, and it has consistent performance for both normal and abnormal images. 
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The results by the two classification approaches i.e. GMM and SVMs are very similar; however, we 

believe that SVMs are a more practical solution to our application as they always converge to the same 

solution for a given dataset regardless of initial conditions, and finally, they remove the danger of 

overfitting.  

Our experimental results show that the area under the ROC curve reached a value of 0.974 against a 

retinal image dataset comprising 90 normal and abnormal images. Indeed, our method achieves a 

sensitivity of 96.50% with a specificity of 97.10% for identification of blood vessels. In a second 

experiment, to compare our results with previous state of the art works, the publicly available benchmark 

DRIVE dataset was also used for evaluating the performance of the presented method. Using this dataset, 

the area under the ROC curve for our method reached a value of 0.965, which is highly comparable and 

slightly higher than the best previously reported accuracies that range from 0.787 to 0.961. Moreover, the 

presented method proved to be computationally efficient with an average image classification time around 

30 seconds.   

Using this method, eye care specialists can potentially monitor larger populations for vessel 

abnormalities and other diseases. Indeed, observations based upon such a tool would also be more 

systematically reproducible. 
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