Amirzadeh, N., Moghadam, A., Niazi, A., & Afsharifar, A. (2023). Recombinant anti-HIV MAP30, a ribosome inactivating protein: Against plant virus and bacteriophage.
Scientific Reports,
13(1), 2091.
https://doi.org/10.1038/s41598-023-29365-7.
Asghar, N., Melik, W., Paulsen, K. M., Pedersen, B. N., Bø-Granquist, E. G., Vikse, R., Stuen, S., Andersson, S., Strid, Å., Andreassen, Å. K., & Johansson, M. (2022). Transient expression of flavivirus structural proteins in Nicotiana benthamiana. Vaccines, 10(10), 1667. https://doi.org/10.3390/vaccines10101667.
Balieu, J., Jung, J. W., Chan, P., Lomonossoff, G. P., Lerouge, P., & Bardor, M. (2022). Investigation of the N-glycosylation of the SARS-CoV-2 S protein contained in VLPs produced in Nicotiana benthamiana. Molecules, 27(16). https://doi.org/10.3390/molecules27165119
Benchabane, M., Goulet, C., Rivard, D., Faye, L., Gomord, V., & Michaud, D. (2008). Preventing unintended proteolysis in plant protein biofactories.
Plant Biotechnology Journal, 6(6), 633–648.
https://doi.org/10.1111/j.1467-7652.2008.00344.x
Bornhorst, J. A., & Falke, J. J. (2000). Purification of proteins using polyhistidine affinity tags. Methods in Enzymology, 326, 245-254.
Burt, R., Warcel, D., & Fielding, A. K. (2019). Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Human Vaccines & Immunotherapeutics, 15(3), 594-602. https://doi.org/10.1080/21645515.2018.1540828
Castilho, A., Neumann, L., Gattinger, P., Strasser, R., Altmann, F., & Steinkellner, H. (2014). Proteolytic and N-glycan processing of human alpha1-antitrypsin expressed in Nicotiana benthamiana. Plant Physiology, 166(4), 1839–1851. https://doi.org/10.1104/pp.114.250720
Castilho, A., Neumann, L., Gattinger, P., Strasser, R., Vorauer-Uhl, K., Sterovsky, T., Altmann, F., & Steinkellner, H. (2013). Generation of biologically active multi-sialylated recombinant human EPOFc in plants. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0054836
Castilho, A., Strasser, R., Stadlmann, J., Grass, J., Jez, J., Gattinger, P., Kunert, R., Quendler, H., Pabst, M., Leonard, R., Altmann, F., & Steinkellner, H. (2010). In planta protein sialylation through overexpression of the respective mammalian pathway.
Journal of Biological Chemistry, 285(21), 15923.15930.
https://doi.org/10.1074/jbc.M109.088401
Coates, R. J., Young, M. T., & Scofield, S. (2022). Optimising expression and extraction of recombinant proteins in plants. Frontiers in Plant Science, 13, 1074531. https://doi.org/10.3389/fpls.2022.1074531
Dhillon, S. (2023). Elranatamab: First approval. Drugs, 83(17), 1621-1627. https://doi.org/10.1007/s40265-023-01954-w
Dreier, T., Lorenczewski, G., Brandl, C., Hoffmann, P., Syring, U., Hanakam, F., Kufer, P., Riethmuller, G., Bargou, R., & Baeuerle, P. A. (2002). Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. International Journal of Cancer, 100(6), 690-697. https://doi.org/10.1002/ijc.10557
Eidenberger, L., Eminger, F., Castilho, A., & Steinkellner, H. (2022). Comparative analysis of plant transient expression vectors for targeted N-glycosylation. Frontiers in Bioengineering and Biotechnology, 10, 1073455. https://doi.org/10.3389/fbioe.2022.1073455
Eidenberger, L., Kogelmann, B., & Steinkellner, H. (2023). Plant-based biopharmaceutical engineering. Nature Reviews Bioengineering, 1(6), 426-439. https://doi.org/10.1038/s44222-023-00044-6
Galeffi, P., Lombardi, A., Donato, M. D., Latini, A., Sperandei, M., Cantale, C., & Giacomini, P. (2005). Expression of single-chain antibodies in transgenic plants. Vaccine, 23(15), 1823-1827. https://doi.org/10.1016/j.vaccine.2004.11.025
Goldstein, R. L., Goyos, A., Li, C. M., Deegen, P., Bogner, P., Sternjak, A., Thomas, O., Klinger, M., Wahl, J., Friedrich, M., & Rader, C. (2020). AMG 701 induces cytotoxicity of multiple myeloma cells and depletes plasma cells in cynomolgus monkeys. Blood Advances, 4(17), 4180-4194. https://doi.org/10.1182/bloodadvances.2020002565
Gomes, M., Alvarez, M. A., Quellis, L. R., Becher, M. L., Castro, J. M. de A., Gameiro, J., Caporrino, M. C., Moura-da-Silva, A. M., & Santos, M. de O. (2019). Expression of an scFv antibody fragment in
Nicotiana benthamiana and in vitro assessment of its neutralizing potential against the snake venom metalloproteinase BaP1 from
Bothrops asper.
Toxicon, 160, 38–46.
https://doi.org/10.1016/j.toxicon.2019.02.011
Hutchings, M., Morschhauser, F., Iacoboni, G., Carlo-Stella, C., Offner, F. C., Sureda, A., Salles, G., Martínez-Lopez, J., Crump, M., Thomas, D. N., Morcos, P. N., Ferlini, C., Bröske, A.-M. E., Belousov, A., Bacac, M., Dimier, N., Carlile, D. J., Lundberg, L., Perez-Callejo, D., Umaña, P., Moore, T., Weisser, M., & Dickinson, M. J. (2021). Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: A phase I trial. Journal of Clinical Oncology, 39(18), 1959–1970. https://doi.org/10.1200/JCO.20.03175
Kallolimath, S., Hackl, T., Gahn, R., Grunwald-Gruber, C., Zich, W., Kogelmann, B., Lux, A., Nimmerjahn, F., & Steinkellner, H. (2020). Expression profiling and glycan engineering of IgG subclass 1-4 in Nicotiana benthamiana. Frontiers in Bioengineering and Biotechnology, 8, 825.
Kallolimath, S., Sun, L., Palt, R., Föderl-Höbenreich, E., Hermle, A., Voss, L., Kleim, M., Nimmerjahn, F., Gach, J. S., Hitchcock, L., Chen, Q., Melnik, S., Eminger, F., Lux, A., & Steinkellner, H. (2024). IgG1 versus IgG3: Influence of antibody-specificity and allotypic variance on virus neutralization efficacy.
Frontiers in Immunology, 15, 1490515.
https://doi.org/10.3389/fimmu.2024.1490515
Keam, S. J. (2023). Talquetamab: First approval. Drugs, 83(15), 1439-1445. https://doi.org/10.1007/s40265-023-01945-x
Keshvari, T., Melnik, S., Sun, L., Niazi, A., Aram, F., Moghadam, A., Kogelmann, B., Wozniak-Knopp, G., Kallolimath, S., Ramezani, A., & Steinkellner, H. (2024). Efficient expression of functionally active aflibercept with designed N-glycans. Antibodies, 13(2), 29. https://doi.org/10.3390/antib13020029
Lai, H., He, J., Hurtado, J., Stahnke, J., Fuchs, A., Mehlhop, E., Gorlatov, S., Loos, A., Diamond, M. S., & Chen, Q. (2014). Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnology Journal, 12(8), 1098–1107. https://doi.org/10.1111/pbi.12217
Liu, H., & Timko, M. P. (2022). Improving protein quantity and quality—The next level of plant molecular farming. International Journal of Molecular Sciences, 23(3), 1326. https://doi.org/10.3390/ijms23031326.
Loffler, A., Kufer, P., Lutterbuse, R., Zettl, F., Daniel, P. T., Schwenkenbecher, J. M., Riethmuller, G., Dorken, B., & Bargou, R. C. (2000). A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood, 95 (6), 2098-2103.
Maghsoodi, N., Zareinejad, M., Golestan, A., Mahmoudi Maymand, E., & Ramezani, A. (2023). Anti-CD19/CD8 bispecific T cell engager for the potential treatment of B cell malignancies.
Cellular Immunology, 393–394, Article 104787.
https://doi.org/10.1016/j.cellimm.2023.104787
Moghadam, A., Niazi, A., Afsharifar, A., & Taghavi, S. M. (2016). Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein.
PloS one,
11(7), e0159653. https://doi.org/
10.1371/journal.pone.0159653
Montero-Morales, L., & Steinkellner, H. (2018). Advanced plant-based glycan engineering. Frontiers in Bioengineering and Biotechnology, 6, 81. https://doi.org/10.3389/fbioe.2018.00081
Moreau, P., Garfall, A. L., van de Donk, N. W. C. J., Nahi, H., San-Miguel, J. F., Oriol, A., Nooka, A. K., Martin, T., Rosinol, L., Chari, A., Karlin, L., Benboubker, L., Mateos, M.-V., Bahlis, N., Popat, R., Besemer, B., Martínez-López, J., Sidana, S., Delforge, M., &Usmani, S. Z. (2022). Teclistamab in relapsed or refractory multiple myeloma.
New England Journal of Medicine, 387(6), 495–505.
https://doi.org/10.1056/NEJMoa2203478
Naddafi, F., Shirazi, F. H., Talebkhan, Y., Tabarzad, M., Barkhordari, F., Aliabadi Farahani, Z., Bayat, E., Moazzami, R., Mahboudi, F., & Davami, F. (2018). A comparative study of the bispecific monoclonal antibody, blinatumomab expression in CHO cells and E. coli. Preparative Biochemistry & Biotechnology, 48(10), 961–967. https://doi.org/10.1080/10826068.2018.1525562
Nicholson, I. C., Lenton, K. A., Little, D. J., Decorso, T., Lee, F. T., Scott, A. M., Zola, H., & Hohmann, A. W. (1997). Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Molecular Immunology, 34 (16–17), 1157-1165. https://doi.org/10.1016/s0161-5890(97)00144-2
Phoolcharoen, W., Prehaud, C., van Dolleweerd, C. J., Both, L., da Costa, A., Lafon, M., & Ma, J. K. (2017). Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. Plant Biotechnology Journal, 15(10), 1331-1339. https://doi.org/10.1111/pbi.12719
Pirkalkhoran, S., Grabowska, W. R., Kashkoli, H. H., Mirhassani, R., Guiliano, D., Dolphin, C., & Khalili, H. (2023). Bioengineering of antibody fragments: Challenges and opportunities. Bioengineering, 10(2), https://doi.org/10.3390/bioengineering10020122
Ravanrouy, F., Niazi, A., Moghadam, A., & Taghavi, S. M. (2021). MAP30 transgenic tobacco lines: from silencing to inducing. Molecular Biology Reports, 48(10), 6719-6728. https://doi.org/10.1007/s11033-021-06662-w
Safonov, A. M., Altunina, A. V., Kolpashnikov, I. S., Solovyeva, D. O., & Oleynikov, V. A. (2025). Application of 3D imaging in biomedical research.
Russian Journal of Bioorganic Chemistry,
51(4), 1453-1470.
https://doi.org/10.1134/S1068162024607043
Sanford, M. (2015). Blinatumomab: First global approval. Drugs, 75(3), 321-327. https://doi.org/10.1007/s40265-015-0356-3
Seber Kasinger, L. E., Dent, M. W., Mahajan, G., Hamorsky, K. T., & Matoba, N. (2019). A novel anti-HIV-1 bispecific bNAb-lectin fusion protein engineered in a plant-based transient expression system. Plant Biotechnology Journal, 17(8), 1646-1656. https://doi.org/10.1111/pbi.13090
Seigner, J., Zajc, C. U., Dötsch, S., Eigner, C., Laurent, E., Busch, D. H., Lehner, M., Traxlmayr, M. W. (2023). Solving the mystery of the FMC63-CD19 affinity. Scientific Reports, 13(1), 23024. https://doi.org/10.1038/s41598-023-48528-0
Stanciu-Herrera, C., Morgan, C., & Herrera, L. (2008). Anti-CD19 and anti-CD22 monoclonal antibodies increase the effectiveness of chemotherapy in Pre-B acute lymphoblastic leukemia cell lines. Leukemia Research, 32(4), 625-632.
Hutchings, M., Morschhauser, F., Iacoboni, G., Carlo-Stella, C., Offner, F. C., Sureda, A., Salles, G., Martínez-Lopez, J., Crump, M., Thomas, D. N., Morcos, P. N., Ferlini, C., Bröske, A.-M. E., Belousov, A., Bacac, M., Dimier, N., Carlile, D. J., Lundberg, L., Perez-Callejo, D., Umaña, P., Moore, T., Weisser, M., & Dickinson, M. J. (2021). Glofitamab, a novel, bivalent CD20-targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: A Phase I trial.
Journal of Clinical Oncology, 39(18), 1959–1970.
https://doi.org/10.1200/JCO.20.03175
Thoreau, F., & Chudasama, V. (2022). Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chemical Biology, 3(2), 140-169.
Wang, Q., Chen, Y., Park, J., Liu, X., Hu, Y., Wang, T., McFarland, K., & Betenbaugh, M. J. (2019). Design and production of bispecific antibodies. Antibodies (Basel, Switzerland), 8(3), 43.
Wu, J., Fu, J., Zhang, M., & Liu, D. (2015). Blinatumomab: A bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia.
Journal of Hematology & Oncology, 8, 104.
https://doi.org/10.1186/s13045-015-0195-4
Zaninelli, S., Panna, S., Tettamanti, S., Melita, G., Doni, A., D’Autilia, F., Valgardsdottir, R., Gotti, E., Rambaldi, A., Golay, J., & Introna, M. (2024). Functional activity of cytokine-induced killer cells enhanced by CAR-CD19 modification or by soluble bispecific antibody blinatumomab. Antibodies (Basel), 13(3), 71. https://doi.org/10.3390/antib13030071.
Zhang, J., Carter, J., Siu, S., W O''Neill, J., H Gates, A., Delaney, J., & Mehlin, C. (2010). Fusion partners as a tool for the expression of difficult proteins in mammalian cells.
Current pharmaceutical biotechnology,
11(3), 241-245.
https://doi.org/10.2174/138920110791111898