Abdellah, Y. A. Y., Shi, Z. J., Sun, S. S., Luo, Y. S., Yang, X., Hou, W. T., & Wang R. L. (2022). An assessment of composting conditions, humic matters formation and product maturity in response to different additives: A meta-analysis. Journal of Cleaner Production, 366, 132953. https://doi.org/10.1016/j.jclepro.2022.132953
Arun, C., & Sivashanmugam, P. (2018). Enhanced production of biohydrogen from dairy waste activated sludge pre-treated using multi hydrolytic garbage enzyme complex and ultrasound-optimization. Energy Conversion and Management, 164, 277-287. https://doi.org/10.1016/j.enconman.2018.02.095
Arun, C., & Sivashanmugam P. (2017). Study on optimization of process parameters for enhancing the multi-hydrolytic enzyme activity in garbage enzyme produced from preconsumer organic waste. Bioresource Technology, 226, 200-210. https://doi.org/10.1016/j.biortech.2016.12.029
Arun, C., & Sivashanmugam, P. (2015a). Identification and optimization of parameters for the semi-continuous production of garbage enzyme from pre-consumer organic waste by green RP-HPLC method. Waste Management, 44, 28-33. https://doi.org/10.1016/j.wasman.2015.07.010
Arun, C., & Sivashanmugam, P. (2015b). Investigation of biocatalytic potential of garbage enzyme and its influence on stabilization of industrial waste activated sludge. Process Safety and Environmental Protection, 94, 471-478. https://doi.org/10.1016/j.psep.2014.10.008
Babazadeh, T., Nadrian, H., Mosaferi, M., & Allahverdipour, H. (2020). Challenges in household solid waste separation plan (HSWSP) at source: A qualitative study in Iran. Environment Development and Sustainability, 22, 915-930. https://doi.org/10.1007/s10668-018-0225-9
Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (Overview booklet). Washington, DC: World Bank. License: Creative Commons Attribution CC BY 3.0 IGO.
https://doi.org/10.1596/978-1-4648-1329-0
Benny, N., Shams, R., Dash, K. K., Pandey, V. K., & Bashir, O. (2023). Recent trends in utilization of citrus fruits in production of eco-enzyme. Journal of Agriculture and Food Research, 13, 100657. https://doi.org/10.1016/j.jafr.2023.100657
Cao, R., Ben, W., Qiang, Z., & Zhang, J. (2020). Removal of antibiotic resistance genes in pig manure composting influenced by inoculation of compound microbial agents. Bioresource Technology, 317, 123966. https://doi.org/10.1016/j.biortech.2020.123966
Chaudhary, P., Chaudhary, A., Bhatt, P., Kumar, G., Khatoon, H., Rani, A., Kumar, S., & Sharma, A. (2022). Assessment of soil health indicators under the influence of nanocompounds and Bacillus spp. in field condition. Frontiers in Environmental Science, 9, 769871. https://doi.org/10.3389/fenvs.2021.769871
Chen, L., Chen, Y., Li, Y., Liu, Y., Jiang, H., Li, H., Yuan, Y., Chen, Y., & Zou, B. (2023). Improving the humification by additives during composting: A review. Waste management, 158, 93-106. https://doi.org/10.1016/j.wasman.2022.12.040
Chen, L., He, Z., Yang, L., Wang, L., Li, Y., & Chen, T., et al. (2022). Optimal utilization of solid residue from phase-separation pretreatment before food waste anaerobic digestion. Journal of Cleaner Production, 372, 133795. https://doi.org/10.1016/j.jclepro.2022.133795
Corrado, S., & Sala, S. (2018). Food waste accounting along global and European food supply chains: State of the art and outlook. Waste Management, 79, 120-131. https://doi.org/10.1016/j.wasman.2018.07.032
Das, S. C., Khan, O., Khadem, A. H., Rahman, M. A., Bedoura, S., Uddin, M. A., & Islam, M. D. S. (2024). Evaluating the biocatalytic potential of fruit peel-derived eco-enzymes for sustainable textile wastewater treatment. Results in Engineering, 21, 101898. https://doi.org/10.1016/j.rineng.2024.101898
Das, S., Wadud, A., & Khokon, M. A. R. (2021). Evaluation of the effect of different concentrations of organic amendments and botanical extracts on the mortality and hatching of Meloidogyne javanica. Saudi Journal of Biological Sciences, 28(7), 3759-67. https://doi.org/10.1016/j.sjbs.2021.03.041
Deepa, N., & Malladadavar, D. (2020). Microgreens: the treasure of nutrients. International Journal of Current Microbiology and Applied Sciences, 9(2), 18-23. https://doi.org/10.20546/ijcmas.2020.902.004
Defiani, M., & Astarini, I. (2023). Eco-enzyme enhanced the growth of rice cultivars. IOP Conference Series: Earth and Environmental Science; IOP Publishing. https://doi.org/10.1088/1755-1315/1255/1/012007
Duan, M., Zhang, Y., Zhou, B., Wang, Q., Gu, J., Liu, G., Qin, Z., & Li, Z. (2019). Changes in antibiotic resistance genes and mobile genetic elements during cattle manure composting after inoculation with Bacillus subtilis. Bioresource Technology, 292, 122011. https://doi.org/10.1016/j.biortech.2019.122011
Duran, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Applied Catalysis B: Environmental, 28(2), 83-99. https://doi.org/10.1016/S0926-3373(00)00168-5
Environmental Protection Agency (EPA). (2021). Agricultural waste management in the United States. Washington, DC. Environmental Protection Agency.
Eurostat. (2022). European composting statistics. Brussels, Belgium.
Fadlilla, T., Budiastuti, M. S., & Rosariastuti, M. R. (2023). Potential of fruit and vegetable waste as eco-enzyme fertilizer for plants. Journal Penelitian Pendidikan IPA, 9(4), 2191-2200. http://dx.doi.org/10.29303/jppipa.v9i4.3010
FAO. (2023a). The State of Food and Agriculture 2023. Revealing the true cost of food to transform agrifood systems. Rome. https://doi.org/10.4060/cc7724en
FAO. (2023b). Global waste assessment. Rome, Italy: FAO Publishing. Retrieved from: https://www.fao.org. 2023
FAO. (2022). The State of Food and Agriculture 2022. Leveraging automation in agriculture for transforming agrifood systems. Rome, FAO. https://doi.org/10.4060/cb9479en
FAO. (2021). Food Waste Index Report. Retrieved from: https://www.fao.org/platform-food-loss-waste/food-loss/food-loss-reduction/en
FAO. (2020). Food wastage footprint and climate change. Retrieved from: https://openknowledge.fao.org/server/api/core/bitstreams/7fffcaf9-91b2-4b7b-bceb-3712c8cb34e6/content
Galintin, O., Rasit, N., & Hamzah, S. (2021). Production and characterization of eco enzyme produced from fruit and vegetable wastes and its influence on the aquaculture sludge. Biointerface Research in Applied Chemistry, 11(3), 10205-10214. https://doi.org/10.33263/BRIAC113.1020510214
Gou, C., Wang, Y., Zhang, X., Lou, Y., & Gao, Y. (2017). Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions. Bioresource Technology, 243, 339-346. https://doi.org/10.1016/j.biortech.2017.06.097
Guo, H., Gu, J., Wang, X., Nasir, M., Yu, J., Lei, L., Wang, J., Zhao, W., & Dai, X. (2020). Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure. Bioresource Technology, 298, 122384. https://doi.org/10.1016/j.biortech.2019.122384
Gustina, L. (2024). Effect of eco-enzymes on vegetative and generative growth in several kipas putih soybean (Glycine max (L) Merr.) mutant lines. IOP Conference Series: Earth and Environmental Science; IOP Publishing. https://doi.org/10.1088/1755-1315/1297/1/012061
Hartmann, M., Niklaus, P. A., Zimmermann, S., Schmutz, S., Kremer, J., Abarenkov, K., Lüscher, P., Widmer, F., & Frey, B. (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. The ISME Journal, 8(1), 226-244. https://doi.org/10.1038/ismej.2013.141
Hasanah, Y. (2020). Eco enzyme and its benefits for organic rice production and disinfectant. Journal of Saintech Transfer, 3(2), 119-28. https://doi.org/10.32734/jst.v3i2.4519
Hemalatha, M., & Visantini, P. (2020). Potential use of eco-enzyme for the treatment of metal based effluent. IOP Conference Series: Materials Science and Engineering; IOP Publishing. https://doi.org/10.1088/1757-899X/716/1/012016
Hu, T., Wang, X., Zhen, L., Gu, J., Zhang, K., Wang, Q., Ma, J., Peng, H., Lei, L., & Zhao, W. (2019). Effects of inoculating with lignocellulose-degrading consortium on cellulose-degrading genes and fungal community during co-composting of spent mushroom substrate with swine manure. Bioresource Technology, 291, 121876. https://doi.org/10.1016/j.biortech.2019.121876
Ichsan, C., Qadri, L., Nurahmi, E., Kurniawan, T., & Santi, I. (2024). Improvement of ultisol fertility and sorghum yield by applying soil amendments, npk, and eco enzymes to support food diversification. IOP Conference Series: Earth and Environmental Science; IOP Publishing. https://doi.org/10.1088/1755-1315/1290/1/012056
International Energy Agency (IEA). (2023). Biochar and biofuel integration in composting. Paris, France. Retrieved from: https://www.iea.org/energy-system/low-emission-fuels/biofuels
Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change and Land. Geneva, Switzerland. Retrieved from: https://www.ipcc.ch/report/ar6/wg2/
Intergovernmental Panel on Climate Change (IPCC(. (2021). Climate change and land. Geneva, Switzerland. Retrieved from:
https://www.ipcc.ch/srccl/
Jamali, M., Yazdian, H., Bahman, G., & Eslamian, S. (2025). Water agriculture nexus a system dynamics approach for the next three decades. Scientific Reports, 15(1), 5946.
Janarthanan, M., Mani, K., & Raja, S. R. S. (2020). Purification of contaminated water using eco enzyme. IOP Conference Series: materials science and engineering; IOP Publishing. https://doi.org/10.1088/1757-899X/955/1/012098
Jia, P., Wang, X., Liu, S., Hua, Y., Zhou, S., & Jiang, Z. (2023). Combined use of biochar and microbial agent can promote lignocellulose degradation and humic acid formation during sewage sludge-reed straw composting. Bioresource Technology, 370, 128525. https://doi.org/10.1016/j.biortech.2022.128525
Joseph, A., Joji, J. G., Prince, N. M., Rajendran, R., & Nainamalai, D. M. (2021). Domestic wastewater treatment using garbage enzyme, presented at Roceedings of the International Conference on Systems, Energy & Environment (ICSEE), Kerala, India, GCE Kannur Publishing. https://dx.doi.org/10.2139/ssrn.3793057
Karimi, S., Raza, T., & Mechri, M. (2024). Composting and vermitechnology in organic waste management. In Kumar, V., Bhat, S. A., Kumar, S., & Verma, P. (Ed.), Environmental engineering and waste management: recent trends and perspectives (pp. 449-70). Cham: Springer Nature Switzerland.
http://dx.doi.org/10.1007/978-3-031-58441-1_16
Karimi, S., Kolahchi, Z., Zarrabi, M., Nahidan, S., & Raza, T. (2025). From invasive species to agricultural resource: evaluation of Phragmites australis from Zarivar Lake as an organic amendment for the release of phosphorus, potassium, micronutrients and toxic metals. Discover Applied Sciences, 7(2), 100. https://doi.org/10.1007/s42452-025-06525-0
Kerkar, S., & Salvi, S. (2020). Application of eco-enzyme for domestic waste water treatment. International Journal for Research in Engineering Application and Management, 5(11), 114-116. http://dx.doi.org/10.35291/2454-9150.2020.0075
Kominko, H., Gorazda, K., & Wzorek, Z. (2024). Sewage sludge: A review of its risks and circular raw material potential. Journal of Water Process Engineering, 63, 105522. https://doi.org/10.1016/j.jwpe.2024.105522
Koya, C. M. (2017). Comparison of treatment of greywater using garbage and citrus enzymes. International Journal of Innovative Research in Science, Engineering and Technology, 6(4), 49-54.
Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., & Ward, P. J. (2012). Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of the Total Environment, 438, 477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092
Lee, R. P., Meyer, B., Huang, Q., & Voss, R. (2020). Sustainable waste management for zero waste cities in China: Potential, challenges and opportunities. Clean Energy, 4(3), 169-201. https://doi.org/10.1093/ce/zkaa013
Li, C., Li, H., Yao, T., Su, M., Ran, F., Li, J., He, L., Chen, X., Zhang, C., & Qiu, H. (2021). Effects of swine manure composting by microbial inoculation: Heavy metal fractions, humic substances, and bacterial community metabolism. Journal of Hazardous Materials, 415, 125559. https://doi.org/10.1016/j.jhazmat.2021.125559
Li, Y., Zeng, D., Jiang, X. L., He, D. C., Hu, J. W., Liang, Z. W., Wang, J. C., & Liu, W. R. (2023). Effect comparisons of different conditioners and microbial agents on the degradation of estrogens during dairy manure composting. Chemosphere, 345, 140312. https://doi.org/10.1016/j.chemosphere.2023.140312
Liu, X., Zubair, M., Kong, L., Shi, Y., Zhou, H., Tong, L., Zhu, R., Lv, Y., & Li, Z. (2023). Shifts in bacterial diversity characteristics during the primary and secondary fermentation stages of bio-compost inoculated with effective microorganisms agent. Bioresource Technology, 382, 129163. https://doi.org/10.1016/j.biortech.2023.129163
Manea, E. E., Bumbac, C., Dinu, L. R., Bumbac, M., & Nicolescu, C. M. (2024). Composting as a sustainable solution for organic solid waste management: Current practices and potential improvements. Sustainability, 16(15), 6329. https://doi.org/10.3390/su16156329
Mandal, S., & Verma, D. (2024). Effect of eco-enzyme on growth, yield and quality characters of different cultivars of radish (Raphanus sativus L.). Asian Journal of Microbiology Biotechnology and Environmental Sciences. 26, 1-7. https://doi.org/10.53550/ajmbes.2024.v26i01.001
Mao, H., Lv, Z., Sun, H., Li, R., Zhai, B., Wang, Z., Awasthi, M. K., Wang, Q., & Zhou, L. (2018). Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresource Technology, 258, 195-202. https://doi.org/10.1016/j.biortech.2018.02.082
Mapanda, F., Wuta, M., Nyamangara, J., & Rees, R. (2012). Nitrogen leaching and indirect nitrous oxide emissions from fertilized croplands in Zimbabwe. Nutrient Cycling in Agroecosystems, 93, 85-96. http://dx.doi.org/10.1007/s10705-012-9528-7
Mar’ah, S., & Farma, S. A. (2021). Making and utilizing organic waste into bio eco-enzyme as an indicator of organic plant fertilizer. Prosiding Semnas Bio, 1, 689-699. https://doi.org/10.24036/prosemnasbio/vol1/89
Masse, L., Kennedy, K. J., & Chou, S. P. (2001). The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particles in slaughterhouse wastewater. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 76(6), 629-635. http://dx.doi.org/10.1002/jctb.428
Mavani, H. A. K., Tew, I. M., Wong, L., Yew, H. Z., Mahyuddin, A., Ahmad Ghazali, R., & Pow, E. H. N. (2020). Antimicrobial efficacy of fruit peels eco-enzyme against Enterococcus faecalis: An in vitro study. International Journal of Environmental Research and Public Health, 17(14), 5107. https://doi.org/10.3390/ijerph17145107
Mazhandu, Z. S., Muzenda, E., Mamvura, T. A., Belaid, M., & Nhubu, T. (2020). Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: Challenges and opportunities. Sustainability, 12(20), 8360. https://doi.org/10.3390/su12208360
Muliarta, I. N., & Darmawan, I. K. (2021). Processing household organic waste into eco-enzyme as an effort to realize zero waste. Agriwar Journal, 1(1), 6-11. https://doi.org/10.22225/aj.1.1.2021.6-11
Muliarta, I. N., Sudita, I. D. N., & Situmeang, Y. P. (2023). The effect of eco-enzyme spraying on suwung landfill waste, denpasar, on changes in leachate characteristics. Journal of Environmental Health, 15(1), 56-66. http://dx.doi.org/10.20473/jkl.v15i1.2023.56-66
Nalladiyil, A., Prakash, P., & Babu, G. S. (2023). Garbage enzyme-mediated treatment of landfill leachate: A sustainable approach. Bioresource Technology, 385, 129361. https://doi.org/10.1016/j.biortech.2023.129361
Narang, N., Hussain, A., & Madan, S. (2024). A comparative study on compost preparation using lab prepared eco-enzyme and its effect on growth of plant species Phaseolus vulgaris. Environmental Science and Pollution Research, 31(25), 1-11. http://dx.doi.org/10.1007/s11356-023-27168-x
Natasya, N., Fadilah, M., Fitri, R., Farma, S. A., & Simwela, M. (2023). Analysis of eco-enzyme quality based on differences in plant tissue. Journal Biota, 9(1), 45-53. https://doi.org/10.19109/BIOTA.V9I1.13166
Nazim, F., & Meera, V. (2017). Comparison of treatment of greywater using garbage and citrus enzymes. International Journal of Innovative Research in Science, Engineering and Technology, 6(4), 49-54.
Nazim, F., & Meera, V. (2013). Treatment of synthetic greywater using 5% and 10% garbage enzyme solution. Bonfring International Journal of Industrial Engineering and Management Science, 3(4), 111.
Ney, L., Franklin, D., Mahmud, K., Cabrera, M., Hancock, D., Habteselassie, M., Newcomer, Q., & Dahal, S. (2020). Impact of inoculation with local effective microorganisms on soil nitrogen cycling and legume productivity using composted broiler litter. Applied Soil Ecology, 154, 103567. https://doi.org/10.1016/j.apsoil.2020.103567
Ningrum, R. S., Karima, R., Renjana, E., Ramadani, A. H., Umarudin, U., Istiqomah, N., & Aminingsih, T. (2024). Investigation of eco-enzyme from pineapple (Ananas comosus (L.) Merr.) waste: Chemical composition, antibacterial activity, and molecular docking approach. Waste and Biomass Valorization, 15(8), 1-13. http://dx.doi.org/10.1007/s12649-024-02492-6
Nordin, N., Kaida, N., Othman, N., Akhir, F., & Hara, H. (2020). Reducing food waste: Strategies for household waste management to minimize the impact of climate change and contribute to Malaysia’s sustainable development. IOP Conference Series: Earth and Environmental Science; IOP Publishing. https://doi.org/10.1088/1755-1315/479/1/012035
Noviana, N., Johan, H., Mayub, A., & Firdaus, M. L. (2024). Determination of organic content and the use of eco-enzyme solutions in reducing organic levels in water samples from Cukuh Raya Beach, Kaur Regency, Bengkulu Province, Indonesia. Aquatic Science & Management, 12(1), 1-6. http://dx.doi.org/10.35800/jasm.v12i1.54930
Oriekhoe, O. I., Ashiwaju, B. I., Ihemereze, K. C., Ikwue, U., & Udeh, C A. (2024). Review of technological advancements in food supply chain management: A comparative study between the US and Africa. International Journal of Management & Entrepreneurship Research, 6(1), 132-49. https://doi.org/10.51594/ijmer.v6i1.713
Parengkoan, F. N. (2023). The Identification of Lactobacillus Bacteria and Yeast Isolated from Fermented Food Waste Eco-Enzyme Harvested at Different Times and Its Possibility for Synthetic Wastewater Treatment (Doctoral dissertation, Indonesia International Institute for Life Sciences). http://repository.i3l.ac.id/jspui/handle/123456789/834
Patil, P., Sharara, M., Shah, S., Kulesza, S., & Classen, J. (2023). Impacts of utilizing swine lagoon sludge as a composting ingredient. Journal of Environmental Management, 327, 116840. https://doi.org/10.1016/j.jenvman.2022.116840
Prihanto, J. B., Suprapto, N., Winarsih, W., Iriani, S. S., Hariyono, E., Rizki, I. A., & Vebianawati, E. (2024). Water and sustainable development: implementation and impact of eco-enzyme flushing program in green universities. International Journal of Sustainable Development & Planning, 19(2), 567-576. http://dx.doi.org/10.18280/ijsdp.190214
Qi, H. S. Z. Y., Wang, X., Wei, Z., Zhang, X., Wu, J. Q. X., Kang, K., Yang, H., Shi, M., Su, X., Zhang, C., & Wu, Z. (2021). Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting. Bioresource Technology, 330, 124960. https://doi.org/10.1016/j.biortech.2021.124960
Rani, A., Negi, S., Hussain, A., & Kumar, S. (2020). Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioresource Technology, 297, 122437. https://doi.org/10.1016/j.biortech.2019.122437
Ramadani, A. H., Karima, R., & Ningrum, R. S. (2022). Antibacterial activity of pineapple peel (Ananas comosus) eco-enzyme against acne bacterias (Staphylococcus aureus and Prapionibacterium acnes). Indonesian Journal of Chemical Research, 9(3), 201-207. https://doi.org/10.30598//ijcr.2022.9-nin
Rasit, N., Hwe Fern, L., & Ab Karim Ghani, W. A. W. (2019). Production and characterization of eco enzyme produced from tomato and orange wastes and its influence on the aquaculture sludge. International Journal of Civil Engineering and Technology, 10(3), 967-980. Retrieved from: https://ssrn.com/abstract=3456453
Rasit, N., & Mohammad, F. S. (2018). Production and characterization of bio catalytic enzyme produced from fermentation of fruit and vegetable wastes and its influence on aquaculture sludge. International Journal of Science and Technology, 4(2), 12-26. http://dx.doi.org/10.20319/mijst.2018.42.1226
Ratiani, S. I., Amir, R., Shapira, S. B., & Wahyuni, N. S. (2024). Utilization of eco-enzyme technology from tomato waste as raw material for making hand sanitizer and testing its inhibitory power against staphylococcus aureus bacteria, presented at Proceeding International Conference on Religion, Science and Education, Indonesia, Universitas Islam Negeri Sunan Kalijaga Publishing.
Roulia, M. (2024). Sustainable utilization of humic substances and organic waste in green agriculture. Agriculture, 14(1), 115. https://doi.org/10.3390/agriculture14010115
Salvi, S. (2024). Innovative use of eco-enzymes for domestic wastewater purification. Journal of Environmental Nanotechnology, 13(3), 435-439. http://dx.doi.org/10.13074/jent.2024.09.242771
Sangeeta, S., Rai, S., Ramachandran, P., Yadav, P., & Chandola, G. (2024). Value addition of spices processing industrial waste. Wealth out of Food Processing Waste: CRC Press.
Selvakumar, P., & Sivashanmugam, P. (2017). Optimization of lipase production from organic solid waste by anaerobic digestion and its application in biodiesel production. Fuel Processing Technology, 165, 1-8. https://doi.org/10.1016/j.fuproc.2017.04.020
Sharma, P., Sharma, S., Singh, J., Singh, A., & Katnoria, J. K. (2023). Characterization of Tectona grandis leaf litter compost: An ecological approach for converting leaf litter waste into organic product using composting. Biomass Conversion and Biorefinery, 15(2), 2145-2160. http://dx.doi.org/10.1007/s13399-023-04309-3
Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S., Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen waste to value-added products. Journal of environmental management, 241, 619-630. https://doi.org/10.1016/j.jenvman.2019.02.053
Singh, A., Tiwari, R., & Chandrahas Dutt, T. (2021). Augmentation of farmers’ income in India through sustainable waste management techniques. Waste Management & Research, 39(6), 849-859. https://doi.org/10.1177/0734242x20953892
Siswanto, Y., Sumartono, I., & Ilman, M. (2023). Effectiveness of eco enzyme administration and rhizobium isolation against the growth and production of onions red (Allium ascolonicum L). World Journal of Advanced Research and Reviews, 17(3), 688-705. http://dx.doi.org/10.30574/wjarr.2023.17.3.0450
Takaku, H., Kodaira, S., Kimoto, A., Nashimoto, M., & Takagi, M. (2006). Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and-independent approaches. Journal of Bioscience and Bioengineering, 101(1), 42-50. https://doi.org/10.1263/jbb.101.42
Titisari, P. W. (2023). Eco-enzyme and mushroom bag-logs waste stimulate production and nutrients content of celery microgreen (Apium graveolens L.). Journal Agronomi Indonesia, 51(3), 334-345. http://dx.doi.org/10.24831/jai.v51i3.49588
United Nations Environment Programme (UNEP). (2022). Circular economy. Retrieved from: https://www.unepfi.org/wordpress/wp-content/uploads/2024/07/PRB_CE-Nexus_Guidance-Doc
Utpalasari, R. L., & Dahliana, I. (2020). Analisis hasil konversi eco enzyme menggunakan nenas (Ananas comosus) dan pepaya (Carica papaya L.). Journal Redoks, 5(2), 135-140. http://dx.doi.org/10.31851/redoks.v5i2.5060
Vama, L., & Cherekar, M. N. (2020). Production, extraction and uses of eco-enzyme using citrus fruit waste: wealth from waste. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 22(2), 346-51.
Verma, D., Singh, A., & Shukla, A. (2019). Use of garbage enzyme for treatment of waste water. International Journal of Scientific Research and Review, 7(7), 201-5.
Villalba, L., Donalisio, R. S., Basualdo, N. E. C., & Noriega, R. B. (2020). Household solid waste characterization in Tandil (Argentina): Socioeconomic, institutional, temporal and cultural aspects influencing waste quantity and composition. Resources, Conservation and Recycling, 152, 104530. https://doi.org/10.1016/j.resconrec.2019.104530
Wen, L. C., Ling, R. L. Z., & Teo, S. S. (2021). Effective microorganisms in producing eco-enzyme from food waste for wastewater treatment. Applied Microbiology: Theory & Technology, 2(1), 28-36. http://dx.doi.org/10.37256/amtt.212021726
Wijaya, D. P., & Laila, N. (2024). Potential for eco-enzyme development as entrepreneurship in river ecotourism and mangrove conservation. Indonesian Tourism Journal, 1(2), 131-145. http://dx.doi.org/10.69812/itj.v1i2.39
Wikaningrum, T., Hakiki, R., Astuti, M. P., Ismail, Y., & Sidjabat, F. M. (2022). The eco enzyme application on industrial waste activated sludge degradation. Indonesian Journal of Urban and Environmental Technology, 5(2), 115-133. http://dx.doi.org/10.25105/urbanenvirotech.v5i2.13535
Xu, P., Shu, L., Yang, Y., Kumar, S., Tripathi, P., Mishra, S., Qiu, C., Li, Y., Wu, Y., & Yang, Z. (2024). Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. Ecotoxicology and Environmental Safety, 270, 115884. https://doi.org/10.1016/j.ecoenv.2023.115884
Xu, Z., Qi, C., Zhang, L., Ma, Y., Li, J., Li, G., & Luo, W. (2021). Bacterial dynamics and functions for gaseous emissions and humification in response to aeration intensities during kitchen waste composting. Bioresource Technology, 337, 125369. https://doi.org/10.1016/j.biortech.2021.125369
Yang, L., Gu, J., Yang, Y., Yang, Y., Shan, C., & Shen, F. (2024) The effects of postfire regeneration patterns on soil microbial metabolic limitation based on eco-enzyme stoichiometry in the boreal forest of China. Forest Ecology and Management, 568, 122129. https://doi.org/10.1016/j.foreco.2024.122129
Yang, L., Jie, G., She Qi, Z., Long-Xiang, S., Wei, S., Qian, X., Man-Li, D., Ya-Nan, Y., & Xiao-Juan, W. (2018). Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environmental Engineering Science, 35(4), 270-278. http://dx.doi.org/10.1089/ees.2016.0423
Zhang, J., Cook, J., Nearing, J. T., Zhang, J., Raudonis, R., Glick, B. R., Langille, M. G. I. & Cheng, Z. (2021). Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 245, 126690. https://doi.org/10.1016/j.micres.2020.126690
Zhou, X., Luo, X., Liu, K., Zheng, T., Ling, P., Huang, J., Chen, W., & Huang, Q. (2024). Importance of soil ecoenzyme stoichiometry for efficient polycyclic aromatic hydrocarbon biodegradation. Chemosphere, 359, 142348. https://doi.org/10.1016/j.chemosphere.2024.142348
Zhou, Q., Sun, H., Jia, L., Wu, W., & Wang, J. (2022). Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. Chemosphere, 296, 134054. https://doi.org/10.1016/j.chemosphere.2022.134054
Zhu, N., Zhu, Y., Kan, Z., Li, B., Cao, Y., & Jin, H. (2021). Effects of two-stage microbial inoculation on organic carbon turnover and fungal community succession during co-composting of cattle manure and rice straw. Bioresource Technology, 341, 125842. https://doi.org/10.1016/j.biortech.2021.125842