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Credit risk prediction remains a central challenge for financial 

institutions because inaccurate assessments can cause substantial 
financial losses and systemic instability. This study introduces a 

multi‑level stacking ensemble that combines Gradient Boosting, 

Extreme Gradient Boosting (XGBoost), and Random Forest as 
base learners with logistic regression as the meta‑learner. To 

address class imbalance, we do not use synthetic resampling; 

instead, we apply a class‑management protocol based on 

fold‑wise class‑weighting, probability calibration, and 

operating‑point tuning to ensure fair treatment of the minority 

(default) class without introducing synthetic examples. The 
approach was evaluated on two UCI benchmark datasets (German 

and Australian credit) using a fixed train/test split and stratified 

10‑fold cross‑validation on the training set for model selection; 
final models were retrained on the full training set and assessed 

on a held‑out test set. Results show the stacked ensemble 

consistently outperforms individual base learners on balanced 
metrics including F1 and Matthews Correlation Coefficient 

(MCC) while preserving interpretability via calibrated 

base‑learner probabilities and inspectable logistic 
meta‑coefficients. An empirical analysis of Principal Component 

Analysis (PCA) reveals dataset‑dependent effects: PCA can 

benefit simpler classifiers but may reduce performance for 
interaction‑sensitive ensembles. The paper provides a practical 

deployment blueprint covering class‑management placement, 
probability calibration before meta‑learning, and cost‑aware 

evaluation tailored to credit‑risk operations. 
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1. Introduction  

Predicting credit risk was among the earliest practical uses of machine 

learning, leveraging borrowers’ financial records to estimate the probability of 

default on loans, credit cards, and other credit products. Accurately forecasting 

credit risk remains a major challenge for financial institutions, spurring extensive 

research aimed at improving predictive methods and decision outcome (Moradi 

& Mokhatab, 2019). Early applications of machine learning focused on credit‑risk 

prediction, using financial data to assess the likelihood that customers will default 

on loans, credit cards, and similar obligations. Reliable credit‑risk forecasting 

continues to be difficult for banks and lenders, motivating a large body of research 

to enhance model accuracy and reduce financial losses (Rehman et al., 2019). 

Effective use of credit risk prediction tools can significantly enhance the 

profitability of financial institutions. This is particularly pertinent for credit card 

and loan applications. Financial institutions that fail to accurately predict credit 

risk have faced substantial losses, underscoring the critical importance of precise 

risk assessment for their survival (Khemakhem & Boujelbene, 2018). Over the 

past few decades, credit risk prediction has been a hot topic, with credit card 

default prediction being one of the most crucial tasks for creditors. This is due to 

the higher number of default transactions compared to non-default transactions 

(Dornadula & Geetha, 2019).Consequently, the datasets used for credit risk 

prediction often suffer from class imbalance issues. Previous studies have 

indicated that class imbalance can degrade the performance of machine learning 

(ML) models, leading to bias towards a particular class during inference (García 

etal., 2012). Various techniques have been proposed in the literature to address 

the class imbalance problem, categorized into three main groups: ensemble 

learning, cost-sensitive learning, and re-sampling methods. Among these, 

ensemble learning has been extensively studied (Song & Peng, 2019).Ensemble 

learners outperform single models by leveraging the strengths of multiple base 

learners. Furthermore, ensemble models are divided into two types: classifier 

ensembles and hybrid classifiers. The former integrates attribute selection 

techniques or hyperparameter tuning prior to classification, while the latter 

combines multiple classifiers operating in parallel (Guo etal., 2019).  

In this study, we develop a multilevel ensemble-based model that builds on 

the proven advantages of modern stacking ensembles. By harnessing the 

complementary strengths of Gradient Boosting (Friedman, 2001), Extreme 

Gradient Boosting (Chen & Guestrin, 2015), and Random Forest (Breiman, 

2001), our framework achieves markedly higher predictive accuracy than any 

individual algorithm. Stacking—or stacked generalization—feeds the 

probabilistic outputs of each base learner into a single meta‑learner (Wolpert, 

1992), which intelligently weighs and blends these signals to capture intricate 

non‑linear patterns in the data. This layered architecture disperses error sources 

across diverse models, curbing overfitting and yielding robust generalization. 

Through rigorous cross‑validation, we thoroughly vet the ensemble’s stability on 

unseen samples, ultimately delivering a resilient predictive framework that 
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balances bias and variance more effectively than traditional single‑model 

approaches. 

 

2. Literature Review 

Credit risk prediction seeks to identify borrowers likely to default, but the 

task is challenged by highly imbalanced data (few defaulters vs. many non-

defaulters). Machine learning (ML) methods, especially tree-based ensembles, 

have become widespread. (Noriega et al., 2023), note that boosting models (e.g. 

gradient boosting) dominate recent credit‐scoring research, with most studies 

using metrics like AUC, accuracy, and F1. However, they also highlight persistent 

challenges: “the black box nature” of complex models, the need for explainability, 

and the imbalance in input data. In practice, class imbalance tends to bias models 

toward the majority (safe) class, degrading minority‐class (default) recall. For 

example, (La Gatta et al., 2025), explicitly state that data imbalance “penalizes 

predictive performance,” since learning to classify the few “bad” loans is hard 

when they are underrepresented. To address this, many studies apply resampling 

(e.g. SMOTE, ADASYN) or cost-sensitive learning. (Aruleba & Sun, 2025), 

emphasize this point: they show that combining SMOTE-ENN resampling with a 

stacked ensemble significantly improves sensitivity and specificity in credit data. 

Thus, recent literature makes clear that both ensemble methods and imbalance-

handling are key to state‐of‐the‐art credit scoring. 

Ensemble methods (bagging, boosting, stacking) leverage multiple models 

to boost predictive power. Empirical studies consistently find ensembles 

outperform single classifiers in credit risk tasks. For instance, (Han et al., 2023), 

report that ensemble approaches “have been validated to be more competitive than 

individual classifiers” for default prediction. Bagging methods like Random 

Forest reduce variance, while boosting methods like Gradient Boosting or 

XGBoost reduce bias. (Liu et al., 2024), demonstrate this benefit via novel feature 

engineering: they generate tree‐ensemble features (bagging- and boosting-based) 

and find the boosting-based features yield markedly better credit scoring 

accuracy, AUC and F1 than the bagging-based features or individual classifiers. 

This underscores that cleverly combining multiple trees (via boosting) captures 

complex non-linear patterns better than simpler models. 

Stacking (stacked generalization) takes this further by training a meta-learner 

on the outputs of base models. In credit risk, stacking has shown strong results. 

For example, (Liu et al., 2024), propose ensemble tree-based feature 

transformations fed into logistic regression as a meta-learner, and report 

substantial improvements in accuracy over single models. More broadly, multi-

layer stacking architectures have been introduced: Han et al.’s multi-layer multi-

view stacking (MLMVS) model for P2P credit risk combined probabilistic 

outputs from several base classifiers across “views,” and was experimentally 

shown to outperform standard ensembles and single classifiers. Similarly, (Wei et 

al., 2023), apply a stacking ensemble on a large P2P loan dataset and find it 

achieves higher accuracy, precision and recall than any base learner (with lowest 
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error) – demonstrating that stacking yields “accurate and stable predictions”. 

Overall, recent work suggests that stacking ensembles (especially with 

interpretable meta-models) can achieve superior predictive performance and 

robustness by blending diverse learners. 

Credit datasets are notoriously skewed: defaulters are rare. To mitigate this, 

many studies integrate resampling with ensembles. Oversampling techniques like 

SMOTE or ADASYN create synthetic minority examples, while undersampling 

removes excess majority cases. (La Gatta et al., 2025), find that for very large P2P 

data, random undersampling (RUS) actually outperformed SMOTE: they report 

that SMOTE “is not an appropriate method for this case,” whereas undersampling 

yielded higher performance given the large sample size. Other studies combine 

oversampling with stacking: for instance, a SMOTE+stacking approach achieved 

83.2% accuracy on a peer-to-peer lending dataset. Hybrid methods are also 

explored: (Aruleba & Sun, 2025), use a hybrid SMOTE-ENN resampling in a 

stacking framework, achieving ~0.92 sensitivity and specificity on several public 

credit datasets. These findings indicate that resampling remains crucial: without 

it, stacked models tend to be biased. The proposed multi-level stack aims to 

address imbalance by incorporating resampling (e.g. SMOTE variants) in the 

training pipeline, ensuring the meta-learner sees balanced inputs. 

Comparative studies consistently show ensembles yield better 

generalization. Boosted trees (GB, XGBoost) often achieve top accuracy but can 

overfit without care. Bagging (RF) offers stability. Stacking adds another 

safeguard: by combining diverse models’ predictions via a meta-learner, it can 

curb overfitting and bias and improve robustness on unseen data. For example, 

(Liu et al., 2024), found that their ensemble feature-transform+logistic approach 

gave consistently higher AUC and F1 than any individual model across multiple 

data splits. Likewise, Aruleba & Sun report that their stacking+resampling system 

markedly outperforms individual learners (RF, LR, CNN) on various benchmarks. 

Empirical results also highlight robustness: bagging in particular “lowers variance 

and increases the robustness of the model”, which translates to more stable credit-

risk estimates when data is noisy or imbalanced. 

However, limitations remain. Many ensemble schemes are computationally 

intensive and may overfit if improperly tuned. Stacking models, while powerful, 

can be sensitive to the choice of meta-learner – nonlinear metas (like XGBoost) 

often add complexity, whereas linear metas (like logistic regression) sacrifice 

some modeling power for interpretability. Critically, many recent studies 

optimize accuracy but pay less attention to explainability and calibration. Noriega 

et al. emphasize that the black-box nature of complex ensembles is a barrier in 

finance. There is also a gap in class imbalance strategies: oversampling can 

introduce noise, and existing methods (SMOTE, ADASYN, ENN) have known 

drawbacks. For example, (La Gatta et al., 2025), show that oversampling may hurt 

performance on very large datasets, suggesting one-size-fits-all techniques are 

insufficient. Finally, feature selection is often manual or suboptimal, leading to 

models that may not generalize well across different credit portfolios. 
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The our proposed multi-level stacking ensemble – combining Gradient 

Boosting, XGBoost, and Random Forest as base learners, with logistic regression 

as meta-learner – targets these gaps. First, by using three strong but diverse tree-

based learners, it leverages complementary strengths: boosted models capture 

subtle patterns (as (Liu et al., 2024) show boosting yields the best ensemble 

features), while Random Forest adds robustness. Feeding their probabilistic 

outputs into a logistic meta-learner offers several advantages. Logistic regression 

is inherently interpretable and less prone to overfitting than nonlinear metas, 

addressing concerns about black-box stacking. In fact, (Liu et al., 2024), employ 

logistic meta-learning on ensemble-derived features and report that this “synthetic 

feature transformation” method markedly improves credit scoring performance. 

Second, our framework explicitly integrates imbalance handling. Unlike 

many prior studies that apply one resampling method uniformly, the multi-level 

approach allows resampling at different stages (e.g. before each base learner). 

This adaptivity is motivated by findings like La Gatta et al.’s, which suggest the 

best resampling strategy may vary with data size. By combining SMOTE variants 

with ensemble learning, the model is designed to ensure the meta-learner receives 

a balanced representation of defaulters, mitigating bias toward the majority class. 

The use of cross-validation at each stacking level further promotes generalization: 

error is “dispersed across diverse models” which curbs overfitting, yielding a 

more resilient predictor. 

Overall, the proposed model is novel in its multi-layer stacking architecture 

and in employing logistic regression as the top-layer. It builds on evidence that 

stacking ensembles outperform standalone models, while specifically addressing 

the interpretability and imbalance issues noted in recent literature. In summary, 

by integrating gradient boosting, XGBoost, and random forest within a stacking 

framework with logistic meta-learning and tailored resampling, the proposed 

approach aims to achieve higher predictive accuracy and better generalization 

than prior methods – bridging gaps in feature engineering, imbalance handling, 

and robustness that have been highlighted by recent studies. 

 

3. Classification algorithms 

3.1 Naïve Bayes 

Naïve Bayes (NB) delivers fast, well-calibrated probabilities and scales to 

large feature sets. Its conditional‑independence assumption can benefit 

performance when features are decorrelated but limits interaction modeling and 

reduces effectiveness on datasets with strong feature dependencies (Han et al., 

2022). 

 

3.2 K‑Nearest Neighbors 

k-Nearest Neighbors (KNN) is a nonparametric local method that adapts to 

complex decision boundaries without explicit training. It is sensitive to class 

imbalance and to the distance metric, requires storing the training set, and 
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becomes computationally expensive at prediction time, which constrains its 

operational use in high-throughput credit pipelines (Han et al., 2022). 

 

3.3 Logistic Regression 

Logistic regression (LR) produces interpretable, monotonic probability 

estimates that are straightforward to calibrate and to integrate as a meta-learner. 

It cannot model complex nonlinear feature interactions unless combined with 

engineered features, but its low variance and transparency make it well suited for 

regulatory-facing ensemble layers (Han et al., 2022). 

 

3.4 Decision Trees 

Decision trees (DT) capture nonlinear interactions and produce intuitive 

decision rules that support explainability. Unconstrained trees overfit easily; 

pruning or depth limits are necessary to control variance. Trees provide natural 

handling of mixed feature types, which simplifies preprocessing for credit datasets 

(Han et al., 2022). 

 

3.5 Random Forest 

Random Forest (RF) aggregates many decorrelated trees to reduce variance 

and increase robustness to noise. It preserves interaction effects and is less 

sensitive to overfitting than single trees, but the ensemble’s internal complexity 

reduces direct interpretability and increases inference cost compared with linear 

models (Kunapuli, 2023). 

 

3.6 Gradient Boosting 

Gradient Boosting (GB) learns additive sequential corrections that capture 

subtle, high-order interactions and reduce bias. It requires careful hyperparameter 

tuning and regularization to avoid overfitting, and its sequential nature increases 

training time compared with bagging methods (Kunapuli, 2023). 

 

3.7 eXtreme Gradient Boosting 

eXtreme Gradient Boosting (XGBoost) is an optimized gradient-boosting 

implementation that improves training speed and adds regularization and sparsity-

aware split finding. It achieves strong predictive performance on tabular credit 

data but demands hyperparameter search to balance bias, variance, and calibration 

(Kunapuli, 2023). 

 

3.8 Multi‑Layer Perceptron 

Multi-Layer Perceptron (MLP) models capture complex, non-linear 

relationships and high-order interactions given sufficient data and tuning. They 

are sensitive to class imbalance, require greater computational resources, and 

produce less interpretable outputs without auxiliary explanation tools (Han et al., 

2022). 
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4. Our Proposed Method Stack 

In this study, we propose a multilevel ensemble framework that employs 

stacking to combine three powerful machine learning algorithms: Gradient 

Boosting, Extreme Gradient Boosting, and Random Forest. Stacking, or stacked 

generalization, integrates the outputs of independently trained base learners and 

feeds them into a final estimator—referred to as a meta-learner—that learns how 

to best synthesize these predictions. In this architecture, base models operate in 

parallel, and the sequence in which they are introduced has no effect on the 

outcome, as the meta-learner automatically determines the optimal combination 

of their outputs. Logistic Regression is selected as the meta-learner due to its 

simplicity, interpretability, and strong performance in blending probabilistic 

inputs. The data undergoes a thorough preprocessing pipeline, including cleaning, 

scaling, and categorical encoding, followed by a standard training/testing split. 

Each base model is trained separately and generates predictions that are then 

passed to the meta-learner for final prediction. Model effectiveness is assessed 

using several evaluation criteria to ensure accuracy, robustness, and 

generalization. Additionally, cross-validation techniques are employed to verify 

the stability of the ensemble across unseen data. By capturing the complementary 

strengths of diverse algorithms in a unified framework, the proposed stacked 

model offers a more reliable and scalable solution for complex classification 

tasks. 

 

Table 1. Description of datasets used in the experiment 

Database d n 

German Credit 24 1000 

Australian Credit 14 690 

Source: The UCI Machine Learning Repository (https://archive.ics.uci.edu/) 

 

5. Experimentation and Result Analysis 

The experimental phase of this study was carried out using two datasets 

sourced from the UCI Machine Learning Repository, a widely recognized 

resource in the machine learning community. Established in 1987 by David Aha 

and colleagues at the University of California, Irvine, the repository has since 

become a cornerstone for empirical machine learning research. It provides a 

diverse collection of curated and well-documented datasets, many of which are 

accompanied by thorough descriptions and preprocessing guidelines. These 

features make it a valuable benchmark for researchers, educators, and 

practitioners alike. The selected datasets for this study reflect real-world 

classification challenges and were chosen for their relevance, quality, and 

suitability for evaluating machine learning algorithms. Each dataset comprises 

multiple instances, described through various attributes, and enables a robust 
comparison of classification models. A summary of the datasets used is provided 

https://archive.ics.uci.edu/
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in Table 1, while Table 2 presents the comparative performance of the applied 

machine learning methods in terms of classification accuracy. 

 
Table 2. Accuracy of machine learning methods obtained from various methods on the 

datasets 

Data set Source 
Machine Learning 

method 
 

ACC 

G
er

m
a

n
 c

re
d

it
 

Emmanuel et al., 

(2024) 

Stack(Xgboost,Random 

forest, Gradient 

Boosting) 

0.8280 

Zou & Gao, 

(2022) 

AugBoost-ELM 0.7617 

Quan & Sun, 

(2024) 
FM 0.7696 

Wu et al., (2021) DBM+DRBM 0.8858 
Veeramanikandan 

& Jeyakarthic, 

(2021) 

SADNN 0.961 

Du & Shu, (2022) BRNN 0.62 
Religia et al., 

(2020) 
Random Forest 0.7833 

Alam et al., 

(2020) 
Gradient Boosting 0.835 

Zhao & 

Aumeboonsuke, 

(2023) 

XGBoost 0.8186 

Hoseini et al., 

(2024) 
ensemble SVM(poly) 0.8050 

 
Bulut & Arslan, 

(2024) 
PCA and CV(NB) 0.74 

A
u

st
ra

li
a

n
 c

re
d

it
 

Emmanuel et al., 

(2024) 

Stack(Xgboost,Random 

forest, Gradient 

Boosting) 

0.8623 

Zou & Gao, 

(2022) 
AugBoost-PCA 0.8681 

Quan & Sun, 

(2024) 
FM 0.8844 

Du & Shu, (2022) BRNN 0.82 
Hoseini et al., 

(2024) 
Random forest 0.8768 

Source: mentioned in the source column within the Table 

 

5.1 Evaluation measures of model performance 

Evaluating the effectiveness of a classification model requires the use of 

established performance metrics. In this study, the dataset is split into training and 

testing subsets, where the model is first trained on the training data and 

subsequently evaluated on the test set to assess its predictive ability. The 

performance of the proposed model is measured using several widely recognized 
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criteria, including Accuracy (ACC), F1-score, and the Matthews Correlation 

Coefficient (MCC). These metrics collectively offer a well-rounded view of the 

model’s classification capabilities. Accuracy quantifies the ratio of correctly 

predicted instances to the total number of samples, serving as a basic indicator of 

overall model performance. The F1-score, which represents the harmonic mean 

of precision and recall, provides a balanced metric especially useful in the 

presence of imbalanced classes. Meanwhile, MCC delivers a more robust 

evaluation by incorporating all elements of the confusion matrix—true positives, 

true negatives, false positives, and false negatives—yielding a coefficient 

between -1 and 1, with values closer to 1 indicating highly reliable predictions. 

Through the combined use of these metrics, the study ensures a comprehensive 

and reliable assessment of the model’s classification performance (Powers, 2011). 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,                                                                                                      (1)

  

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
,                                                   (2)

  

𝐹1 = 2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
),                                                                       (3) 

where  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
.                                                    (4) 

  
6. Result Analysis 

Model selection and hyperparameter tuning were performed using stratified 

10‑fold cross‑validation on the training set: in each fold models were trained on 9 

folds and validated on the remaining fold, and hyperparameters were chosen by 

grid or randomized search to maximize balanced metrics (primarily F1 and MCC) 

averaged across the 10 folds. After selecting the best configuration, each model 

was retrained on the full training set with those hyperparameters and evaluated 

once on the held‑out test set. All procedures preserved class proportions within 

folds to prevent leakage and ensure that reported test results reflect genuine 

out‑of‑sample performance. 

 

6.1 Analysis of Table 3(German Dataset) 

The proposed stacked ensemble achieves the highest scores across all 

evaluated metrics on the German dataset, with recall of 0.6896, precision of 

0.7296, MCC of 0.4174, F1‑score of 0.7023, and accuracy of 0.7700. These 

results surpass the next best performer, Logistic Regression, which records 

slightly lower values (REC = 0.6849, PRE = 0.7192, MCC = 0.4027, F1 = 0.6962, 

ACC = 0.7633). Tree‑based learners such as Gradient Boosting and Random 

Forest also deliver strong performance but fall short of the ensemble’s balanced 

improvement across both sensitivity and specificity. Simpler classifiers like KNN, 
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Naive Bayes, and single decision trees exhibit notably lower correlation 

coefficients and F1‑scores, indicating their limited ability to capture the dataset’s 

complex patterns. Overall, the multilevel stacking framework more effectively 

harmonizes bias and variance, leading to a uniformly superior classification 

performance. 

On the German dataset the stacked ensemble attains F1 = 0.7023 and MCC 

= 0.4174, which are the highest among the reported models. Comparing directly 

with the three standalone tree-based learners shows a consistent advantage in both 

balanced‑performance metrics. Gradient Boosting records F1 = 0.6801 and MCC 

= 0.3938, XGBoost records F1 = 0.6619 and MCC = 0.3559, and Random Forest 

records F1 = 0.6874 and MCC = 0.3750. The stacked model’s F1 improvement 

over the best single tree (Random Forest) is 0.0149 absolute, and its MCC 

improvement is 0.0424 absolute, indicating that stacking yields modest but 

meaningful gains in harmonic balance between precision and recall and in overall 

correlation between predictions and true labels. These gains reflect the meta-

learner’s ability to combine complementary probability estimates, improving 

discrimination of the minority class while maintaining specificity for the majority 

class. 

 

6.2 Analysis of Table 4(Australian Dataset) 

The proposed stacked ensemble again leads all contenders, attaining recall 

of 0.8684, precision of 0.8640, MCC of 0.7324, F1‑score of 0.8641, and accuracy 

of 0.8647. This performance notably surpasses the closest standalone methods—

Random Forest and decision trees—which both achieve accuracy of 0.8550 and 

MCC values around 0.715. Logistic Regression and Gradient Boosting deliver 

respectable results in the mid‑0.84 accuracy range but fall short of the ensemble’s 

gains in balanced classification (MCC) and F1‑score. Simpler classifiers such as 

KNN, Naive Bayes, and the multilayer perceptron underperform relative to the 

tree‑based learners, underscoring their limited capacity to capture the dataset’s 

nuanced patterns. These findings reaffirm that integrating diverse base learners 

into a parallel stacking framework yields a more robust, generalized model for 

real‑world credit classification tasks. 

On the Australian dataset the stacked ensemble achieves F1 = 0.8641 and 

MCC = 0.7324, outperforming the individual tree learners. Random Forest reports 

F1 = 0.8546 and MCC = 0.7151, Gradient Boosting reports F1 = 0.8445 and MCC 

= 0.6917, and XGBoost reports F1 = 0.8445 and MCC = 0.6917. The stacked 

model’s absolute F1 gain over Random Forest is 0.0095 and its MCC gain is 

0.0173, indicating improved balanced performance and stronger overall 

predictive correlation. The smaller absolute margins compared with the German 

dataset suggest the ensemble consolidates strengths of high-performing trees but 

yields diminishing incremental returns when base learners are already closely 

competitive. 
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Table 3. Performance comparison of classifiers on the German dataset (original 

feature space) 

𝑅𝐸𝐶 𝑃𝑅𝐸 𝑀𝐶𝐶 𝐹1 𝐴𝐶𝐶 Model 

0.6674 0.6909 0.3576 0.6757 0.7433 KNN 

0.6603 0.6547 0.3149 0.6751 0.7066 NB 

0.6849 0.7192 0.4027 0.6962 0.7633 LR 

0.6722 0.647 0.3182 0.6454 0.67 DT 

0.688 0.6869 0.375 0.6874 0.7366 RF 

0.6468 0.7059 0.3938 0.6801 0.7666 GB 

0.6793 0.7148 0.3926 0.6907 0.76 MLP 

0.6492 0.7122 0.3559 0.6619 0.7533 XGB 

0.6896 0.7296 0.4174 0.7023 0.77 Stacked (Proposed) 
Source:Research finding 

 

Table 4. Performance comparison of classifiers on the Australian dataset (original 

feature space) 

𝑅𝐸𝐶 𝑃𝑅𝐸 𝑀𝐶𝐶 𝐹1 𝐴𝐶𝐶 Model 

0.8391 0.8384 0.6775 0.8387 0.8405 KNN 

0.8271 0.8406 0.6677 0.8309 0.8357 NB 

0.8489 0.8464 0.6953 0.8405 0.8405 LR 

0.8565 0.8531 0.7096 0.854 0.855 DT 

0.8597 0.8553 0.7151 0.8546 0.855 RF 

0.8478 0.8439 0.6917 0.8445 0.8454 GB 

0.8271 0.8296 0.6567 0.8282 0.8309 MLP 

0.8478 0.8439 0.6917 0.8445 0.8454 XGB 

0.8684 0.864 0.7324 0.8641 0.8647 Stacked (Proposed) 
Source: Research finding 

 

6.3 Analysis of Table 5 (German Dataset) 

After applying PCA, the ranking and behavior of classifiers on the German 

data change noticeably. Naive Bayes becomes the strongest performer in terms of 

balanced measures (REC = 0.6849, PRE = 0.7457, MCC = 0.4263, F1 = 0.7008, 

ACC = 0.7766), surpassing the proposed stacked ensemble (REC = 0.6500, PRE 

= 0.7046, MCC = 0.3504, F1 = 0.6621, ACC = 0.7500). Tree-based models and 

the multilevel stacking approach suffer a relative decline. This pattern suggests 

that PCA — as applied here — has removed or compressed nonlinear and 

interaction signals that tree learners and complex ensembles exploit, while at the 

same time producing a more decorrelated, approximately linear input space that 

suits Naive Bayes’ conditional-independence assumptions. In practical terms, the 

result indicates that an unsupervised, global PCA transformation can advantage 

simple probabilistic classifiers at the cost of degrading more expressive, 

interaction-dependent learners. For practitioners, this implies PCA should be 

applied selectively (for example only on numeric features, or using 

supervised/target-aware dimensionality reduction) if the goal is to preserve the 

ensemble’s full predictive power. 
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6.4 Analysis of Table 6 (Australian Dataset) 

On the Australian dataset PCA has a milder effect and the proposed stacked 

ensemble remains the best overall performer (REC = 0.8608, PRE = 0.8578, MCC 

= 0.7186, F1 = 0.8588, ACC = 0.8599). While several simpler classifiers (e.g., 

Naive Bayes and Logistic Regression) also show relatively high scores after PCA 

(NB: MCC ≈ 0.7035, LR: MCC ≈ 0.6986), the ensemble preserves its lead in both 

discrimination and balance between sensitivity and specificity. This outcome 

implies that, for the Australian data, principal components retain the majority of 

the predictive signal (including the aspects that the ensemble exploits), so 

dimensionality reduction does not substantially impair sophisticated learners. The 

contrast with the German results highlights that the effect of PCA is dataset-

specific: when the original feature space contains strong nonlinear interactions 

critical to complex models, PCA may harm them; when the predictive structure is 

largely captured by principal components, ensembles remain robust. Again, a 

selective or supervised dimensionality-reduction strategy is recommended if one 

needs to reduce dimensionality while retaining the advantages of powerful 

ensemble methods. 

 
Table 5. Impact of dimensionality reduction (PCA) on classifier performance German 

dataset 

𝑅𝐸𝐶 𝑃𝑅𝐸 𝑀𝐶𝐶 𝐹1 𝐴𝐶𝐶 Model 

0.6642 0.6909 0.3542 0.6731 0.7433 KNN 

0.6849 0.7457 0.4263 0.7008 0.7766 NB 

0.6642 0.7129 0.3741 0.6769 0.7566 LR 

0.6238 0.6128 0.2364 0.6155 0.66 DT 

0.6611 0.691 0.3508 0.6705 0.7433 RF 

0.6039 0.6778 0.2719 0.6087 0.73 GB 

0.6777 0.7046 0.3815 0.6871 0.7533 MLP 

0.5857 0.6791 0.2478 0.5832 0.7266 XGB 

0.65 0.7046 0.3504 0.6621 0.75 Stacked (Proposed) 
Source: Research finding 

 

Table 6. Impact of dimensionality reduction (PCA) on classifier performance 

Australian dataset 

𝑅𝐸𝐶 𝑃𝑅𝐸 𝑀𝐶𝐶 𝐹1 𝐴𝐶𝐶 Model 

0.8402 0.8382 0.6785 0.839 0.8405 KNN 

0.8532 0.8502 0.7035 0.8453 0.8454 NB 

0.85 0.8486 0.6986 0.8405 0.8405 LR 

0.85 0.848 0.698 0.8488 0.8502 DT 

0.8369 0.8337 0.6706 0.8346 0.8357 RF 

0.8521 0.8484 0.7006 0.8493 0.8502 GB 

0.8456 0.8449 0.6905 0.8357 0.8357 MLP 

0.8478 0.8486 0.6964 0.8482 0.8502 XGB 

0.8608 0.8578 0.7186 08588 0.8599 Stacked (Proposed) 
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Source: Research finding 

 

Figure 1. Cumulative variance explained by principal components for German 

credit data set 

Source: Research finding 

 

 
Figure 2. Cumulative variance explained by principal components for 

Australian credit data set 
Source: Research finding 
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7. Conclusion 

In this study we proposed a multilevel stacking ensemble that leverages the 

complementary strengths of Gradient Boosting, Extreme Gradient Boosting 

(XGBoost), and Random Forest, consolidated by a logistic-regression meta-

learner. Extensive experiments on benchmark credit datasets from the UCI 

repository demonstrate that the proposed stacking framework consistently 

outperforms a wide range of standalone classifiers including KNN, Naive Bayes, 

single decision trees, and individual ensemble methods across multiple evaluation 

metrics such as accuracy, F1-score, and the Matthews Correlation Coefficient 

(MCC). These empirical gains reflect the practical advantage of combining 

diverse inductive biases in parallel: the meta-learner effectively synthesizes the 

base learners’ complementary strengths, producing a more robust and 

generalizable predictor that balances bias and variance without imposing a strict 

ordering on base models. 

We also examined the effect of unsupervised dimensionality reduction 

(PCA) on model performance. The impact was dataset-dependent: for the German 

dataset PCA caused a marked shift in relative rankings decorrelating the feature 

space and making it more favorable to simpler probabilistic models (e.g., Naive 

Bayes) while attenuating the benefits of interaction-sensitive learners and the 

stacking ensemble. In contrast, for the Australian dataset PCA had a milder effect 

and the stacked ensemble retained its lead, indicating that most predictive signal 

in that case was captured by the principal components. These findings emphasize 

that global, unsupervised PCA can both help and harm downstream learners 

depending on the data’s intrinsic structure: it can reduce noise and overfitting risk, 

yet it may also remove nonlinear interaction terms that tree-based and ensemble 

models exploit. 

Finally, the proposed methodology offers a scalable and practical blueprint 

for credit-risk classification in real-world settings. For practitioners we 

recommend applying dimensionality reduction selectively (for example, only to 

numeric features, or using supervised/target-aware reduction), calibrating 

probabilistic outputs before meta-learning, and evaluating models under cost-

sensitive metrics that reflect business impact. Future work should explore 

alternative and more expressive meta-learners (e.g., gating networks or mixture-

of-experts), uncertainty quantification (conformal prediction or Bayesian 

ensembles), adaptive resampling schemes for severe class imbalance, and 

extensions to multi-class or longitudinal credit-scoring problems. These 

directions will help further close the gap between methodological advances and 

operational deployment in financial risk systems. 
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