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Abstract

Credit risk prediction remains a central challenge for financial
institutions because inaccurate assessments can cause substantial
financial losses and systemic instability. This study introduces a
multi-level stacking ensemble that combines Gradient Boosting,
Extreme Gradient Boosting (XGBoost), and Random Forest as
base learners with logistic regression as the meta-learner. To
address class imbalance, we do not use synthetic resampling;
instead, we apply a class-management protocol based on
fold-wise class-weighting, probability calibration, and
operating-point tuning to ensure fair treatment of the minority
(default) class without introducing synthetic examples. The
approach was evaluated on two UCI benchmark datasets (German
and Australian credit) using a fixed train/test split and stratified
10-fold cross-validation on the training set for model selection;
final models were retrained on the full training set and assessed
on a held-out test set. Results show the stacked ensemble
consistently outperforms individual base learners on balanced
metrics including F1 and Matthews Correlation Coefficient
(MCC) while preserving interpretability via calibrated
base-learner ~ probabilities and inspectable logistic
meta-coefficients. An empirical analysis of Principal Component
Analysis (PCA) reveals dataset-dependent effects: PCA can
benefit simpler classifiers but may reduce performance for
interaction-sensitive ensembles. The paper provides a practical
deployment blueprint covering class-management placement,
probability calibration before meta-learning, and cost-aware
evaluation tailored to credit-risk operations.
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. Novel multi-algorithm stacking framework for credit risk.

Achieves superior performance without synthetic resampling.
Logistic regression meta-learner ensures model interpretability.
PCA effects are dataset-dependent; can harm complex ensembles.
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1. Introduction

Predicting credit risk was among the earliest practical uses of machine
learning, leveraging borrowers’ financial records to estimate the probability of
default on loans, credit cards, and other credit products. Accurately forecasting
credit risk remains a major challenge for financial institutions, spurring extensive
research aimed at improving predictive methods and decision outcome (Moradi
& Mokhatab, 2019). Early applications of machine learning focused on credit-risk
prediction, using financial data to assess the likelihood that customers will default
on loans, credit cards, and similar obligations. Reliable credit-risk forecasting
continues to be difficult for banks and lenders, motivating a large body of research
to enhance model accuracy and reduce financial losses (Rehman et al., 2019).
Effective use of credit risk prediction tools can significantly enhance the
profitability of financial institutions. This is particularly pertinent for credit card
and loan applications. Financial institutions that fail to accurately predict credit
risk have faced substantial losses, underscoring the critical importance of precise
risk assessment for their survival (Khemakhem & Boujelbene, 2018). Over the
past few decades, credit risk prediction has been a hot topic, with credit card
default prediction being one of the most crucial tasks for creditors. This is due to
the higher number of default transactions compared to non-default transactions
(Dornadula & Geetha, 2019).Consequently, the datasets used for credit risk
prediction often suffer from class imbalance issues. Previous studies have
indicated that class imbalance can degrade the performance of machine learning
(ML) models, leading to bias towards a particular class during inference (Garcia
etal., 2012). Various techniques have been proposed in the literature to address
the class imbalance problem, categorized into three main groups: ensemble
learning, cost-sensitive learning, and re-sampling methods. Among these,
ensemble learning has been extensively studied (Song & Peng, 2019).Ensemble
learners outperform single models by leveraging the strengths of multiple base
learners. Furthermore, ensemble models are divided into two types: classifier
ensembles and hybrid classifiers. The former integrates attribute selection
techniques or hyperparameter tuning prior to classification, while the latter
combines multiple classifiers operating in parallel (Guo etal., 2019).

In this study, we develop a multilevel ensemble-based model that builds on
the proven advantages of modern stacking ensembles. By harnessing the
complementary strengths of Gradient Boosting (Friedman, 2001), Extreme
Gradient Boosting (Chen & Guestrin, 2015), and Random Forest (Breiman,
2001), our framework achieves markedly higher predictive accuracy than any
individual algorithm. Stacking—or stacked generalization—feeds the
probabilistic outputs of each base learner into a single meta-learner (Wolpert,
1992), which intelligently weighs and blends these signals to capture intricate
non-linear patterns in the data. This layered architecture disperses error sources
across diverse models, curbing overfitting and yielding robust generalization.
Through rigorous cross-validation, we thoroughly vet the ensemble’s stability on
unseen samples, ultimately delivering a resilient predictive framework that
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balances bias and variance more effectively than traditional single-model
approaches.

2. Literature Review

Credit risk prediction seeks to identify borrowers likely to default, but the
task is challenged by highly imbalanced data (few defaulters vs. many non-
defaulters). Machine learning (ML) methods, especially tree-based ensembles,
have become widespread. (Noriega et al., 2023), note that boosting models (e.g.
gradient boosting) dominate recent credit-scoring research, with most studies
using metrics like AUC, accuracy, and F1. However, they also highlight persistent
challenges: “the black box nature” of complex models, the need for explainability,
and the imbalance in input data. In practice, class imbalance tends to bias models
toward the majority (safe) class, degrading minority-class (default) recall. For
example, (La Gatta et al., 2025), explicitly state that data imbalance “penalizes
predictive performance,” since learning to classify the few “bad” loans is hard
when they are underrepresented. To address this, many studies apply resampling
(e.g. SMOTE, ADASYN) or cost-sensitive learning. (Aruleba & Sun, 2025),
emphasize this point: they show that combining SMOTE-ENN resampling with a
stacked ensemble significantly improves sensitivity and specificity in credit data.
Thus, recent literature makes clear that both ensemble methods and imbalance-
handling are key to state-of-the-art credit scoring.

Ensemble methods (bagging, boosting, stacking) leverage multiple models
to boost predictive power. Empirical studies consistently find ensembles
outperform single classifiers in credit risk tasks. For instance, (Han et al., 2023),
report that ensemble approaches “have been validated to be more competitive than
individual classifiers” for default prediction. Bagging methods like Random
Forest reduce variance, while boosting methods like Gradient Boosting or
XGBoost reduce bias. (Liu et al., 2024), demonstrate this benefit via novel feature
engineering: they generate tree-ensemble features (bagging- and boosting-based)
and find the boosting-based features yield markedly better credit scoring
accuracy, AUC and F1 than the bagging-based features or individual classifiers.
This underscores that cleverly combining multiple trees (via boosting) captures
complex non-linear patterns better than simpler models.

Stacking (stacked generalization) takes this further by training a meta-learner
on the outputs of base models. In credit risk, stacking has shown strong results.
For example, (Liu et al., 2024), propose ensemble tree-based feature
transformations fed into logistic regression as a meta-learner, and report
substantial improvements in accuracy over single models. More broadly, multi-
layer stacking architectures have been introduced: Han et al.”s multi-layer multi-
view stacking (MLMVS) model for P2P credit risk combined probabilistic
outputs from several base classifiers across “views,” and was experimentally
shown to outperform standard ensembles and single classifiers. Similarly, (Wei et
al., 2023), apply a stacking ensemble on a large P2P loan dataset and find it
achieves higher accuracy, precision and recall than any base learner (with lowest
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error) — demonstrating that stacking yields “accurate and stable predictions”.
Overall, recent work suggests that stacking ensembles (especially with
interpretable meta-models) can achieve superior predictive performance and
robustness by blending diverse learners.

Credit datasets are notoriously skewed: defaulters are rare. To mitigate this,
many studies integrate resampling with ensembles. Oversampling techniques like
SMOTE or ADASYN create synthetic minority examples, while undersampling
removes excess majority cases. (La Gatta et al., 2025), find that for very large P2P
data, random undersampling (RUS) actually outperformed SMOTE: they report
that SMOTE “is not an appropriate method for this case,” whereas undersampling
yielded higher performance given the large sample size. Other studies combine
oversampling with stacking: for instance, a SMOTE+stacking approach achieved
83.2% accuracy on a peer-to-peer lending dataset. Hybrid methods are also
explored: (Aruleba & Sun, 2025), use a hybrid SMOTE-ENN resampling in a
stacking framework, achieving ~0.92 sensitivity and specificity on several public
credit datasets. These findings indicate that resampling remains crucial: without
it, stacked models tend to be biased. The proposed multi-level stack aims to
address imbalance by incorporating resampling (e.g. SMOTE variants) in the
training pipeline, ensuring the meta-learner sees balanced inputs.

Comparative studies consistently show ensembles yield better
generalization. Boosted trees (GB, XGBoost) often achieve top accuracy but can
overfit without care. Bagging (RF) offers stability. Stacking adds another
safeguard: by combining diverse models’ predictions via a meta-learner, it can
curb overfitting and bias and improve robustness on unseen data. For example,
(Liu et al., 2024), found that their ensemble feature-transform+logistic approach
gave consistently higher AUC and F1 than any individual model across multiple
data splits. Likewise, Aruleba & Sun report that their stacking+resampling system
markedly outperforms individual learners (RF, LR, CNN) on various benchmarks.
Empirical results also highlight robustness: bagging in particular “lowers variance
and increases the robustness of the model”, which translates to more stable credit-
risk estimates when data is noisy or imbalanced.

However, limitations remain. Many ensemble schemes are computationally
intensive and may overfit if improperly tuned. Stacking models, while powerful,
can be sensitive to the choice of meta-learner — nonlinear metas (like XGBoost)
often add complexity, whereas linear metas (like logistic regression) sacrifice
some modeling power for interpretability. Critically, many recent studies
optimize accuracy but pay less attention to explainability and calibration. Noriega
et al. emphasize that the black-box nature of complex ensembles is a barrier in
finance. There is also a gap in class imbalance strategies: oversampling can
introduce noise, and existing methods (SMOTE, ADASYN, ENN) have known
drawbacks. For example, (La Gatta et al., 2025), show that oversampling may hurt
performance on very large datasets, suggesting one-size-fits-all techniques are
insufficient. Finally, feature selection is often manual or suboptimal, leading to
models that may not generalize well across different credit portfolios.
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The our proposed multi-level stacking ensemble — combining Gradient
Boosting, XGBoost, and Random Forest as base learners, with logistic regression
as meta-learner — targets these gaps. First, by using three strong but diverse tree-
based learners, it leverages complementary strengths: boosted models capture
subtle patterns (as (Liu et al., 2024) show boosting yields the best ensemble
features), while Random Forest adds robustness. Feeding their probabilistic
outputs into a logistic meta-learner offers several advantages. Logistic regression
is inherently interpretable and less prone to overfitting than nonlinear metas,
addressing concerns about black-box stacking. In fact, (Liu et al., 2024), employ
logistic meta-learning on ensemble-derived features and report that this “synthetic
feature transformation” method markedly improves credit scoring performance.

Second, our framework explicitly integrates imbalance handling. Unlike
many prior studies that apply one resampling method uniformly, the multi-level
approach allows resampling at different stages (e.g. before each base learner).
This adaptivity is motivated by findings like La Gatta et al.’s, which suggest the
best resampling strategy may vary with data size. By combining SMOTE variants
with ensemble learning, the model is designed to ensure the meta-learner receives
a balanced representation of defaulters, mitigating bias toward the majority class.
The use of cross-validation at each stacking level further promotes generalization:
error is “dispersed across diverse models” which curbs overfitting, yielding a
more resilient predictor.

Overall, the proposed model is novel in its multi-layer stacking architecture
and in employing logistic regression as the top-layer. It builds on evidence that
stacking ensembles outperform standalone models, while specifically addressing
the interpretability and imbalance issues noted in recent literature. In summary,
by integrating gradient boosting, XGBoost, and random forest within a stacking
framework with logistic meta-learning and tailored resampling, the proposed
approach aims to achieve higher predictive accuracy and better generalization
than prior methods — bridging gaps in feature engineering, imbalance handling,
and robustness that have been highlighted by recent studies.

3. Classification algorithms
3.1 Naive Bayes

Naive Bayes (NB) delivers fast, well-calibrated probabilities and scales to
large feature sets. Its conditional-independence assumption can benefit
performance when features are decorrelated but limits interaction modeling and
reduces effectiveness on datasets with strong feature dependencies (Han et al.,
2022).

3.2 K-Nearest Neighbors

k-Nearest Neighbors (KNN) is a nonparametric local method that adapts to
complex decision boundaries without explicit training. It is sensitive to class
imbalance and to the distance metric, requires storing the training set, and
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becomes computationally expensive at prediction time, which constrains its
operational use in high-throughput credit pipelines (Han et al., 2022).

3.3 Logistic Regression

Logistic regression (LR) produces interpretable, monotonic probability
estimates that are straightforward to calibrate and to integrate as a meta-learner.
It cannot model complex nonlinear feature interactions unless combined with
engineered features, but its low variance and transparency make it well suited for
regulatory-facing ensemble layers (Han et al., 2022).

3.4 Decision Trees

Decision trees (DT) capture nonlinear interactions and produce intuitive
decision rules that support explainability. Unconstrained trees overfit easily;
pruning or depth limits are necessary to control variance. Trees provide natural
handling of mixed feature types, which simplifies preprocessing for credit datasets
(Han et al., 2022).

3.5 Random Forest

Random Forest (RF) aggregates many decorrelated trees to reduce variance
and increase robustness to noise. It preserves interaction effects and is less
sensitive to overfitting than single trees, but the ensemble’s internal complexity
reduces direct interpretability and increases inference cost compared with linear
models (Kunapuli, 2023).

3.6 Gradient Boosting

Gradient Boosting (GB) learns additive sequential corrections that capture
subtle, high-order interactions and reduce bias. It requires careful hyperparameter
tuning and regularization to avoid overfitting, and its sequential nature increases
training time compared with bagging methods (Kunapuli, 2023).

3.7 eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBoost) is an optimized gradient-boosting
implementation that improves training speed and adds regularization and sparsity-
aware split finding. It achieves strong predictive performance on tabular credit
data but demands hyperparameter search to balance bias, variance, and calibration
(Kunapuli, 2023).

3.8 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) models capture complex, non-linear
relationships and high-order interactions given sufficient data and tuning. They
are sensitive to class imbalance, require greater computational resources, and
produce less interpretable outputs without auxiliary explanation tools (Han et al.,
2022).
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4. Our Proposed Method Stack

In this study, we propose a multilevel ensemble framework that employs
stacking to combine three powerful machine learning algorithms: Gradient
Boosting, Extreme Gradient Boosting, and Random Forest. Stacking, or stacked
generalization, integrates the outputs of independently trained base learners and
feeds them into a final estimator—referred to as a meta-learner—that learns how
to best synthesize these predictions. In this architecture, base models operate in
parallel, and the sequence in which they are introduced has no effect on the
outcome, as the meta-learner automatically determines the optimal combination
of their outputs. Logistic Regression is selected as the meta-learner due to its
simplicity, interpretability, and strong performance in blending probabilistic
inputs. The data undergoes a thorough preprocessing pipeline, including cleaning,
scaling, and categorical encoding, followed by a standard training/testing split.
Each base model is trained separately and generates predictions that are then
passed to the meta-learner for final prediction. Model effectiveness is assessed
using several evaluation criteria to ensure accuracy, robustness, and
generalization. Additionally, cross-validation techniques are employed to verify
the stability of the ensemble across unseen data. By capturing the complementary
strengths of diverse algorithms in a unified framework, the proposed stacked
model offers a more reliable and scalable solution for complex classification
tasks.

Table 1. Description of datasets used in the experiment

Database d n
German Credit 24 1000
Australian Credit 14 690

Source: The UCI Machine Learning Repository (https://archive.ics.uci.edu/)

5. Experimentation and Result Analysis

The experimental phase of this study was carried out using two datasets
sourced from the UCI Machine Learning Repository, a widely recognized
resource in the machine learning community. Established in 1987 by David Aha
and colleagues at the University of California, Irvine, the repository has since
become a cornerstone for empirical machine learning research. It provides a
diverse collection of curated and well-documented datasets, many of which are
accompanied by thorough descriptions and preprocessing guidelines. These
features make it a valuable benchmark for researchers, educators, and
practitioners alike. The selected datasets for this study reflect real-world
classification challenges and were chosen for their relevance, quality, and
suitability for evaluating machine learning algorithms. Each dataset comprises
multiple instances, described through various attributes, and enables a robust
comparison of classification models. A summary of the datasets used is provided
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in Table 1, while Table 2 presents the comparative performance of the applied
machine learning methods in terms of classification accuracy.

Table 2. Accuracy of machine learning methods obtained from various methods on the

datasets
Machine Learnin
Data set Source method g ACC
E Stack(Xgboost,Random 0.8280
mmanuel et al., .
(2024) forest, Gl_radlent
Boosting)
Zou & Gao, AugBoost-ELM 0.7617
(2022)
Quan & Sun, FM 0.7696
(2024)
- Wau et al., (2021) DBM+DRBM 0.8858
§ Veeramanikandan SADNN 0.961
S & Jeyakarthic,
5 (2021)
£ Du & Shu, (2022) BRNN 0.62
3 Religia et al., Random Forest 0.7833
(2020)
Alam et al., Gradient Boosting 0.835
(2020)
Zhao & XGBoost 0.8186
Aumeboonsuke,
(2023)
Hoseini et al., ensemble SVM(poly) 0.8050
(2024)
Bulut & Arslan, PCA and CV(NB) 0.74
(2024)
E Stack(Xgboost,Random 0.8623
mmanuel et al., )
forest, Gradient
= (2024) Boosti
5 oosting)
g Zou & Gao, AugBoost-PCA 0.8681
= (2022)
= Quan & Sun, FM 0.8844
= (2024)
2 Du & Shu, (2022) BRNN 0.82
Hoseini et al., Random forest 0.8768
(2024)

Source: mentioned in the source column within the Table

5.1 Evaluation measures of model performance

Evaluating the effectiveness of a classification model requires the use of
established performance metrics. In this study, the dataset is split into training and
testing subsets, where the model is first trained on the training data and
subsequently evaluated on the test set to assess its predictive ability. The
performance of the proposed model is measured using several widely recognized
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criteria, including Accuracy (ACC), Fl-score, and the Matthews Correlation
Coefficient (MCC). These metrics collectively offer a well-rounded view of the
model’s classification capabilities. Accuracy quantifies the ratio of correctly
predicted instances to the total number of samples, serving as a basic indicator of
overall model performance. The F1-score, which represents the harmonic mean
of precision and recall, provides a balanced metric especially useful in the
presence of imbalanced classes. Meanwhile, MCC delivers a more robust
evaluation by incorporating all elements of the confusion matrix—true positives,
true negatives, false positives, and false negatives—yielding a coefficient
between -1 and 1, with values closer to 1 indicating highly reliable predictions.
Through the combined use of these metrics, the study ensures a comprehensive
and reliable assessment of the model’s classification performance (Powers, 2011).

ACC = TP+TN : (1)
TP+TN+FP+FN

TPXTN—FPXFN
MCC = J(TP+FP)(TP+FN)(TN+FP)(TN+FN)’ (2)

PrecisionXSensitivity
Fl = . . ) (3)
Precision+Sensitivity
where
. TP . . TP
Sensitivity = ——, Precision = . (@)
TP+FN TP+FP

6. Result Analysis

Model selection and hyperparameter tuning were performed using stratified
10-fold cross-validation on the training set: in each fold models were trained on 9
folds and validated on the remaining fold, and hyperparameters were chosen by
grid or randomized search to maximize balanced metrics (primarily F1 and MCC)
averaged across the 10 folds. After selecting the best configuration, each model
was retrained on the full training set with those hyperparameters and evaluated
once on the held-out test set. All procedures preserved class proportions within
folds to prevent leakage and ensure that reported test results reflect genuine
out-of-sample performance.

6.1 Analysis of Table 3(German Dataset)

The proposed stacked ensemble achieves the highest scores across all
evaluated metrics on the German dataset, with recall of 0.6896, precision of
0.7296, MCC of 0.4174, Fl-score of 0.7023, and accuracy of 0.7700. These
results surpass the next best performer, Logistic Regression, which records
slightly lower values (REC = 0.6849, PRE = 0.7192, MCC = 0.4027, F1 = 0.6962,
ACC = 0.7633). Tree-based learners such as Gradient Boosting and Random
Forest also deliver strong performance but fall short of the ensemble’s balanced
improvement across both sensitivity and specificity. Simpler classifiers like KNN,
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Naive Bayes, and single decision trees exhibit notably lower correlation
coefficients and F1-scores, indicating their limited ability to capture the dataset’s
complex patterns. Overall, the multilevel stacking framework more effectively
harmonizes bias and variance, leading to a uniformly superior classification
performance.

On the German dataset the stacked ensemble attains F1 = 0.7023 and MCC
= 0.4174, which are the highest among the reported models. Comparing directly
with the three standalone tree-based learners shows a consistent advantage in both
balanced-performance metrics. Gradient Boosting records F1 = 0.6801 and MCC
=0.3938, XGBoost records F1 = 0.6619 and MCC = 0.3559, and Random Forest
records F1 = 0.6874 and MCC = 0.3750. The stacked model’s F1 improvement
over the best single tree (Random Forest) is 0.0149 absolute, and its MCC
improvement is 0.0424 absolute, indicating that stacking yields modest but
meaningful gains in harmonic balance between precision and recall and in overall
correlation between predictions and true labels. These gains reflect the meta-
learner’s ability to combine complementary probability estimates, improving
discrimination of the minority class while maintaining specificity for the majority
class.

6.2 Analysis of Table 4(Australian Dataset)

The proposed stacked ensemble again leads all contenders, attaining recall
of 0.8684, precision of 0.8640, MCC of 0.7324, F1-score of 0.8641, and accuracy
of 0.8647. This performance notably surpasses the closest standalone methods—
Random Forest and decision trees—which both achieve accuracy of 0.8550 and
MCC values around 0.715. Logistic Regression and Gradient Boosting deliver
respectable results in the mid-0.84 accuracy range but fall short of the ensemble’s
gains in balanced classification (MCC) and F1-score. Simpler classifiers such as
KNN, Naive Bayes, and the multilayer perceptron underperform relative to the
tree-based learners, underscoring their limited capacity to capture the dataset’s
nuanced patterns. These findings reaffirm that integrating diverse base learners
into a parallel stacking framework yields a more robust, generalized model for
real-world credit classification tasks.

On the Australian dataset the stacked ensemble achieves F1 = 0.8641 and
MCC =0.7324, outperforming the individual tree learners. Random Forest reports
F1=0.8546 and MCC = 0.7151, Gradient Boosting reports F1 = 0.8445 and MCC
= 0.6917, and XGBoost reports F1 = 0.8445 and MCC = 0.6917. The stacked
model’s absolute F1 gain over Random Forest is 0.0095 and its MCC gain is
0.0173, indicating improved balanced performance and stronger overall
predictive correlation. The smaller absolute margins compared with the German
dataset suggest the ensemble consolidates strengths of high-performing trees but
yields diminishing incremental returns when base learners are already closely
competitive.
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Table 3. Performance comparison of classifiers on the German dataset (original
feature space)

Model ACC F1 McCC PRE REC
KNN 0.7433 0.6757 0.3576 0.6909 0.6674
NB 0.7066 0.6751 0.3149 0.6547 0.6603
LR 0.7633 0.6962 0.4027 0.7192 0.6849
DT 0.67 0.6454 0.3182 0.647 0.6722
RF 0.7366 0.6874 0.375 0.6869 0.688
GB 0.7666 0.6801 0.3938 0.7059 0.6468
MLP 0.76 0.6907 0.3926 0.7148 0.6793
XGB 0.7533 0.6619 0.3559 0.7122 0.6492
Stacked (Proposed) 0.77 0.7023 0.4174 0.7296 0.6896

Source:Research finding

Table 4. Performance comparison of classifiers on the Australian dataset (original
feature space)

Model ACC F1 McC PRE REC
KNN 0.8405 0.8387 0.6775 0.8384 0.8391
NB 0.8357 0.8309 0.6677 0.8406 0.8271
LR 0.8405 0.8405 0.6953 0.8464 0.8489
DT 0.855 0.854 0.7096 0.8531 0.8565
RF 0.855 0.8546 0.7151 0.8553 0.8597
GB 0.8454 0.8445 0.6917 0.8439 0.8478
MLP 0.8309 0.8282 0.6567 0.8296 0.8271
XGB 0.8454 0.8445 0.6917 0.8439 0.8478
Stacked (Proposed) 0.8647 0.8641 0.7324 0.864 0.8684

Source: Research finding

6.3 Analysis of Table 5 (German Dataset)

After applying PCA, the ranking and behavior of classifiers on the German
data change noticeably. Naive Bayes becomes the strongest performer in terms of
balanced measures (REC = 0.6849, PRE = 0.7457, MCC = 0.4263, F1 = 0.7008,
ACC = 0.7766), surpassing the proposed stacked ensemble (REC = 0.6500, PRE
=0.7046, MCC = 0.3504, F1 = 0.6621, ACC = 0.7500). Tree-based models and
the multilevel stacking approach suffer a relative decline. This pattern suggests
that PCA — as applied here — has removed or compressed nonlinear and
interaction signals that tree learners and complex ensembles exploit, while at the
same time producing a more decorrelated, approximately linear input space that
suits Naive Bayes’ conditional-independence assumptions. In practical terms, the
result indicates that an unsupervised, global PCA transformation can advantage
simple probabilistic classifiers at the cost of degrading more expressive,
interaction-dependent learners. For practitioners, this implies PCA should be
applied selectively (for example only on numeric features, or using
supervised/target-aware dimensionality reduction) if the goal is to preserve the
ensemble’s full predictive power.
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6.4 Analysis of Table 6 (Australian Dataset)

On the Australian dataset PCA has a milder effect and the proposed stacked
ensemble remains the best overall performer (REC = 0.8608, PRE = 0.8578, MCC
= 0.7186, F1 = 0.8588, ACC = 0.8599). While several simpler classifiers (e.g.,
Naive Bayes and Logistic Regression) also show relatively high scores after PCA
(NB: MCC = 0.7035, LR: MCC = (.6986), the ensemble preserves its lead in both
discrimination and balance between sensitivity and specificity. This outcome
implies that, for the Australian data, principal components retain the majority of
the predictive signal (including the aspects that the ensemble exploits), so
dimensionality reduction does not substantially impair sophisticated learners. The
contrast with the German results highlights that the effect of PCA is dataset-
specific: when the original feature space contains strong nonlinear interactions
critical to complex models, PCA may harm them; when the predictive structure is
largely captured by principal components, ensembles remain robust. Again, a
selective or supervised dimensionality-reduction strategy is recommended if one
needs to reduce dimensionality while retaining the advantages of powerful
ensemble methods.

Table 5. Impact of dimensionality reduction (PCA) on classifier performance German

dataset

Model ACC F1 MccC PRE REC
KNN 0.7433 0.6731 0.3542 0.6909 0.6642
NB 0.7766 0.7008 0.4263 0.7457 0.6849
LR 0.7566 0.6769 0.3741 0.7129 0.6642
DT 0.66 0.6155 0.2364 0.6128 0.6238
RF 0.7433 0.6705 0.3508 0.691 0.6611
GB 0.73 0.6087 0.2719 0.6778 0.6039
MLP 0.7533 0.6871 0.3815 0.7046 0.6777
XGB 0.7266 0.5832 0.2478 0.6791 0.5857

Stacked (Proposed) 0.75 0.6621 0.3504 0.7046 0.65

Source: Research finding

Table 6. Impact of dimensionality reduction (PCA) on classifier performance
Australian dataset

Model ACC F1 MccC PRE REC
KNN 0.8405 0.839 0.6785 0.8382 0.8402
NB 0.8454 0.8453 0.7035 0.8502 0.8532
LR 0.8405 0.8405 0.6986 0.8486 0.85
DT 0.8502 0.8488 0.698 0.848 0.85
RF 0.8357 0.8346 0.6706 0.8337 0.8369
GB 0.8502 0.8493 0.7006 0.8484 0.8521
MLP 0.8357 0.8357 0.6905 0.8449 0.8456
XGB 0.8502 0.8482 0.6964 0.8486 0.8478

Stacked (Proposed) 0.8599 08588 0.7186 0.8578 0.8608
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Source: Research finding
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Figure 1. Cumulative variance explained by principal components for German
credit data set
Source: Research finding
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Figure 2. Cumulative variance explained by principal components for
Australian credit data set
Source: Research finding
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7. Conclusion

In this study we proposed a multilevel stacking ensemble that leverages the
complementary strengths of Gradient Boosting, Extreme Gradient Boosting
(XGBoost), and Random Forest, consolidated by a logistic-regression meta-
learner. Extensive experiments on benchmark credit datasets from the UCI
repository demonstrate that the proposed stacking framework consistently
outperforms a wide range of standalone classifiers including KNN, Naive Bayes,
single decision trees, and individual ensemble methods across multiple evaluation
metrics such as accuracy, F1-score, and the Matthews Correlation Coefficient
(MCC). These empirical gains reflect the practical advantage of combining
diverse inductive biases in parallel: the meta-learner effectively synthesizes the
base learners’ complementary strengths, producing a more robust and
generalizable predictor that balances bias and variance without imposing a strict
ordering on base models.

We also examined the effect of unsupervised dimensionality reduction
(PCA) on model performance. The impact was dataset-dependent: for the German
dataset PCA caused a marked shift in relative rankings decorrelating the feature
space and making it more favorable to simpler probabilistic models (e.g., Naive
Bayes) while attenuating the benefits of interaction-sensitive learners and the
stacking ensemble. In contrast, for the Australian dataset PCA had a milder effect
and the stacked ensemble retained its lead, indicating that most predictive signal
in that case was captured by the principal components. These findings emphasize
that global, unsupervised PCA can both help and harm downstream learners
depending on the data’s intrinsic structure: it can reduce noise and overfitting risk,
yet it may also remove nonlinear interaction terms that tree-based and ensemble
models exploit.

Finally, the proposed methodology offers a scalable and practical blueprint
for credit-risk classification in real-world settings. For practitioners we
recommend applying dimensionality reduction selectively (for example, only to
numeric features, or using supervised/target-aware reduction), calibrating
probabilistic outputs before meta-learning, and evaluating models under cost-
sensitive metrics that reflect business impact. Future work should explore
alternative and more expressive meta-learners (e.g., gating networks or mixture-
of-experts), uncertainty quantification (conformal prediction or Bayesian
ensembles), adaptive resampling schemes for severe class imbalance, and
extensions to multi-class or longitudinal credit-scoring problems. These
directions will help further close the gap between methodological advances and
operational deployment in financial risk systems.
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