Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Mahboob, W., Hafeez, O. B. A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40(4), 80. https://doi.org/10.1007/s11738-018-2651-6
Ahmed, H. G. M. D., Zeng, Y., Shah, A. N., Yar, M. M., Ullah, A., & Ali, M. (2022). Conferring of drought tolerance in wheat ( Triticum aestivum L.) genotypes using seedling indices. Frontiers in Plant Science, 13, 961049. https://doi.org/10.3389/fpls.2022.961049
Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive?. Australian Journal of Agricultural Research, 56(11), 1159-1168. https://doi.org/10.1071/ar05069
Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112(2-3), 119-123. https://doi.org/10.1016/j.fcr.2009.03.009
Dodig, D., Zoric, M., Knezevic, D., King, S. R., & Surlan-Momirovic, G. (2008). Genotype× environment interaction for wheat yield in different drought stress conditions and agronomic traits suitable for selection. Australian Journal of Agricultural Research. 59, 536-545. https://doi.org/10.1071/ar07281
Elhaik, E. (2022). Principal component analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 12(1), 14683. https://doi.org/10.1038/s41598-022-14395-4
Elsayed, M. L., Elkot, A. F., Noreldin, T., Richard, B., Qi, A., Shabana, Y. M., Saleh, S. M., Fitt, B. D., & Kheir, A. M. (2025). Optimizing wheat yield and water productivity under water scarcity: A modeling approach for irrigation and cultivar selection across different agro-climatic zones of Egypt. Agricultural Water Management, 317, 109668. https://doi.org/10.1016/j.agwat.2025.109668
Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. (2009). Plant drought stress: Effects, mechanisms and management. Sustainable Agriculture, 153-188. https://doi.org/10.1007/978-90-481-2666-8_12
Georgii, E., Jin, M., Zhao, J., Kanawati, B., Schmitt-Kopplin, P., Albert, A., Winkler, J. B., & Schäffner, A. R. (2017). Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis. BMC Plant Biology, 17(1), 120. https://doi.org/10.1186/s12870-017-1062-y
González-Espíndola, L. Á., Pedroza-Sandoval, A., Trejo-Calzada, R., Jacobo-Salcedo, M. D. R., García de los Santos, G., & Quezada-Rivera, J. J. (2024). Relative water content, chlorophyll index, and photosynthetic pigments on Lotus corniculatus L. in response to water deficit. Plants, 13(7), 961. https://doi.org/10.3390/plants13070961
Kettani, R., Ferrahi, M., Nabloussi, A., Ziri, R., & Brhadda, N. (2023). Water stress effect on durum wheat ( Triticum durum Desf.) advanced lines at flowering stage under controlled conditions. Journal of Agriculture and Food Research, 14, 100696. https://doi.org/10.1016/j.jafr.2023.100696
Khalid, A., Hameed, A., & Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Frontiers in Nutrition, 10, 1053196. https://doi.org/10.3389/fnut.2023.1053196
Khan, A. A., Wang, Y. F., Akbar, R., & Alhoqail, W. A. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16, 1547452. https://doi.org/10.3389/fpls.2025.1547452
Kim, S., Kang, D., Huo, Z., Park, Y., & Tseng, G. C. (2018). Meta-analytic principal component analysis in integrative omics application. Bioinformatics, 34(8), 1321-1328. https://doi.org/10.1093/bioinformatics/btx765
Li, M., Liu, Y., Ma, J., Zhang, P., Wang, C., Su, J., & Yang, D. (2020). Genetic dissection of stem WSC accumulation and remobilization in wheat ( Triticum aestivum L.) under terminal drought stress. BMC Genetics, 21(1), 50. https://doi.org/10.1186/s12863-020-00855-1
Liu, X., Sun, T., Zhou, Z., Tong, Y., Zhou, Z., Cao, H., Qu, J., Li, Z., Yang, Q., Xu, M., & Zhang, B. (2025). Quantitative trait locus mapping for salt and drought tolerance traits in wheat (Triticum aestivum L.). BMC Plant Biology, 25(1), 787.
Lopes, M. S., Reynolds, M. P., Manes, Y., Singh, R. P., Crossa, J., & Braun, H. J. (2012). Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Science, 52(3), 1123-1131. https://doi.org/10.2135/cropsci2011.09.0467
McIntyre, C.L., Mathews, K. L., Rattey, A., Chapman, S.C., Drenth, J., Ghaderi, M., Reynolds, M., & Shorter, R. (2010). Molecular detection of genomic regions associated with grain yield and yield components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theoretical and Applied Genetics, 120, 527–541. https://doi.org/10.1007/s00122-009-1173-4
Mohi-Ud-Din, M., Hossain, M. A., Rohman, M. M., Uddin, M. N., Haque, M. S., Tahery, M. H., & Hasanuzzaman, M. (2024). Multi-trait index-based selection of drought tolerant wheat: Physiological and biochemical profiling. Plants, 14(1), 35. https://doi.org/10.3390/plants14010035
Olivares-Villegas, J. J., Reynolds, M. P., & McDonald, G. K. (2007). Drought-adaptive attributes in the SeriM82/Babax hexaploid wheat population. Functional Plant Biology, 34, 189–203. https://doi.org/10.3390/plants14010035
Pantha, S., Kilian, B., Özkan, H., Zeibig, F., & Frei, M. (2024). Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the Triticum genus. Environmental and Experimental Botany, 228, 106047. https://doi.org/10.1016/j.envexpbot.2024.106047
Pereyra, M. S., Argüello, J. A., & Bima, P. I. (2021). Genotype-dependent architectural and physiological responses regulate the strategies of two oregano cultivars to water excess and deficiency regimes. Industrial Crops and Products, 161, 113206. https://doi.org/10.1016/j.envexpbot.2024.106047
Pinto, R. S., Reynolds, M. P., Mathews, K. L., McIntyre, C. L., Olivares-Villegas, J. J., & Chapman, S. C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 121, 1001–1021. https://doi.org/10.1007/s00122-010-1351-4. PMID: 20523964. https://doi.org/10.1007/s00122-010-1351-4
Richards, R. A., Rebetzke, G. J., Watt, M., Condon, A. T., Spielmeyer, W., & Dolferus, R. (2010). Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Functional Plant Biology, 37(2), 85-97. https://doi.org/10.1071/fp09219
Sareen, S., Budhlakoti, N., Mishra, K. K., Bharad, S., Potdukhe, N. R., Tyagi, B. S., & Singh, G. P. (2023). Resilience to terminal drought, heat, and their combination stress in wheat genotypes. Agronomy, 13(3), 891. https://doi.org/10.3390/agronomy13030891
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
Senapati, N., Stratonovitch, P., Paul, M. J., & Semenov, M. A. (2019). Drought tolerance during reproductive development is important for increasing wheat yield potential under climate change in Europe. Journal of Experimental Botany, 70(9), 2549-2560. https://doi.org/10.3390/plants10020259
Shao, H. B., Chu, L. Y., Jaleel, C. A., & Zhao, C. X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331(3), 215-225. https://doi.org/10.1016/j.crvi.2008.01.002
Sharma, V., Mahadevaiah, S.S., Latha, P., Gowda, S.A., Manohar, S.S., Jadhav, K., Bajaj, P., Joshi, P., Anitha, T., Jadhav, M. P., & Sharma, S. (2024). Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance. BMC Plant Biology, 24(1), 1044. https://doi.org/10.1186/s12870-024-05749-3
Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: Just design the right drought scenario. Journal of Experimental Botany, 63(1), 25-31. https://doi.org/10.1093/jxb/err269
Tardieu, F., Simonneau, T., & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733-759. https://doi.org/10.3410/f.732869508.793559917
Vieira, R. A., Nogueira, A. P. O., & Fritsche-Neto, R. (2025). Optimizing the selection of quantitative traits in plant breeding using simulation. Frontiers in Plant Science, 16, 1495662. https://doi.org/10.3389/fpls.2025.1495662
Xu, Z., Lai, X., Ren, Y., Yang, H., Wang, H., Wang, C., Xia, J., Wang, Z., Yang, Z., Geng, H., & Shi, X. (2023). Impact of drought stress on yield-related agronomic traits of different genotypes in spring wheat. Agronomy, 13(12), 2968. https://doi.org/10.3390/agronomy13122968
Zhang, J., Zhang, S., Cheng, M., Jiang, H., Zhang, X., Peng, C., Lu, X., Zhang, M., & Jin, J. (2018). Effect of drought on agronomic traits of rice and wheat: A meta-analysis. International Journal of Environmental Research and Public Health, 15(5), 839. https://doi.org/10.3390/ijerph15050839
|