[2] Ivanisenko, Y., Kulagin, R., Fedorov, V., Mazilkin, A. Scherer, T., Baretzky, B., & Hahn, H., (2016). High pressure torsion extrusion as a new severe plastic deformation process. Materials Science and Engineering: A, 664, 247–256. https://doi.org/10.1016/j.msea.2016.04.008
[5] M. Kaur, K.Singh, (2019). Review on titanium and titanium-based alloys as biomaterials for orthopedic applications. Materials Science and Engineering C, 102, 844-862. https://doi.org/10.1016/j.msec.2019.04.064
[6] Chehrehsaz, Y., Hajizadeh, K., Hajizadeh, A., Moradi, L., Mahshid, S. (2021). Effect of ECAP on physicochemical and biological properties of TiO 2 nanotubes anodized on commercially pure titanium. Metals and Materials International, 28, 1525-1535. https://doi.org/10.1007/s12540-021-01003-9
[7] Indira, K. A., Mudali, U. K., Nishimura, T., & Rajendran, N. (2015). A review on TiO2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of bio-and tribo-corrosion, 1(4), 28. https://doi.org/10.1007/s40735-015-0024-x
[8] Ensafi, M., Faraji, G., & Abdolvand, H. (2017). Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Materials Letters, 197, 12-16. https://doi.org/10.1016/j.matlet.2017.03.142
[9] Ahmadi, S., Alimirzaloo, V., Faraji, G., & Donyavi, A. (2020). A new modified cyclic extrusion channel angular pressing (CECAP) process for producing ultrafine-grained mg alloy. Transactions of the Indian Institute of Metals, 73(10), 2447-2456. https://doi.org/10.1007/s12666-020-02048-x
[10] Hajizadeh, K., Eghbali, B., Topolski, K., & Kurzydlowski, K. J. (2014). Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region. Materials Chemistry and Physics, 143(3), 1032-1038. https://doi.org/10.1016/j.matchemphys.2013.11.001
[11] Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in materials science, 51(7), 881-981. https://doi.org/10.1016/j.pmatsci.2006.02.003
[12] Valiev, R. Z., Kozlov, E. V., Ivanov, Y. F., Lian, J., Nazarov, A. A., & Baudelet, B. (1994). Deformation behaviour of ultra-fine-grained copper. Acta metallurgica et materialia, 42(7), 2467-2475. https://doi.org/10.1016/0956-7151(94)90326-3
[14] Zhang, J., Zhang, K. S., & Hwai-Chung, W. (2009). Experimental and numerical investigation on pure aluminum by ECAP. Transactions of nonferrous metals society of China, 19(5), 1303-1311. https://doi.org/10.1016/s1003-6326(08)60442-2
[15] Patil, B. V., Chakkingal, U., & Kumar, T. P. (2010). Influence of outer corner radius in equal channel angular pressing. World Academy of Science, Engineering and Technology, 62, 714-720. https://doi.org/10.13140/2.1.1135.4247
[17] Pardis, N., Talebanpour, B., Ebrahimi, R., & Zomorodian, S. (2011). Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC). Materials Science and Engineering: A, 528(25-26), 7537-7540. https://doi.org/10.1016/j.msea.2011.06.059
[18] Amani, S., Faraji, G., & Abrinia, K. (2017). Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). Journal of Manufacturing Processes, 28, 197-208. https://doi.org/10.1016/j.jmapro.2017.06.007
[19] Ahmadi, S., Faraji, G., Alimirzaloo, V., & Donyavi, A. (2021). Microstructure and mechanical properties of AM60 magnesium alloy processed by a new severe plastic deformation technique. Metals and Materials International, 27(8), 2957-2967. https://doi.org/10.1007/s12540-020-00889-1
[20] Ebrahimi, M., Zhang, L., Wang, Q., Zhou, H., & Li, W. (2023). Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression. Journal of Magnesium and Alloys, 11(5), 1608-1617. https://doi.org/10.1016/j.jma.2021.07.024
[21] Ebrahimi, M., Zhang, L., Wang, Q., Zhou, H., & Li, W. (2021). Damping characterization and its underlying mechanisms in CNTs/AZ91D composite processed by cyclic extrusion and compression. Materials Science and Engineering: A, 821, 141605. https://doi.org/10.1016/j.msea.2021.141605
[22] Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K., Bai, H., (2021). Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings. Journal of Building Engineering, 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266
[23] Abdolvand, H., Faraji, G., Shahbazi Karami, J., (2017). Microstructure and mechanical properties of AZ91 tubes fabricated by Multi-pass Parallel Tubular Channel Angular Pressing. Journal of Ultrafne Grained and Nanostructed Material, 50, 16-22. https://doi.org/10.7508/jufgnsm.2017.01.03
[25] Altan, T., (2004). Cold and Hot Forging. American Society for Metals, 50-53
|