[1] Vaiani, L., Boccaccio, A., Uva, A. E., Palumbo, G., Piccininni, A., Guglielmi, P., Cantore, S., Santacroce, L., Charitos, I. A., Ballini, A. (2023). Ceramic materials for biomedical applications: An overview on properties and fabrication processes. Journal of Functional Biomaterials, 14(3), 146. https://doi.org/10.3390/jfb14030146
[2] Otitoju, T. A., Okoye, P. U., Chen, G., Li, Y., Okoye, M. O., & Li, S. (2020). Advanced ceramic components: Materials, fabrication, and applications. Journal of Industrial and Engineering Chemistry, 85, 34–65. https://doi.org/10.1016/j.jiec.2020.02.002
[3] Li, Z., Thong, H. C., Zhang, Y. F., Xu, Z., Zhou, Z., Liu, Y. X., Cheng, Y. Y., Wang, S.H., Zhao, C., Chen, F., & Bi, K. (2021). Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Advanced Functional Materials, 31(15), 2005012. https://doi.org/10.1002/adfm.202005012
[5] Pan, D. (2024). Lead zirconate titanate (PZT) piezoelectric ceramics: Applications and prospects in human motion monitoring. Ceramics-Silikáty, 68(3), 444–458. https://doi.org/10.13168/cs.2024.0044
[6] Qiu, J., Tani, J., Yanada, N., Kobayashi, Y., & Takahashi, H. (2004). Fabrication of Pb(Nb,Ni)O₃–Pb(Zr,Ti)O₃ piezoelectric ceramic fibers by extrusion of a sol-powder mixture. Journal of Intelligent Material Systems and Structures, 15(9–10), 643–653. https://doi.org/10.1177/1045389x04043949
[7] Heiber, J., Clemens, F. J., Graule, T., & Hülsenberg, D. (2006). Influence of fibre diameter on the microstructure and the piezoelectric properties of PZT-fibres. Advances in Science and Technology, 45, 2459–2463. https://doi.org/10.4028/www.scientific.net/AST.45.2459
[8] Guan, X., Chen, H., Xia, H., Fu, Y., Yao, J., & Ni, Q. Q. (2020). Flexible energy harvester based on aligned PZT/SMPU nanofibers and shape memory effect for curved sensors. Composites Part B: Engineering, 197, 108169. https://doi.org/10.1016/j.compositesb.2020.108169
[9] Guillot, F. M., Beckham, H. W., & Leisen, J. (2013). Hollow piezoelectric ceramic fibers for energy harvesting fabrics. Journal of Engineered Fibers and Fabrics, 8(1), 155892501300800109. https://doi.org/10.1177/155892501300800109
[10] Meyer, R. J., Yoshikawa, S., & Shrout, T. R. (1996). Sol-gel-derived PZT fibers: Development and limitations. In Smart Structures and Materials 1996: Smart Materials Technologies and Biomimetics ( Vol. 2716, pp. 69–79). SPIE. https://doi.org/10.1117/12.232126
[11] Yoshikawa, S., Selvaraj, U., Moses, P., Withams, J., Meyer, R., & Shrout, T. (1995). Pb(Zr,Ti)O₃ [PZT] fibers—Fabrication and measurement methods. Journal of Intelligent Material Systems and Structures, 6(2), 152–158. https://doi.org/10.1177/1045389X9500600202
[12] Ismael, M. R., Clemens, F., Wyss, P., Graule, T., & Hoffmann, M. J. (2012). Processing and properties of co‐extruded lead zirconate titanate fibers. Journal of the American Ceramic Society, 95(1), 108–116. https://doi.org/10.1111/j.1551-2916.2011.04851.x
[13] Strock, H. B., Pascucci, M. R., Parish, M. V., Bent, A. A., & Shrout, T. R. (1999). Active PZT fibers: A commercial production process. In Smart Structures and Materials 1999: Smart Materials Technologies ( Vol. 3675, pp. 22–31). SPIE. https://doi.org/10.1117/12.352799
[15] Heiber, J., Clemens, F., Graule, T., & Hülsenberg, D. (2006). Influence of fibre diameter on the microstructure and the piezoelectric properties of PZT-fibres. Advances in Science and Technology, 45, 2459–2463. https://doi.org/10.4028/www.scientific.net/AST.45.2459
[16] Qiu, J., Tani, J., Kobayashi, Y., Um, T. Y., & Takahashi, H. (2003). Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr,Ti)O₃ powder and Pb(Zr,Ti)O₃ sol mixture. Smart Materials and Structures, 12(3), 331–337. https://doi.org/10.1088/0964-1726/12/3/303
[17] Mensur Alkoy, E., Dagdeviren, C., & Papila, M. (2009). Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3–3 PZT/polymer composite. Journal of the American Ceramic Society, 92(11), 2566-2570. https://doi.org/10.1111/j.1551-2916.2009.03261.x
[18] Yi, C. H., Lin, C.-H., Wang, Y. H., Cheng, S. Y., & Chang, H. Y. (2012). Fabrication and characterization of flexible PZT fiber and composite. Ferroelectrics, 434(1), 91–99. https://doi.org/10.1080/00150193.2012.732513
[19] Hayati, R., Fereydoonpoor, I., & Fadaei, R. (2023). Investigating the effects of sintering variables on microstructure and density of PZT fibers fabricated via extrusion process. Advanced Materials & Technologies, 12(2), 55–73. https://doi.org/10.30501/jamt.2023.411504.1287
[21] Heiber, J., Belloli, A., Ermanni, P., & Clemens, F. (2009). Ferroelectric characterization of single PZT fibers. Journal of Intelligent Material Systems and Structures, 20(4), 379–385. https://doi.org/10.1177/1045389X08094365
[22] Rahsepar, H., Hayati, R., & Javadpour, S. (2024). Evaluation of the dielectric, and piezoelectric properties and optimizing the figure of merit of the 0–3 KNN-0.8ZnO/PVDF-HFP piezoelectric composite by the Taguchi method. Journal of Alloys and Compounds, 1006, 176373. https://doi.org/10.1016/j.jallcom.2024.176373
[23] Jia, X. (2023). The optimization of extrusion process parameters utilizing the Taguchi method. International Journal of Frontiers in Engineering Technology, 6, 109–114. https://doi.org/10.25236/IJFET.2024.060418
[24] Chen, D. C., Chen, D. F., & Huang, S. M. (2024). Applying the Taguchi method to improve key parameters of extrusion vacuum-forming quality. Polymers, 16(8), 1113. https://doi.org/10.3390/polym16081113
[25] Kozielski, L., Clemens, F., Lusiola, T., & Pilch, M. (2016). Uniaxial extrusion as an enhancement method of piezoelectric properties of ceramic micro fibers. Journal of Alloys and Compounds, 687, 604–610. https://doi.org/10.1016/j.jallcom.2016.06.050
[26] Kumar, D., & Kumar, S. (2015). Process parameters optimization for HDPE material in extrusion blown film machinery using Taguchi method. IOSR Journal of Mechanical and Civil Engineering, 12(4), 1–3. https://doi.org/10.9790/1684-12450103
[27] Athreya, S., & Venkatesh, Y. (2012). Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation. International Refereed Journal of Engineering and Science, 1(3), 13–19.
[29] Rathi, M. G., & Jakhade, N. A. (2014). An optimization of forging process parameter by using Taguchi method: An industrial case study. International Journal of Scientific and Research Publications, 4(6), 590–596.
[30] Janusas, G., Guobiene, A., Palevicius, A., Brunius, A., Cekas, E., Baltrusaitis, V., & Sakalys, R. (2017). Influence of binding material of PZT coating on microresonator's electrical and mechanical properties. In Smart Sensors, Actuators, and MEMS VIII ( Vol. 10246, pp. 342–348). SPIE. https://doi.org/10.1117/12.2265978
[31] Wu, D., Qin, S., Liu, C.-L., Fang, B.-J., Cao, Z., & Cheng, J.-F. (2019). Surface modification by stearic acid on property of PLZT piezoelectric ceramics prepared via powder injection molding. Journal of Inorganic Materials, 34(5), 535–540. http://doi.org/10.15541/jim20180323
[32] Jarray, A., Gerbaud, V., & Hemati, M. (2016). Stearic acid crystals stabilization in aqueous polymeric dispersions. Chemical Engineering Research and Design, 110, 220–232. https://doi.org/10.1016/j.cherd.2016.02.028
[33] Nie, J., Li, M., Liu, W., Li, W., & Xing, Z. (2021). The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing. Journal of the European Ceramic Society, 41(1), 646–654. https://doi.org/10.1016/j.jeurceramsoc.2020.08.013
[35] De La Rosa, Á., Ruiz, G., Castillo, E., & Moreno, R. (2021). Calculation of dynamic viscosity in concentrated cementitious suspensions: Probabilistic approximation and Bayesian analysis. Materials, 14(8), 1971. https://doi.org/10.3390/ma14081971
[36] Youness, D., Yahia, A., & Tagnit-Hamou, A. (2022). Development of viscosity models of concentrated suspensions: Contribution of particle-size and shape indices. Construction and Building Materials, 346, 128335. https://doi.org/10.1016/j.conbuildmat.2022.128335
[37] Yue, Y., Ren, J., Yang, K., Wang, D., Qian, J., & Bai, Y. (2022). Investigation and optimisation of the rheological properties of magnesium potassium phosphate cement with response surface methodology. Materials, 15(19), 6815. https://doi.org/10.3390/ma15196815
[38] Dulina, I., Umerova, S., & Ragulya, A. (2015). Plasticizer effect on rheological behaviour of screen printing pastes based on barium titanate nanopowder. Journal of Physics: Conference Series, 602, 012035. https://doi.org/10.1088/1742-6596/602/1/012035
[39] Halbleib, L. L., Yang, P., Mondy, L. A., & Burns, G. R. (2005). The effects of process parameters on injection-molded PZT ceramics part fabrication—Compounding process rheology. Sandia National Laboratories Technical Report, SAND2005-2864. https://doi.org/10.2172/923077
[40] Waxman, R., Erturun, U., & Mossi, K. (2010). Feasibility of using piezoelectric probes to measure viscosity in Newtonian fluids. In Smart Materials, Adaptive Structures and Intelligent Systems (pp. 47–52). ASME. https://doi.org/10.1115/SMASIS2010-3688
[41] Restasari, A., Abdillah, L. H., Ardianingsih, R., Sitompul, H. R. D., Budi, R. S., Hartaya, K., & Wibowo, H. B. (2021). Thixotropic behavior in defining particle packing density of highly filled AP/HTPB-based propellant. Symmetry, 13(10), 1767. https://doi.org/10.3390/sym13101767
[43] Bowen, C. R., Stevens, R., Nelson, L. J., Dent, A. C., Dolman, G., Su, B., Button, T. W., Cain, M. G., & Stewart, M. (2006). Manufacture and characterization of high activity piezoelectric fibres. Smart Materials and Structures, 15(2), 295–301. https://doi.org/10.1088/0964-1726/15/2/008
[45] Rashid, T. N. I. T. A., Ahmad, Z. A., & Mohamad, H. (2021). Influence of sintering parameters on structural, dielectric and piezoelectric properties of Ca, La and Sr-doped PZT (PCLSZT) electroceramics. Journal of Materials Science: Materials in Electronics, 32, 18095–18107. https://doi.org/10.1007/s10854-021-06354-y
|