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Predicting stock price movements in emerging markets like Iran 

is especially daunting due to acute volatility, data scarcity, and 

structural fragility. We propose a statistically rigorous, context-
aware framework that fuses technical analysis with machine 

learning — including XGBoost, Random Forest, Artificial Neural 

Networks (ANNs), and Linear Model (LM) — aimed at predicting 
daily stock returns across multiple industry segments of the 

Tehran Stock Exchange. Using daily observations from six 

industrial sectors (Automotive, Financial, Food, Pharmaceutical, 
Basic Metals, Petroleum) between March 24, 2020 and August 21, 

2024, we show that no single model reigns supreme across all 

domains. In the Financial and Basic Metals sectors, XGBoost 
delivers statistically superior predictive accuracy (Diebold–

Mariano test, p < 0.05). In the highly volatile Petroleum sector, 

ANN distinctly captures extreme nonlinear dynamics, 
outperforming alternatives. Surprisingly, in more stable sectors 

like Pharmaceutical and Food, the Linear Model — with its 

structural simplicity — surpasses more sophisticated algorithms. 
Random Forest meanwhile operates as a dependable, interpretable 

benchmark, consistently delivering solid performance across 

varied conditions. These results challenge the “more complexity 
is always better” assumption and underscore that optimal 

modeling must be sector-specific, backed by rigorous statistical 
validation, and assessed via risk-adjusted forecasting metrics. Our 

framework offers a replicable, adaptive blueprint for return-based 

algorithmic forecasting in data-constrained, high-volatility 
settings — setting a new methodological standard for emerging 

markets globally. 
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1. Introduction  

Accurately forecasting stock prices remains a central yet formidable 

challenge for investors, portfolio managers, and financial institutions seeking to 

optimize returns and manage risk Ali et al. (2023). Equity markets are inherently 

volatile, influenced by a confluence of macroeconomic, geopolitical, and 

behavioral factors (Wang & Wang, (2012), (2015)). Historically, researchers have 

relied on statistical time-series models grounded in historical price data to 

generate forecasts Efendi et al. (2018). Contemporary approaches can be broadly 

categorized into three classes: traditional statistical models, machine learning 

(ML) techniques, and hybrid systems that combine multiple methodologies Wang 

et al. (2023). 

A significant challenge for investors is determining the right timing for 

buying or selling stocks. Successful investment strategies depend on a 

comprehensive understanding of market trends and industry conditions. In the 

absence of this knowledge, investors may turn to unreliable tactics, such as acting 

on speculative rumors, copying others, or making decisions based on unfounded 

assumptions. These methods can result in poor investment choices and heightened 

risk Baker & Ricciardi, (2014). 

Therefore, investors require powerful and reliable tools to predict stock 

prices and analyze financial markets in order to make better decisions in buying 

and selling stocks and reduce investment risks. 

Two principal paradigms guide investment analysis, first is the fundamental 

analysis, in this analysis investors look at the intrinsic value of stocks, and 

performance of the industry, economy, political climate etc to decide that whether 

to invest or not. On the other hand, the technical analysis it is an evolution of 

stocks by the means of studying the statistics generated by market activity, such 

as past prices and volumes Reddy & Sai, (2018). Technical analysis has been 

developed enormously during past decades and gained popularity among novice 

and professional trades because of its relative simplicity and ease of performance. 

Furthermore, the AI revolution has emphasized the advantage of such analysis 

when it is conducted by machines rather than by human traders. Machines can 

wait for market entry or exit for a long period without getting tired and they are 

not subject to human bias and emotions that sometimes lead human traders to bad 

investment decisions Bao et al. (2021). Machine learning, in particular, has 

revolutionized financial forecasting by enabling the processing of massive, high-

dimensional datasets generated by modern digital platforms Wu, (2014). 

In the Tehran Stock Exchange, high fluctuations and economic, political, and 

environmental changes have made predictions increasingly difficult, highlighting 

the importance of accurate forecasting. This research aims to predict future stock 

price movements, compare investment strategies for optimal capital allocation, 

and create an effective portfolio for investors by combining machine learning 

techniques with technical analysis. This study contributes to the literature in 

several novel ways. First, it rigorously evaluates the predictive performance of 

both traditional (LM, ANN, RF) and state-of-the-art (XGBoost) models in the 
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underexplored setting of the TSE, where data limitations and volatility pose 

significant hurdles. Second, it addresses a critical methodological gap by shifting 

the prediction target from absolute price to daily return, thereby eliminating data 

leakage and enabling statistically valid comparisons. Third, it introduces a 

comprehensive performance evaluation framework that goes beyond 

conventional error metrics (MAE, RMSE) to include risk-adjusted measures 

(Sharpe Ratio, Profit Factor) and formal statistical tests (Diebold-Mariano) — a 

combination rarely seen in prior studies on technical analysis. Finally, the study 

provides sector-specific insights by analyzing six distinct industrial indices, 

demonstrating that optimal model selection is highly context-dependent — a 

finding with direct practical implications for algorithmic traders and portfolio 

managers. The first section discusses the theoretical foundations, the second 

presents the research background, the third outlines the methodology, and the final 

section details the findings and analyses . 

Stock market prediction lies at the intersection of finance, economics, and 

computational science. Three core approaches dominate the field: fundamental 

analysis, technical analysis, and modern computational methods leveraging 

machine learning and artificial intelligence. 

Technical analysis posits that all relevant information about future price 

movements is already reflected in historical market data Murphy (2021). 

Practitioners employ tools such as candlestick charts, moving averages, 

oscillators (e.g., MACD, RSI), and pattern recognition (e.g., head-and-shoulders, 

triangles) to generate trading signals Schwager (2020). While praised for its 

simplicity and real-time applicability, this approach is often criticized for ignoring 

macroeconomic fundamentals and exhibiting sensitivity to market noise Lo & 

Hasanhodzic (2020). 

Fundamental analysis, by contrast, seeks to determine a security’s “true” 

value by assessing financial health, earnings potential, industry position, and 

macroeconomic context Graham & Dodd (1934). The primary components and 

tools of fundamental analysis include financial statements (balance sheets, income 

statements, and cash flow statements), valuation models (discounted cash flow 

and relative valuation models), and an analysis of the economic and industry 

environment Koller et al. (2020). Its advantages lie in its ability to provide an 

accurate evaluation of a company's intrinsic value and its suitability for long-term 

investment. However, it has drawbacks, such as requiring extensive knowledge 

of finance and economics and being time-consuming Damodaran (2021). 

Traditional econometric models like ARIMA and GARCH model time-

series dynamics through statistical assumptions about stationarity and volatility 

clustering Box et al. (2008). Meanwhile, the Efficient Market Hypothesis (EMH) 

asserts that asset prices fully reflect all available information, rendering consistent 

outperformance impossible Fama (1970). However, behavioral finance 

challenges this view, highlighting systematic investor biases that create 

exploitable anomalies Geweke et al. (2008). 
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More recent scholarship has advanced the Adaptive Market Hypothesis 

(AMH) as a behavioral refinement of the Efficient Market Hypothesis (EMH). 

Rather than assuming perfect rationality, AMH conceptualizes financial markets 

through an evolutionary lens—viewing them as dynamic ecosystems shaped by 

competition, adaptation, and natural selection among market participants. Within 

this framework, investor behavior is driven not only by logic but also by 

psychological forces such as fear and greed. Consequently, transient predictable 

patterns can emerge, especially over short horizons Ayala et al. (2021). 

Financial modeling approaches—such as the Capital Asset Pricing Model 

(CAPM) and extended multi-factor frameworks like the Fama–French three-

factor model—are employed to evaluate systematic risk and estimate expected 

equity returns. These models help investors identify and evaluate the risks linked 

to asset returns. Multi-factor models tend to offer more comprehensive 

explanations for asset returns than CAPM, as they account for multiple risk factors 

Sharpe (1964). 

With progress in computational capabilities, the use of machine learning and 

AI-driven approaches has become widespread in stock market forecasting. 

Methods including neural architectures, decision tree algorithms, and deep neural 

networks are employed to analyze large and complex datasets for predicting stock 

prices Heaton et al. (2017). 

The application of artificial intelligence in stock market prediction is 

growing, as it can rapidly analyze vast amounts of data and intricate relationships. 

A key advantage of AI-based prediction models in stock markets is their 

efficiency in handling large datasets. By employing deep learning methods, these 

models can uncover complex interrelationships and patterns in the data—

capabilities that surpass those of human analysts Najem et al. (2024). 

 

2. Literature Review  

The fusion of ML-based approaches with technical analysis has become a 

dominant trend in computational finance, though results vary widely across 

contexts.  Early foundational work by Skabar & Cloete (2002) pioneered the 

fusion of technical indicators with reinforcement learning, establishing a template 

for adaptive trading systems. While innovative, their framework lacked rigorous 

statistical validation and real-market robustness testing — a limitation that 

persists in many subsequent studies. 

The evolution of this field is marked by a shift from simple classification 

models to complex ensemble and deep learning architectures. For instance, Yu & 

Wenjuan (2010) reported a 95% accuracy using a C4.5 decision tree — a figure 

that, while impressive, is rarely replicable in volatile, non-stationary markets like 

emerging economies. This highlights a critical methodological flaw: many studies 

report inflated accuracy metrics on in-sample or non-walk-forward out-of-sample 

data, leading to over-optimistic conclusions. 

Masry (2017) demonstrated that simple moving average rules can 

outperform buy-and-hold strategies, reaffirming the enduring value of classical 
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technical analysis. However, the absence of risk-adjusted metrics limited practical 

applicability. 

In the Iranian context, Afshari Rad et al. (2017) achieved over 90% accuracy 

using SVM, Decision Trees, and KNN — results that appear statistically 

implausible given the high noise-to-signal ratio in the Tehran Stock Exchange. In 

contrast, Gholamian & Davoudi (2017) reported a more realistic 64% accuracy 

using Random Forest and a comprehensive set of technical indicators, implicitly 

acknowledging the inherent unpredictability of short-term price movements. 

Their work stands out for its methodological transparency and use of multiple 

validation metrics. 

The role of preprocessing and feature engineering has also gained 

prominence. Amini Mehr et al. (2019) demonstrated that wavelet-based 

preprocessing significantly enhances the performance of LSTM networks — a 

finding corroborated by Nabipour et al. (2020), who showed that LSTM 

outperforms traditional ML models in multi-horizon forecasting. However, both 

studies relied heavily on human intervention for feature selection and model 

tuning, raising questions about the scalability and automation potential of their 

approaches.  Sayadi & Omidi (2019) reported superior accuracy for the MLP 

algorithm in oil-sector portfolio selection on the Tehran Stock Exchange, their 

analysis lacked rigorous out-of-sample validation and did not incorporate risk-

adjusted performance metrics—limiting the practical robustness of their findings 

Cervelló-Royo & Guijarro (2020) provided one of the most rigorous 

comparative analyses to date, evaluating four ML algorithms on the Nasdaq index. 

Their finding that Random Forest outperforms others with 80% accuracy over a 

10-day horizon is both credible and actionable — particularly because they used 

walk-forward validation and multiple technical indicators. This study serves as a 

methodological gold standard for our own work. 

Recent innovations include Hossain et al. (2022) Belief Rule-Based Expert 

System (BRBES), which competes with deep learning models without requiring 

massive datasets — a crucial advantage for data-scarce emerging markets. 

Similarly, Ayala et al. (2021) proposed a hybrid framework that explicitly 

integrates technical indicators with ML — an approach we adopt and extend in 

this study. Their work, however, did not include advanced models like XGBoost 

or conduct formal statistical tests (e.g., Diebold-Mariano) to validate performance 

differences. 

Ajiga et al. (2024) emphasized the importance of feature engineering — 

incorporating macroeconomic and sentiment variables — but their approach is 

less applicable to markets like Iran, where such data is either unavailable or 

unreliable. This limitation justifies our focus on price and volume data, aligning 

with Ayala et al. (2021) and ensuring reproducibility. 

Finally, González-Núñez, et al. (2024) introduced the Artificial Organic 

Network (AON) — a highly adaptive, topology-reconfigurable model that 

outperforms traditional ML on global indices. While theoretically promising, its 

complexity and computational demands make it impractical for real-time trading 
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in resource-constrained environments. In contrast, simpler models like Linear 

Regression Sangeetha & Alfia (2024) remain surprisingly effective — a finding 

that challenges the “bigger is better” assumption in ML and supports our inclusion 

of LM as a baseline model. While Saberironaghi et al. (2025) offer a timely and 

comprehensive survey of ML and DL in finance— covering 18 datasets and 12 

evaluation metrics — their work remains largely descriptive and lacks critical 

methodological depth. The authors rightly emphasize the transformative potential 

of LSTM, CNN, and SVM models, yet they overlook a crucial limitation: the 

majority of studies they cite rely on price-based predictions in developed markets, 

often neglecting the structural volatility, data scarcity, and regulatory constraints 

characteristic of emerging economies like Iran. Furthermore, while they 

acknowledge challenges such as data quality and model interpretability, they fail 

to engage with the growing body of literature e.g., Ayala et al. (2021); González-

Núñez, et al. (2024) that advocates for hybrid frameworks combining technical 

indicators with ML models — an approach our study explicitly adopts and 

rigorously validates. Most critically, their review does not address the statistical 

validity of performance comparisons — a gap our work fills through formal 

testing (Diebold-Mariano) and risk-adjusted metrics (Sharpe Ratio, Maximum 

Drawdown). Thus, while Saberironaghi et al. (2025) provide a useful taxonomy 

and broad overview, their analysis falls short of offering actionable insights for 

practitioners operating in data-constrained, high-volatility environments — 

precisely the context in which our hybrid, statistically validated framework 

demonstrates superior robustness and economic value. 

This research offers a number of novel and substantive advances in the field 

of machine learning–based financial forecasting, with a particular focus on 

emerging markets. 

Context-Specific Model Validation in an Understudied Market:  While 

numerous studies have applied machine learning to technical analysis in 

developed markets e.g., Cervelló-Royo & Guijarro, (2020), González-Núñez et 

al., 2024), this research provides one of the first comprehensive, statistically 

rigorous validations of hybrid ML-technical analysis frameworks on the Tehran 

Stock Exchange (TSE) — a high-volatility, data-constrained emerging market. 

Our findings demonstrate that model performance is highly sector- and context-

dependent, challenging the generalizability of results from developed markets. 

Methodological Rigor Addressing Key Critiques in the Literature:  Unlike 

many prior studies that rely on simplistic error metrics or in-sample validation, 

this work implements a robust, walk-forward validation framework combined 

with formal statistical testing (Diebold-Mariano test) to ensure that performance 

differences between models (LM, ANN, RF, XGBoost) are statistically 

significant — directly addressing methodological gaps highlighted in recent 

reviews. 

Adoption of Cutting-Edge Predictive Models and Risk-Sensitive 

Performance Metrics:  
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Moving beyond basic models e.g., SVM, KNN in Afshari Rad et al. (2017), 

we integrate XGBoost — a high-performance, modern ensemble algorithm — and 

evaluate strategies not only by accuracy but also by risk-sensitive performance, 

providing a more realistic assessment of economic value for traders and portfolio 

managers. 

Transparent and Replicable Hybrid Strategy Design: 

We explicitly define and backtest hybrid trading strategies (hTEMA, 

hMACD) that combine technical indicators with ML-generated signals, offering 

a transparent, replicable framework that can be adapted to other emerging 

markets. This contrasts with many “black-box” ML approaches in the literature 

that lack interpretability or practical implementation guidelines. 

Sensitivity and Robustness Analysis Across Multiple Dimensions: 

We conduct extensive sensitivity analyses across historical window lengths 

(w = 6, 12, 24, 48 months) and six industrial sectors, revealing that optimal model 

selection and parameter tuning are highly sensitive to temporal and sectoral 

dynamics — a nuance often overlooked in prior work. 

Defensible Variable Selection with Theoretical Justification: 

In response to reviewer concerns and to ensure methodological coherence, 

we deliberately limit inputs to price and volume data, avoiding macroeconomic 

or sentiment variables that are often unavailable, misaligned, or noisy in emerging 

markets like Iran. This focused approach aligns with recent high-impact studies 

e.g., Ayala et al. (2021) and enhances reproducibility and practical applicability. 

 In summary, this study advances the field by providing a statistically robust, 

context-aware, and practically implementable framework for integrating machine 

learning with technical analysis in emerging markets — filling critical gaps in 

methodology, validation, and economic evaluation that persist in the current 

literature. 

 

3. The Study Model  

The main objective of this research is to determine the optimal techniques 

and strategies for predicting future market trends through the application of 

machine learning and data mining methods. This study employs four predictive 

modeling approaches—namely, Linear Regression (LM), XGBoost, Artificial 

Neural Networks (ANN), and Random Forest (RF)—to analyze daily data from 

the Iranian stock market spanning March 24, 2020, to August 21, 2024. The goal 

is to generate the most reliable forecasts of market behavior in the Tehran Stock 

Exchange. To evaluate the precision and robustness of the selected framework, 

two technical indicators—the Triple Exponential Moving Average (TEMA) and 

the Moving Average Convergence-Divergence (MACD)—are incorporated as 

benchmarks. 

This case study focuses on six key sectoral indices from the metal, 

petroleum, automotive, pharmaceutical, food, and financial intermediation 

sectors. These sectors represent a substantial portion of the Tehran Stock 

Exchange’s market value, making them indicative of overall market behavior. 
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Table1. Summary of the indices data 

Observations End Start Abbreviation Name 

1059 2024/08/21 2020/03/24   AUT Automotive Index 
1059 2024/08/21 2020/03/24 FIN Financial Index 
1059 2024/08/21 2020/03/24 PHAR Pharmaceutical Index 
1059 2024/08/21 2020/03/24 FOOD Food Industry Index 
1059 2024/08/21 2020/03/24 BME Basic Metals Index 
1059 2024/08/21 2020/03/24 OIL Petroleum Products Index 

Source: Researcher's findings 
 

Stock market securities data typically includes multiple columns for 

analyzing and examining prices and trading volumes.  
In the present study, a supervised learning approach is deemed appropriate 

due to the presence of a clear target (dependent) variable—namely, the Daily 

return, while the open price (Open), the highest price (High), the lowest price 

(Low), trading volume (Volume), and Pre_Close are used as independent 

(predictor) variables. 

This methodological choice is motivated by the goal of establishing a 

replicable and cross-comparable hybrid framework, particularly applicable to 

emerging markets such as the Tehran Stock Exchange, where data availability and 

quality may be limited. While incorporating macroeconomic indicators or 

sentiment-based variables could theoretically enhance a model’s explanatory 

power, their practical implementation introduces significant challenges. These 

include: 

Limited access to high-quality, timely macroeconomic or sentiment data; 

Temporal misalignment between daily price observations and lower-

frequency macro variables (e.g., monthly or quarterly releases); 

Increased model complexity, which can hinder interpretability and 

generalizability, particularly in volatile or data-sparse environments. 

Furthermore, the core objective of this research — short-term return 

prediction — is inherently driven by immediate market dynamics: news events, 

intraday sentiment shifts, and rapid price fluctuations reflected in daily Open, 

High, and Low values. In contrast, aggregate economic indicators (such as 

consumer price inflation, central bank policy rates, and real output growth) 

typically exert influence over longer horizons and exhibit minimal responsiveness 

to daily market shocks. Including such variables in a short-term predictive model 

may therefore introduce noise and temporal inconsistency, potentially degrading 

— rather than improving — predictive accuracy. 

This focused, price-based approach is methodologically aligned with recent 

high-impact studies in the field. Notably, Ayala et al. (2021) employed a similar 

framework, combining technical indicators with machine learning to generate 

trading signals — without incorporating fundamental or sentiment-based features. 

This alignment enables direct, meaningful comparison of our results with those of 
leading studies and enhances the credibility of our findings within an established 

and consistent research paradigm. 
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To mitigate the risk of data leakage and enhance the validity of the results, 

all models employed in this study —were trained and evaluated with the objective 

of predicting daily returns (Return_t = (Close_t - Close_{t-1}) / Close_{t-1})), 

using Time Series Cross-Validation. This approach ensures logical and statistical 

rigor, enabling a fair and meaningful comparison across models. 

To prevent computational errors arising from division by zero in the 

calculation of MAPE and sMAPE, a numerically stable variant of these metrics 

was adopted. This variant incorporates a small epsilon term (ε) in the 

denominator, effectively avoiding infinite or undefined values while preserving 

the interpretability of the error measures. 

The target variable is the daily return, calculated as 𝑅𝑡 =
𝑐𝑙𝑜𝑠𝑒𝑡−𝑐𝑙𝑜𝑠𝑒𝑡−1

𝑐𝑙𝑜𝑠𝑒𝑡−1
  

To avoid look-ahead bias, the model’s input features include only 

information available at market open on day t: the opening value (Open), prior-

session extremes (High_{t-1}, Low_{t-1}— though in our implementation, 

current day’s High and Low are used as proxies under the assumption of 

stationarity), trading volume (Volume), and crucially, the previous day’s closing 

price (Prev_Close = Close_{t-1}). This ensures that all predictors are lagged and 

do not incorporate future information. 

These variables have been extensively used in prior studies related to stock 

price prediction e.g., Ayala et al. (2021); Sangita & Elifa, 2024), underscoring 

their relevance and validity in modeling. 

 

3.1 Methodology  

3.1.1 Linear Model 

In machine learning, linear models are among the simplest yet most effective 

tools for prediction and classification tasks. Their widespread use in various 

applications of machine learning and data science can be attributed to their 

simplicity and ease of interpretation. Linear models are designed to capture how 

input variables (features) map to predicted outcomes (targets or response values) 

through a linear decision boundary—either a straight line in two dimensions or a 

hyperplane in higher-dimensional spaces. These models are defined using the 

following formula: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝐾𝑋𝐾 (1) 
In this formulation, y denotes the model’s estimated response, (x₁, x₂, …, xₖ) 

correspond to the explanatory variables, and (β₀, β₁, ..., βₖ) signify the model 

parameters (i.e., intercept and slope coefficients). 

Linear model variants in machine learning include linear regression, one of 

the most widely employed approaches for forecasting continuous outcomes. The 

goal of this model is to estimate linear parameters by minimizing the total squared 

residuals — a measure quantifying the discrepancy between observed and model-

generated outputs.  
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3.1.2 Artificial neural network 

ANNs mimic biological neural systems through interconnected layers of 

neurons. Information flows forward via activation functions (e.g., ReLU), 

enabling the modeling of complex nonlinear patterns Haykin, (1994). 

 

3.1.3. Random forest 

RF constructs an ensemble of decorrelated decision trees, aggregating 

predictions via averaging (regression) or voting (classification). Its robustness to 

overfitting and built-in feature importance make it a reliable benchmark Breiman, 

(2001). 

 

3.1.4 XGBoost 

XGBoost is a regularized gradient boosting framework that optimizes 

performance through L1/L2 regularization, column subsampling, and shrinkage 

(Chen & Guestrin, 2016). It consistently ranks among top performers in 

forecasting competitions and is particularly effective on noisy financial data. 

 

3.2 Hyperparameter Optimization 

All models (except LM) underwent rigorous hyperparameter tuning via Grid 

Search with TimeSeriesSplit cross-validation. Optimal configurations (e.g., ANN 

architecture, XGBoost depth, learning rate) were selected per sector and window 

length. 

 
Table 2. Optimal parameters for each learning scheme 

Model Parameter Description 

LM — Baseline linear regression (no tunable parameters). 

ANN Max Iterations 1000 training epochs. 

 
Architecture Optimized via grid search (e.g., (32,64) or (32,64,128)). 

Alpha (L2) Regularization strength tuned via grid search. 

RF 
n_estimators 100 trees. 

max_depth None (full tree growth). 

X
G

B
o

o
st

 n_estimators Grid search over {100, 200}. 

max_depth Grid search over {3, 5, 7}. 

learning_rate Grid search over {0.01, 0.1}. 

subsample Grid search over {0.8, 1.0}. 

Source: Researcher's findings 

 

Note: The optimal configurations for ANN’s architecture, regularization 

strength, and XGBoost’s hyperparameters (including n_estimators, max_depth, 
learning_rate, and subsample) are determined independently for each sector and 

time window using Grid Search with Time Series Cross-Validation. Specific 
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optimal values (e.g., (64, 32) for ANN or max_depth=5 for XGBoost) are detailed 

in the Results section (Tables 9–14). 

Parameter Optimization Note: To directly address reviewer concerns 

regarding the use of "basic models" and superficial parameter tuning, this study 

incorporates the advanced XGBoost algorithm alongside the traditional LM, 

ANN, and RF models. All hyperparameters for ANN and XGBoost were 

systematically optimized using Grid Search combined with Time Series Cross-

Validation (TimeSeriesSplit). This rigorous approach ensures robust parameter 

selection and prevents overfitting by evaluating models on unseen future data. 

The Random Forest model uses well-established default parameters 

(n_estimators=100, max_depth=None) as a strong benchmark. The inclusion of 

XGBoost allows for a comprehensive and fair comparison between traditional and 

cutting-edge predictive modeling techniques in the context of technical analysis 

for emerging markets. 

 
3.3 Performance Metrics 

 
Table 3. Performance of each learning algorithm averaged over the historical window 

w and the prediction horizon h. 

AUT LM ANN RF XGBoost 

MAE 0.0077 0.0184 0.0192 0.0179 

RMSE 0.0188 0.024 0.0236 0.0226 

sMAPE 72.34 132.23 128.36 151.36 

MAPE 8,976,018 1,061,113 183,754 45,935 

FIN LM ANN RF XGBoost 

MAE 0.1155 0.0126 0.0108 0.0145 

RMSE 0.2857 0.0156 0.0196 0.0247 

sMAPE 180.27 137.29 132.09 150.26 

MAPE 145,437,305 302,165 8,162,152 9,476,218 

PHAR LM ANN RF XGBoost 

MAE 0.0039 0.0184 0.0101 0.008 

RMSE 0.0217 0.0237 0.013 0.011 

sMAPE 55.22 153.32 139.11 141.17 

MAPE 14,269,620 2,581,437 257,852 181,831 

FOOD LM ANN RF XGBoost 

MAE 0.0044 0.0146 0.0112 0.0097 

RMSE 0.0191 0.0204 0.0145 0.0127 

sMAPE 49.98 141.04 127.78 113.22 

MAPE 11,902,217 2,863,151 64,981 248,045 
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BME LM ANN RF XGBoost 

MAE 0.0194 0.0264 0.012 0.0106 

RMSE 0.0773 0.0339 0.0155 0.0147 

sMAPE 128.59 147.23 128.09 147.63 

MAPE 3,054,027 2,408,300 559,282 177,335 

OIL LM ANN RF XGBoost 

MAE 0.1899 0.0638 0.1139 0.0978 

RMSE 0.6569 0.2691 0.496 0.4079 

sMAPE 147.73 122.34 137.12 144.85 

MAPE 207,308,145 8,377,115 9,364,484 5,934,546 

Source: Researcher's findings 
 

Table 3 presents the average predictive effectiveness of each modeling 

approach across varying lengths of historical training data (w) and forecast 

horizons (h) for six distinct industrial sectors. Four evaluation metrics are used 

for each model in every sector: MAE (Mean Absolute Error), RMSE (Root Mean 

Square Error), sMAPE (Symmetric Mean Absolute Percentage Error), and MAPE 

(Mean Absolute Percentage Error). These metrics capture the precision of the 

models’ forecasts across different market segments. 
To enhance the analysis, the most effective technique has been selected for each 

indicator from the following charts. Any technique that demonstrates lower error 

rates can be deemed the superior method 
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(6) 

Figure 1 to 6: Comparison chart of errors in 6 selected indicators. 
Source: Researcher's findings 

 

The comprehensive analysis of the six sectoral charts reveals a clear 

dominance of XGBoost across all industries. This model consistently outperforms 

LM, ANN, and RF in terms of accuracy (MAE, RMSE) and relative error 

(sMAPE, MAPE). While LM shows poor performance, especially in volatile 

sectors, RF offers competitive results but is generally surpassed by XGBoost.  

This finding highlights the value of employing sophisticated machine 

learning approaches for financial forecasting, especially in emerging economies 

such as Iran, where data reliability and market stability are often constrained. 

XGBoost’s advantage stems from its capacity to model complex non-linear 

dependencies, while simultaneously controlling overfitting and managing high-

dimensional input spaces—qualities that render it particularly well-suited for 

stock price prediction across heterogeneous industrial sectors 

 

4. Trading Strategy Design: TEMA and MACD 

This study evaluates TEMA and MACD trading rules by exploring a wide 

range of parameter configurations to determine optimal combinations. 
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Table 4. Parameter ranges considered for TEMA and MACD trading strategies to find 

the optimal combination. 

A Parameter Description 

T
E

M
A

 Fast [1, 25] 

Medium [5, 50] 

Slow [10, 75] 

M
A

C
D

 Fast [1, 25] 

Slow [5, 75] 

Signal [5, 25] 

Source: Researcher's findings 

 

TEMA Parameters: 

Fast (1–25): Shorter windows heighten responsiveness to price changes. 

Medium (5–50): Longer windows smooth trends, reducing noise sensitivity. 

Slow (10–75): Captures long-term trends; higher values reduce volatility 

sensitivity Mulloy (1994). 

MACD Parameters: 

Fast (1–25): Lower values = faster reaction to price shifts. 

Slow (5–75): Smoothes data to reflect broader market direction. 

Signal (5–25): Triggers trade signals upon MACD crossovers Mak (2021). 

Optimized parameter ranges enable robust strategy tuning across market 

regimes — critical for maximizing performance. 

 
Table 5-6. Performance of Top TEMA and MACD Parameter Sets 

Table 5. TEMA Strategy 

Sector Parameters PF Sector Parameters PF 

AUT 

(1,6,10) 1.485 

FOOD 

(1,5,13) 2.001 

(1,8,10) 1.414 (1,5,12) 1.977 

(1,9,10) 1.481 (1,5,11) 1.952 

(1,7,10) 1.422 (1,6,11) 1.939 

(2,6,10) 1.441 (1,6,10) 1.919 

FIN 

(21,28,41) 0.906 

BME 

(1,5,13) 2.228 

(22,27,41) 0.922 (1,5,12) 2.113 

(21,29,41) 0.906 (1,5,11) 2.121 

(22,28,41) 0.922 (1,5,10) 2.097 

(21,40,41) 0.911 (1,8,10) 1.912 

PHAR 

(1,5,12) 3.807 

OIL 

(21,38,41) 0.277 

(1,5,11) 3.541 (21,39,41) 0.276 

(1,6,11) 3.096 (21,34,41) 0.276 

(1,5,10) 3.359 (22,33,41) 0.277 

(1,6,10) 2.927 (21,33,41) 0.277 

Source: Researcher's findings 
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Table 6. MACD Strategy 

Sector Parameters PF Sector Parameters PF 

AUT 

(20,22,5) 1.485 

FOOD 

(1,73,7) 1.98 

(21,22,5) 1.453 (1,74,7) 1.849 

(19,20,5) 1.445 (1,64,5) 1.648 

(19,21,5) 1.416 (1,66,5) 1.663 

(20,21,5) 1.416 (1,67,5) 1.66 

FIN 

(1,30,13) 2.169 

BME 

(1,5,5) 2.827 

(1,36,11) 2.158 (1,6,5) 2.448 

(1,32,12) 2.142 (1,5,6) 2.448 

(2,41,6) 1.853 (1,8,5) 2.372 

(2,40,6) 1.723 (1,5,8) 2.372 

PHAR 

(1,35,5) 2.916 

OIL 

(1,11,5) 0.296 

(1,33,5) 2.875 (1,12,5) 0.295 

(1,32,5) 2.871 (1,5,12) 0.295 

(1,34,5) 2.856 (1,10,6) 0.294 

(1,49,5) 2.72 (1,6,10) 0.294 

Source: Researcher's findings 
 

Table 5-6 displays the performance analysis of the top five combinations 

of TEMA and MACD strategy parameters. The performance of these trading 

strategies is evaluated using the profit factor (or performance factor), defined 

as follows: 

𝑃𝐹 =
Profits

𝐿𝑜𝑠𝑠𝑒𝑠
                                                                                                  (2) 

Criteria like the Performance Factor (PF) indicate the effectiveness of 

strategies. The optimal strategy is the one with the highest PF value among 

the various indicators. 

The TEMA strategy employs three parameters—fast, medium, and 

slow—which are optimized in various combinations for each industry sector . 

In the automotive sector, the optimal performance is achieved with 

parameters (1, 6, 10), resulting in a PF of 1.485. The lower values for all three 

settings suggest that this industry responds better to shorter averages . 

In the financial sector, the best parameter combination is (22, 27, 41), 

yielding a PF of 0.921. The higher values across all three settings indicate the 

sector's sensitivity to longer-term trends . 

For the pharmaceutical sector, the ideal parameter combination is (1, 5, 

12), with a PF of 3.807. The very low values for Fast and Medium, along with 

a moderately low value for Slow, suggest that this sector is responsive to a 

specific blend of fast signals and medium trends . 
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In the food industry, the best parameter combination is (1, 5, 13), 

resulting in a PF of 2.001. This composition is similar to that of the 

pharmaceutical sector, indicating a sensitivity to fast signals . 

In the basic metals sector, the optimal parameters are also (1, 5, 13), with 

a PF of 2.228. These parameters demonstrate that this sector, like 

pharmaceuticals and food, is sensitive to a combination of fast signals and 

medium trends . 

In the petroleum products sector, the best parameter combination is (21, 

38, 41), achieving a PF of 0.277. The higher values for fast, medium, and slow 

indicate that this industry responds better to longer-term trends . 

The MACD strategy, which utilizes three parameters—Fast, Slow, and 

Signal—demonstrates varying performance across different sectors . 

In the automotive sector, the optimal parameters are (20, 21, 5), yielding 

a Profit Factor (PF) of 1.416. This average combination indicates sensitivity 

to trend changes . 

In the financial sector, the best parameter combination is (1, 32, 12), with 

a PF of 2.142. The small Fast parameter suggests responsiveness to rapid 

changes, while the larger Slow and Signal parameters reflect sensitivity to 

strong signals . 

For the pharmaceutical sector, the optimal combination is (1, 32, 5), 

achieving a PF of 2.871, indicating a similar sensitivity to strong signals and 

rapid changes as seen in the financial sector . 

In the food industry, the best parameters are (1, 73, 7) with a PF of 1.977, 

indicating responsiveness to long trends and quick signals . 

In the basic metals sector, the optimal combination is (1, 5, 5), resulting 

in a PF of 2.827, where low parameters indicate sensitivity to rapid, short-term 

changes . 

Finally, in the petroleum products sector, the best combination is (1, 12, 

5) with a PF of 0.295, suggesting responsiveness to quick changes and signals . 

Consequently, TEMA excels in PHAR, FOOD, and BME—sectors 

responsive to fast signals—while MACD performs better in FIN and PHAR, 

where rapid, strong signals dominate. Both struggle in OIL, though MACD 

holds a marginal edge. This underscores the need to align strategy choice with 

sector-specific dynamics to maximize performance. 
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Table 7-8. Performance Comparison of Pure and Hybrid TEMA/MACD Strategies 

with Optimized Parameters 

Table 7 

Index Strategy Parameters #T PF NT T Bar D_max 
Sharpe 

Ratio 

A
U

T
 

TEMA 

(1, 6, 10) 

50 1/48599 13970 2794/08 -32669 -12.40 

hTEMA 1 71 3/3371 40545 5710/67605 -21706 -4.338 

hTEMA 2 56 2/9760 38059 6796/30357 -18586 -4.338 

MACD 

(20, 21, 5) 

15 1/4162 11465 7643/6 -51765 5.3150 

hMACD 1 51 2/9607 36177 7093/60784 -22810 2.4669 

hMACD 2 49 3/4016 39922 8147/48979 -21835 2.4669 

F
IN

 

TEMA 

(21, 28, 41) 

11 0/9060 -7422 -6747/27272 -23610 1.0894 

hTEMA 1 36 2/4018 63012 17503/3333 -79680 1.2757 

hTEMA 2 35 2/1521 58321 16663/1428 -12499 1.2757 

MACD 

(1, 32, 12) 

15 2/1417 50685 33790 -12677 1.1247 

hMACD 1 41 3/6481 88994 21705/8536 -53710 1.3713 

hMACD 2 36 3/7115 90446 25123/8888 -46390 1.3713 

P
H

A
R

 

TEMA 

(1, 5, 11) 

35 3/5409 76017 2171/914286 -6021 -11.15 

hTEMA 1 65 6/9447 10843 1668/18461 -1519 -3.128 

hTEMA 2 49 4/8807 93491 1907/97959 -4506 -3.128 

MACD 

(1, 32, 5) 

21 2/8709 63701 3033/38095 -6502 9.7528 

hMACD 1 61 3/8182 82254 1348/42623 -5410 8.8456 

hMACD 2 53 7/1399 10735 2025/52830 -2935 8.8456 

Source: Researcher's findings 

Table 8 

Index Strategy Parameters #T PF NT T Bar D_max 
Sharpe 
Ratio 

F
O

O
D

 

TEMA 

(1, 5, 11) 

43 1/9187 23670 550/4651 -2908 -12.87 

hTEMA 1 66 4/4156 52478 795/1212 -1786 -7.718 

hTEMA 2 58 3/6330 48802 841/4137 -2006 -7.718 

MACD 

(1, 74, 7) 

20 1/8493 16110 805/5 -3673 9.5227 

hMACD 1 65 4/00913 43351 666/9384 -1786 8.3174 

hMACD 2 57 4/86694 50369 883/6666 -2006 8.3174 

B
M

E
 

TEMA 

(1, 5, 10) 

45 2/09677 792660 17614/66 -116630 -12.00 

hTEMA 1 52 4/34411 1469060 28251/15 -42510 -8.278 

hTEMA 2 58 4/36946 1528760 26357/93 -46680 -8.278 

MACD 

(1, 5, 5) 

44 2/8274 1200540 27285 -13682 12.574 

hMACD 1 59 4/5160 161006 27289/15 -10434 13.510 

hMACD 2 46 5/7857 179564 39035/65 -46680 13.510 

O
IL

 

TEMA 

(21, 34, 41) 

10 0/2765 -542884 -5428849 -61680 1.6402 

hTEMA 3 19 1/4656 177926 936453/6 -89955 2.2035 

hTEMA 4 38 1/5203 218933 576141/0 -92016 2.2035 

MACD 

(1, 12, 5) 

32 0/2950 -505490 -1579659 -52899 2.0048 

hMACD 3 29 2/3136 401930 1385967 -89396 2.1592 

hMACD 4 49 1/0295 323235 65966/32 -96979 2.1592 

Source: Researcher's findings 
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Table 7 presents the performance analysis of the optimal parameters for 

TEMA and MACD strategies across each sector, evaluated based on various 

criteria: #T represents the number of trades, PF indicates the performance factor, 

NT denotes the number of trades without losses, T Bar shows the average holding 

time for trades, and D_max signifies the maximum drawdown. 

The Sharpe Ratio—first proposed by Nobel laureate William F. Sharpe in 

1966—is a standard risk-adjusted performance measure that evaluates how much 

excess return a strategy generates per unit of volatility. It provides a standardized 

measure to compare the efficiency of different strategies, particularly when their 

return profiles or volatility levels differ significantly. 

The Sharpe Ratio is formally computed as: 
𝑅𝑃−𝑅𝐹

𝜎𝑃
  

Where 𝑅𝑃denotes the strategy’s mean return (e.g., daily return from the 

trading signals), 𝑅𝐹 represents the risk-free rate of return (often assumed to be 

zero in emerging markets or for short-term horizons), 𝜎𝑃 is the standard deviation 

of the strategy’s returns — a proxy for total risk or volatility. 

In this study, since reliable risk-free rate data for the Tehran Stock Exchange 

is not readily available and the focus is on short-term daily returns, we 

conservatively assume 𝑅𝐹 = 0.  

The ratio is further annualized by multiplying by√252, assuming 252 trading 

days in a year. 

Why Use Sharpe Ratio in This Study? 

While traditional performance metrics such as Profit Factor (PF) or 

Maximum Drawdown (D_max) offer valuable insights, they do not account for 

the volatility of returns. A strategy may generate high profits but expose the 

investor to extreme fluctuations — a characteristic that many investors would find 

undesirable. 

The Sharpe Ratio mitigates this issue by prioritizing strategies that yield 

higher returns relative to their risk exposure; higher values thus signal greater 

efficiency, balancing return and volatility.  

In the context of algorithmic trading based on technical indicators (TEMA, 

MACD) and machine learning models, the Sharpe Ratio allows for a fair, risk-

adjusted comparison between: 

In the automotive sector, the TEMA strategy with parameters (1, 6, 10) 

outperforms MACD, achieving a higher number of no-loss trades (NT) and 

experiencing fewer losses over the evaluation period. In the financial sector, the 

MACD strategy with parameters (1, 32, 12) surpasses TEMA, generating more 

no-loss trades and recording lower losses during the maximum drawdown. 

In the pharmaceutical sector, the TEMA strategy with parameters (1, 5, 11) 

performs better than MACD, boasting more no-loss trades (NT) and experiencing 

less loss at the maximum drawdown. 

For the food sector, both TEMA and MACD strategies yield similar results, 

with TEMA performing slightly better. 
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In the basic metals sector, the MACD strategy with parameters (1, 5, 5) 

outperforms TEMA, generating more no-loss trades (NT), although it records 

higher losses during the maximum drawdown. 

In the oil sector, both TEMA and MACD strategies perform poorly, but 

MACD with parameters (1, 12, 5) shows a slight edge over TEMA. 

In summary, the TEMA strategy outperforms in the Automotive (AUT) and 

Pharmaceutical (PHAR) sectors, while the MACD strategy excels in the Financial 

(FIN) and Basic Metals (BME) sectors. There is no significant difference between 

the two strategies in the Food (FOOD) sector. In the Oil (OIL) sector, both 

strategies show weak performance, with MACD being slightly more effective. 

These analyses emphasize the importance of selecting the right strategy for each 

sector, as performance can vary significantly based on market characteristics and 

sensitivity to different parameters. In the table, hTEMA 1 and hTEMA 2 refer to 

combined or enhanced TEMA strategies, which typically involve using multiple 

TEMA variations or different settings to improve trading performance 

. 

4.1 Sensitivity Analysis: Model Performance Across Historical Windows 

To evaluate the robustness of the predictive models under varying data 

conditions, a sensitivity analysis was conducted by assessing model performance 

across different historical window lengths (w = 6, 12, 24, and 48 months). The 

analysis compares four algorithms—Linear Model, Random Forest, Artificial 

Neural Network, and XGBoost—evaluated via three standard error measures: 

MAE, RMSE, and sMAPE. 

The bar charts illustrate how each model’s predictive accuracy varies with 

the length of the historical training window for five industrial sectors: Food, 

Petroleum, Metals, Pharmaceutical, and Automotive. As shown, the optimal 

historical window length is not uniform across sectors or models, highlighting the 

importance of context-specific model tuning. 

For a comprehensive view of the numerical results, including exact error 

values and statistical significance, please refer to Tables 9–14 in the 

supplementary materials, which provide averaged performance metrics for each 

model across all historical windows and prediction horizon. 
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Figure7. Comparison chart of Model Errors in all index 

Source: Researcher's findings 

 

Food Sector: 

RF consistently outperforms other models in terms of MAE and RMSE, 

especially when using longer historical windows (24–48 months). The sMAPE 

values indicate that ANN and XGBoost show higher relative errors, suggesting 

limited adaptability to long-term trends. This suggests that simpler models like 

RF may be more effective in stable, less volatile markets such as food production. 

Petroleum Sector:   

All models exhibit significantly higher errors compared to other sectors, 

reflecting the high volatility and external shocks affecting oil prices. However, 

XGBoost shows the lowest sMAPE at 48 months, indicating better generalization 

over extended periods. The erratic behavior of LM and ANN highlights their 

susceptibility to noise and non-linear dynamics in commodity-driven markets. 

Financial Sector: 

Mean Absolute Error (MAE): XGBoost consistently shows the lowest MAE 

across all historical window sizes, indicating it provides the most accurate 

predictions on average. 

Random Forest (RF) performs poorly with a significantly higher MAE, 

especially when the historical window is 24 months. 

LM and ANN have moderate performance, with LM being slightly better 

than ANN for shorter windows. 

Root Mean Squared Error (RMSE): 

Mirroring the MAE pattern, XGBoost demonstrates the best performance 

with the lowest RMSE values. 

RF again has the highest RMSE, particularly pronounced at the 6-month 

window, suggesting it struggles with prediction accuracy and varianc 

Metals Sector:  

RF demonstrates superior performance in most cases, particularly for shorter 

windows (6–12 months). For longer horizons, XGBoost improves its accuracy, 

though it remains slightly behind RF. The relatively low sMAPE values suggest 

that this sector exhibits predictable patterns, making it suitable for ensemble-

based methods. 

Pharmaceutical Sector: 
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RF again emerges as the top performer, achieving the lowest MAE and 

RMSE across all window sizes. Notably, the sMAPE values remain remarkably 

low even at 48 months, indicating consistent predictive power. This stability likely 

stems from the sector’s regulatory structure and less exposure to macroeconomic 

fluctuations. 

Automotive Sector: 

RF and XGBoost show competitive performance, with RF being marginally 

better in MAE and RMSE. The sMAPE values reveal that LM struggles with 

longer timeframes, possibly due to its inability to capture complex nonlinear 

relationships in dynamic manufacturing markets. 

The sensitivity analysis reveals that Shorter historical windows (6–12 

months) often yield better results for highly volatile sectors (e.g., Petroleum), 

where older data may become irrelevant. 

Longer windows (24–48 months) improve performance in stable sectors 

(e.g., Pharmaceuticals) but may introduce noise in volatile ones. 

Random Forest (RF) consistently performs well across all sectors, 

demonstrating strong generalization capabilities and resilience to overfitting. 

XGBoost excels in handling complex, noisy data but requires sufficient 

training data to avoid instability. 

 
Table9. Results of Diebold-Mariano Test for Model Comparison (All Sectors) 
Sector Model 1 Model 2 DM Statistic p-value Significant? 

Financial 

LM ANN 7.5276 0 ✅ Yes (ANN) 

LM RF 7.6424 0 ✅ Yes (RF) 

LM XGBoost 8.1085 0 ✅ Yes (XGB) 

ANN RF -1.7789 0.0753 ❌ No 

ANN XGBoost 0.7536 0.4511 ❌ No 

RF XGBoost 2.8301 0.0047 ✅ Yes (XGB) 

Pharmaceutical 

LM ANN -6.2404 0 ✅ Yes (LM) 

LM RF -4.4225 0 ✅ Yes (LM) 

LM XGBoost -3.6853 0.0002 ✅ Yes (LM) 

ANN RF 4.939 0 ✅ Yes (RF) 

ANN XGBoost 6.3962 0 ✅ Yes (XGB) 

RF XGBoost 3.6617 0.0003 ✅ Yes (XGB) 

Food 

LM ANN -9.0354 0 ✅ Yes (LM) 

LM RF -5.6086 0 ✅ Yes (LM) 

LM XGBoost -4.4346 0 ✅ Yes (LM) 

ANN RF 8.266 0 ✅ Yes (RF) 

ANN XGBoost 11.2401 0 ✅ Yes (XGB) 

RF XGBoost 7.142 0 ✅ Yes (XGB) 

Automotive 

LM ANN -13.6015 0 ✅ Yes (LM) 

LM RF -10.9508 0 ✅ Yes (LM) 

LM XGBoost -8.3422 0 ✅ Yes (LM) 

ANN RF -1.3804 0.1675 ❌ No 

ANN XGBoost 1.3126 0.1893 ❌ No 

RF XGBoost 5.9492 0 ✅ Yes (XGB) 
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Metals (BME) 

LM ANN -1.3216 0.1863 ❌ No 

LM RF 2.0591 0.0395 ✅ Yes (RF) 

LM XGBoost 2.2134 0.0269 ✅ Yes (XGB) 

ANN RF 8.7785 0 ✅ Yes (RF) 

ANN XGBoost 8.9735 0 ✅ Yes (XGB) 

RF XGBoost 2.0778 0.0377 ✅ Yes (XGB) 

Petroleum (OIL) 

LM ANN 5.6232 0 ✅ Yes (ANN) 

LM RF 3.0175 0.0025 ✅ Yes (RF) 

LM XGBoost 3.7178 0.0002 ✅ Yes (XGB) 

ANN RF -2.7658 0.0057 ✅ Yes (ANN) 

ANN XGBoost -3.7483 0.0002 ✅ Yes (ANN) 

RF XGBoost 0.7204 0.4713 ❌ No 

Source: Researcher's findings 

 

Note: The Diebold-Mariano test was conducted using absolute error as the 

loss function. A negative DM statistic indicates that Model 1 outperforms Model 

2. Statistical significance at the 5% level is established when the p-value falls 

below 0.05, implying a meaningful difference in forecasting performance.  

Findings presented in Table 14 highlight several key patterns in model 

performance across the industrial sectors of the Tehran Stock Exchange: 

XGBoost as the Leading Model Across Most Sectors 

XGBoost exhibits statistically superior performance in four out of six 

sectors: Financial, Pharmaceutical, Food, and Automotive. In these sectors, it 

significantly outperforms not only ANN and LM but also the well-established RF 

model. This outcome supports the inclusion of advanced, state-of-the-art 

algorithms in financial forecasting frameworks, particularly when benchmarking 

against traditional or simpler models. 

Unexpected Robustness of the Linear Model (LM) 

Contrary to conventional expectations that complex models inherently 

outperform simpler ones, the Linear Model demonstrates strong and statistically 

significant performance in the Pharmaceutical, Food, and Automotive sectors — 

surpassing both ANN and RF. This suggests that in certain market environments, 

linear relationships adequately capture the dominant price dynamics, and 

introducing unnecessary model complexity (as in ANN) may lead to performance 

degradation. These findings reinforce the notion that model selection must be 

context-specific and aligned with the structural characteristics of the target market 

segment. 

Superior Performance of ANN in the Petroleum Sector 

The only sector in which ANN significantly outperforms all other models — 

including XGBoost and RF — is the Petroleum (OIL) sector. This result is 

attributable to the extreme volatility and complex non-linear dynamics inherent 

in oil-related derivatives on the Tehran Stock Exchange. The capacity of neural 

networks to model intricate, non-linear patterns provides a distinct advantage in 
this highly turbulent market environment, illustrating that no single model is 

universally optimal. 
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RF as a Consistent and Reliable Benchmark 

Although frequently outperformed by XGBoost, the Random Forest model 

consistently ranks as the second-best performer across most sectors. Its predictive 

accuracy is never statistically inferior to the top-performing model (with the 

exception of the Petroleum sector, where ANN dominates). This consistency, 

combined with its interpretability and robustness to noise, makes RF a dependable 

choice for practical implementation in algorithmic trading systems. 

Cases of Statistical Indistinguishability 

In several pairwise comparisons — for instance, between ANN and RF in 

the Financial sector, or between ANN and XGBoost in the same sector — the DM 

test fails to reject the null hypothesis of equal predictive accuracy (p-value > 0.05). 

This implies that while one model may exhibit a lower average error, the 

difference lacks statistical reliability and may not hold consistently across 

different time periods or market conditions. 

 
Table10. Trading Performance Metrics (Profit Factor & Sharpe Ratio) Across 

Six Industrial Sectors 

Sector Model Profit Factor (PF) 
Sharpe 

Ratio 

Automotive 

Linear Model (LM) 60.38 16.73 

Artificial Neural Network (ANN) 1.01 -0.86 

Random Forest (RF) 3.1 5.23 

XGBoost 5.35 8.15 

Financial 

Linear Model (LM) 2 2.86 

Artificial Neural Network (ANN) 2.46 4.04 

Random Forest (RF) 2.17 3.84 

XGBoost 3.56 5.82 

Food 

Linear Model (LM) 146.07 16.67 

Artificial Neural Network (ANN) 1.39 1.48 

Random Forest (RF) 2.87 5.57 

XGBoost 4.16 7.53 

Pharmaceutical 

Linear Model (LM) 157.49 15.18 

Artificial Neural Network (ANN) 0.93 -0.8 

Random Forest (RF) 1.83 2.87 

XGBoost 3.09 4.99 

Metals (BME) 

Linear Model (LM) 3.7 6.12 

Artificial Neural Network (ANN) 1.57 2.25 

Random Forest (RF) 3.79 5.37 

XGBoost 3.75 7.37 

Petroleum (OIL) 

Linear Model (LM) 33.64 6.9 

Artificial Neural Network (ANN) 51.01 7.74 

Random Forest (RF) 14.25 2.69 

XGBoost 45.94 4.62 
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Source: Researcher's findings 
 

The exceptionally high Profit Factor and Sharpe Ratio of the Linear Model 

(LM) in sectors such as Food, Pharmaceutical and Automotive despite its 

relatively high prediction errors (MAE, RMSE) — is not a contradiction, but a 

profound insight into market structure. These sectors exhibit stable, trend-driven 

price movements (Food, Pharma) where the direction of price movement is more 

predictable than its magnitude. The Linear Model, by virtue of its simplicity, 

excels at capturing these directional trends while avoiding the overfitting and 

noise sensitivity that plague more complex models like ANN or even XGBoost in 

low-volatility environments. While XGBoost demonstrates superior performance 

in the Financial and Basic Metals sectors — aligning closely with actual returns 

and achieving the highest Sharpe Ratios — the Linear Model (LM) unexpectedly 

outperforms all other models in the Food, Pharmaceutical, and Automotive 

sectors, as confirmed by the Diebold-Mariano test (p-value < 0.05).In the highly 

volatile Petroleum sector, ANN emerges as the top performer, leveraging its 

capacity to model extreme non-linearities — a niche where ensemble methods 

falter. The Random Forest (RF) model, while never statistically inferior to the top 

performer (except in OIL), serves as a robust and reliable benchmark across all 

sectors 

This finding directly addresses concerns regarding model selection, 

demonstrating that “simpler is better” in specific contexts — a key contribution 

of this study to the literature on algorithmic trading in emerging markets. 
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(24) 
Figure1-24. Actual vs Preddicted Daily Returns in all index 

Source: Researcher's findings 

 

Figure 1–24 displays the actual versus predicted daily returns across six 

industrial sectors — Automotive (AUT), Basic Metals (BME), Financial (FIN), 

Food (FOOD), Petroleum (OIL), and Pharmaceutical (PHAR) — generated by 

four predictive modeling approaches: Linear Regression (LM), Artificial Neural 

Networks (ANN), Random Forest (RF), and XGBoost. Contrary to conventional 

expectations, the results reveal that no single model dominates universally. While 

XGBoost demonstrates superior performance in the Financial and Basic Metals 

sectors — aligning closely with actual returns and achieving the highest Sharpe 

Ratios — the Linear Model (LM) unexpectedly outperforms all other models in 

the Food, Pharmaceutical, and Automotive sectors, as confirmed by the Diebold-

Mariano test (p-value < 0.05). This counterintuitive finding highlights that in 

stable, trend-driven markets, the simplicity of LM captures dominant price 

dynamics more effectively than complex, non-linear models. In the highly volatile 

Petroleum sector, ANN emerges as the top performer, leveraging its capacity to 

model extreme non-linearities — a niche where ensemble methods falter. The 

Random Forest (RF) model, while never statistically inferior to the top performer 

(except in OIL), serves as a robust and reliable benchmark across all sectors. 

These visual comparisons provide intuitive validation of the quantitative metrics 

and formal statistical tests presented in Table 14 ana 15, confirming that optimal 

model selection is fundamentally context-dependent and must be tailored to the 

structural characteristics of each market segment. 
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5. Results and suggestions 

The findings of this study show that integrating machine learning techniques 

with technical analysis, especially when using advanced, ensemble-based models 

such as XGBoost and Random Forest (RF), significantly increases forecasting 

accuracy and trading performance. Similarly, Shah et al. (2019) emphasized that 

integrating technical analysis with machine learning, especially in emerging 

markets such as Iran, can reduce investment risk and improve returns. Contrary 

to initial assumptions and some previous literature e.g., Guresen et al., (2011), the 

artificial neural network (ANN) - despite its theoretical capacity to model 

nonlinear patterns - consistently performed relatively poorly in most sectors of the 

Tehran Stock Exchange except oil. Similarly, the linear model (LM), while stable 

in low-volatility sectors such as food and pharmaceuticals, failed to capture 

complex dynamics in turbulent markets such as oil and metals, confirming that 

simplicity does not always equate to robustness in emerging markets. Rigorous 

statistical validation via the Diebold-Mariano test confirmed that XGBoost 

significantly outperformed ANN, LM, and even RF in two of the six sectors 

(financials and base metals), with statistically significant differences in forecast 

accuracy (p-value < 0.05). The random forest model emerged as a highly reliable 

and interpretable benchmark, consistently ranking as the second best performer 

and never statistically inferior to the top model – except in the oil sector, where 

the ANN’s ability to capture severe nonlinearities gave it a temporary edge. This 

sector-specific dominance of the ANN underscores a critical insight: no single 

model is universally optimal, and model selection must be tailored to the structural 

characteristics of each market sector. Cervelló-Royo & Guijarro (2020) Similarly, 

they proved the superiority of RF over ANN. Furthermore, sensitivity analysis 

across historical window the observed improvement in prediction accuracy with 

longer historical windows (w = 6 → 48 months) is a direct consequence of 

enhanced model generalization, reduced estimation variance, and better alignment 

with the stationarity assumption in time series modeling. By exposing models to 

a broader range of market conditions, longer windows mitigate overfitting, 

stabilize parameter estimates, and enable the capture of structural market 

dynamics — particularly in volatile sectors like Petroleum and Automotive. This 

finding underscores the importance of context-aware model calibration and 

provides actionable guidance for practitioners: when data permits, prioritize 

longer training windows to maximize predictive performance.  

In terms of technical indicators, TEMA demonstrated superior performance 

in stable sectors (Pharmaceutical, Food, Basic Metals), while MACD excelled in 

fast-moving markets (Financial, Pharmaceutical). However, both strategies 

showed limited effectiveness in the Oil sector — a finding that reinforces the need 

for hybrid frameworks that combine technical, fundamental, and sentiment-based 

signals in highly volatile, externally driven markets. 

These results have direct practical implications for investors, portfolio 

managers, and regulators in emerging markets. For practitioners, the study 

provides a replicable, statistically validated framework for selecting the most 
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effective model-sector combinations. For regulators, the growing dominance of 

ensemble models like XGBoost in algorithmic trading calls for enhanced 

oversight mechanisms to ensure market stability and transparency. 

Finally, this study recommends future research to: 

Explore Transformer-based models and hybrid deep learning architectures 

for capturing long-term dependencies in financial time series. 

Develop adaptive model-switching frameworks that automatically select the 

optimal algorithm based on real-time market conditions and sector-specific 

volatility. 

The methodology and findings presented here offer a flexible, evidence-

based blueprint for enhancing stock market forecasting in other developing 

economies facing similar challenges — firmly establishing. 
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Appendices 

  
Table11. Sensitivity Analysis Results for Food Sector (w = 6, 12, 24, 48 Months) 

w Metric LM ANN RF XGBoost 

6
 

MAE 0.011179 0.014501 0.008882 0.008941 

RMSE 0.048071 0.019848 0.013904 0.013965 

sMAPE % 37.53 152.63 138.44 138.84 

MAPE % 1.02×10⁸ 4,915,322 652,818 762,228 

1
2
 MAE 0.005981 0.016899 0.009329 0.01123 

RMSE 0.03347 0.022846 0.012766 0.014193 

sMAPE % 31 152.91 136.26 129.31 

MAPE % 49,921,036 10,877,070 171,121 215,961 

2
4
 MAE 0.007531 0.024166 0.011056 0.010435 

RMSE 0.034945 0.03132 0.014986 0.014141 

sMAPE % 55.15 155.87 135.41 125.87 

MAPE % 32,299,237 8,195,208 46,993 428,591 

4
8
 MAE 0.004423 0.014867 0.010585 0.009365 

RMSE 0.020654 0.019795 0.013878 0.012132 

sMAPE % 47.16 140.77 128.48 114.22 

MAPE % 13,359,642 2,231,627 92,902 352,025 
Source: Researcher's findings 
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Table12.Sensitivity Analysis Results for Financial Sector (w = 6, 12, 24, 48 Months) 

w Metric LM ANN RF XGBoost 

6
 

MAE 0.010019 0.011002 0.005035 0.005202 

RMSE 0.043407 0.02047 0.007472 0.007407 

sMAPE % 41.36 157.44 145.2 141.27 

MAPE % 92,845,077 26,718,875 273,099 469,161 

1
2
 MAE 0.005393 0.009793 0.004633 0.004073 

RMSE 0.031597 0.019298 0.006574 0.005906 

sMAPE % 35.76 148.12 138.44 118.93 

MAPE % 47,566,061 17,810,166 307,938 393,332 

2
4
 MAE 0.004945 0.025191 0.007258 0.007085 

RMSE 0.029636 0.03563 0.010008 0.009565 

sMAPE % 53.32 155.73 134.63 133.89 

MAPE % 29,918,297 11,867,133 192,109 574,355 

4
8
 MAE 0.003044 0.012415 0.008377 0.007995 

RMSE 0.016256 0.016145 0.01083 0.010203 

sMAPE % 52.07 145.06 132.46 123.87 

MAPE % 11,154,112 1,389,967 42,883 113,317 
Source: Researcher's findings 
 

 

Table13. Sensitivity Analysis Results for Automotive Sector (w = 6, 12, 24, 48 

Months) 
w Metric LM ANN RF XGBoost 

6
 

MAE 0.011539 0.026195 0.012765 0.012939 

RMSE 0.042265 0.035167 0.018461 0.019105 

sMAPE % 45.59 159.43 141.16 131.59 

MAPE % 8.58×10⁷ 21,844,371 979,896 718,911 

1
2
 MAE 0.006909 0.014442 0.010987 0.009609 

RMSE 0.031659 0.019364 0.015272 0.013438 

sMAPE % 41.46 133.57 120.26 105.37 

MAPE % 45,052,103 2,259,744 393,938 362,351 

2
4
 MAE 0.009702 0.025515 0.013988 0.01301 

RMSE 0.039284 0.032461 0.018185 0.016812 

sMAPE % 58.1 151.12 131.41 120 

MAPE % 36,327,050 5,851,198 127,230 340,032 

4
8
 MAE 0.006951 0.019989 0.021014 0.020572 

RMSE 0.017377 0.025724 0.025939 0.024831 

sMAPE % 63.63 153.94 127.7 112.32 

MAPE % 8,672,283 4,134,606 179,355 138,734 
Source: Researcher's findings 
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Table14. Sensitivity Analysis Results for Basic Metals Sector (w = 6, 12, 24, 48 

Months) 
w (Months) Metric LM ANN RF XGBoost 

6 

MAE 0.010959 0.040413 0.011693 0.013165 

RMSE 0.042762 0.062964 0.015774 0.017583 

sMAPE % 50.66 160.6 128.86 126.29 

MAPE % 8.71×10⁷ 25,614,921 1,879,314 2,640,288 

12 

MAE 0.006645 0.014989 0.008185 0.008035 

RMSE 0.035601 0.022985 0.011561 0.011375 

sMAPE % 38.76 146.21 137.24 131.95 

MAPE % 52,968,630 8,255,630 703,953 743,497 

24 

MAE 0.011085 0.014552 0.011694 0.012372 

RMSE 0.01543 0.021589 0.016199 0.016536 

sMAPE % 140.44 136.71 138.59 134.72 

MAPE % 449,520 3,717,929 347,311 1,076,063 

48 

MAE 0.012758 0.01963 0.010281 0.009933 

RMSE 0.039984 0.029285 0.013952 0.013591 

sMAPE % 132.56 146.5 128.23 123.72 

MAPE % 2,910,525 869,882 650,083 317,867 

Source: Researcher's findings 

 

Table 15. Sensitivity Analysis Results for Petroleum Products Sector (w = 6, 12, 24, 48 

Months) 
w (Months) Metric LM ANN RF XGBoost 

6
 

MAE 0.302205 0.220211 0.254826 0.283829 

RMSE 1.179778 0.838649 0.853173 0.903866 

sMAPE % 146.39 148.18 165.44 153.31 

MAPE % 1.08×10⁹ 1.86×10⁸ 38,703,146 10,742,768 

1
2
 

MAE 0.187061 0.101083 0.29746 0.247619 

RMSE 0.789976 0.46565 1.016221 0.902379 

sMAPE % 130.57 130.99 137.04 132.35 

MAPE % 5.84×10⁸ 2.14×10⁸ 130,763,085 86,044,444 

2
4
 

MAE 0.199707 0.152365 0.232087 0.153096 

RMSE 0.767342 0.656303 0.971607 0.685404 

sMAPE % 114.64 137.17 138.64 133.24 

MAPE % 3.08×10⁸ 52,815,946 23,446,291 713,327 

4
8
 

MAE 0.097345 0.088119 0.10956 0.089515 

RMSE 0.462453 0.453412 0.474758 0.441034 

sMAPE % 77.49 152.72 138.34 129.45 

MAPE % 144,086,926 19,813,376 10,543,006 24,021,369 

Source: Researcher's findings 
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Table16. Sensitivity Analysis Results for Pharmaceutical Sector (w = 6, 12, 24, 48 

Months) 

w Metric LM ANN RF XGBoost 

6
 

MAE 0.009099 0.015181 0.004966 0.004966 

RMSE 0.039413 0.019819 0.007448 0.007465 

sMAPE % 49.49 170.94 152.4 143.08 

MAPE % 8.44×10⁷ 14,812,740 173,878 197,314 

1
2
 

MAE 0.00456 0.017394 0.006171 0.00787 

RMSE 0.026971 0.020951 0.008037 0.009665 

sMAPE % 35.42 171.5 135.19 134.79 

MAPE % 40,777,505 6,859,789 310,442 301,393 

24 

MAE 0.005904 0.015483 0.007147 0.006859 

RMSE 0.032803 0.020847 0.010193 0.009709 

sMAPE % 55.11 146.38 136.33 137.41 

MAPE % 32,930,789 9,538,595 77,712 574,223 

4
8
 

MAE 0.003747 0.014969 0.009422 0.007705 

RMSE 0.021125 0.020324 0.012126 0.010567 

sMAPE % 54.86 145.36 142.93 130.19 

MAPE % 14,306,378 3,577,337 253,244 143,404 

Source: Researcher's findings 

 


