[1] Villalobos, J. C., Del-Pozo, A., Campillo, B., Mayen, J., & Serna, S. (2018). Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals, 8(5), 351. https://doi.org/10.3390/met8050351
[5] Masoumi, M., Herculano, L. F. G., & de Abreu, H. F. G. (2015). Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles. Materials Science and Engineering: A, 639, 550-558. https://doi.org/10.1016/j.msea.2015.05.020
[6] Nafisi, S., Arafin, M., Collins, L., & Szpunar, J. (2012). Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles. Materials Science and Engineering: A, 531, 2-11. https://doi.org/10.1016/j.msea.2011.09.072
[7] Zidelmel, S., Rayane, K., & Kaouka, A. (2024). Effects of thermo-mechanical parameters on microstructural and mechanical properties of API X70 steel. JOM, 76, 3354-3361. https://doi.org/10.1007/s11837-023-06333-0
[8] Al Shahrani, A., Yazdipour, N., Dehghan-Manshadi, A., Gazder, A. A., Cayron, C., & Pereloma, E. V. (2013). The effect of processing parameters on the dynamic recrystallisation behaviour of API-X70 pipeline steel. Materials Science and Engineering: A, 570, 70-81. https://doi.org/10.1016/j.msea.2013.01.066
[9] Mirzakhani, B., Salehi, M. T., Khoddam, S., Seyedein, S. H., & Aboutalebi, M. R. (2009). Investigation of dynamic and static recrystallization behavior during thermomechanical processing in a API-X70 microalloyed steel. Journal of Materials Engineering and Performance, 18, 1029-1034. https://doi.org/10.1007/s11665-008-9338-x
[12] Eskandari, H., Reihanian, M., & Alavi Zaree, S. (2023). An Analysis of Efficiency Parameter and its Modifications Utilized for Development of Processing Maps. Iranian Journal of Materials Forming, 10(4), 45-51. https://doi.org/10.22099/ijmf.2024.49537.1283
[13] Prasad, Y. V. R. K., Gegel, H. L., Doraivelu, S. M., Malas, J. C., Morgan, J. T., Lark, K. A., & Barker, D. R. (1984). Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical Transactions A, 15(10), 1883-1892. https://doi.org/10.1007/BF02664902
[14] Zhou, G., Ding, H., Cao, F., & Zhang, B. (2014). A comparative study of various flow instability criteria in processing map of superalloy GH4742. Journal of Materials Science & Technology, 30(3), 217-222. https://doi.org/10.1016/j.jmst.2013.07.008
[16] Murty, S. V. S. N., & Rao, B. N. (1998). On the development of instability criteria during hotworking with reference to IN 718. Materials Science and Engineering: A, 254(1), 76-82. https://doi.org/10.1016/S0921-5093(98)00764-3
[19] Chai, R. X., Zhang, C. W., Guo, W., & Zhang, F. (2017). Hot deformation behavior and processing map of 40MnBH alloy steel. Steel Research International, 88(5), 1600281. https://doi.org/10.1002/srin.201600281
[21] Mirzadeh, H., Parsa, M., & Ohadi, D. (2013). Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size. Materials Science and Engineering: A, 569, 54-60. https://doi.org/10.1016/j.msea.2013.01.050
[22] Eskandari, H., Reihanian, M., & Zaree, S. A. (2024). Constitutive modeling, processing map optimization, and recrystallization kinetics of high-grade X80 pipeline steel. Journal of Materials Research and Technology, 33, 2315-2330. https://doi.org/10.1016/j.jmrt.2024.09.217
[25] Mirzadeh, H., Cabrera, J., Prado, J., & Najafizadeh, A. (2011). Hot deformation behavior of a medium carbon microalloyed steel. Materials Science and Engineering: A, 528(10-11), 3876-3882. https://doi.org/10.1016/j.msea.2011.01.098
[27] Menapace, C., Sartori, N., Pellizzari, M., & Straffelini, G. (2018). Hot deformation behavior of four steels: a comparative study. Journal of Engineering Materials and Technology, 140(2), 021006. https://doi.org/10.1115/1.4038670
|