Abbott, W. S. (1925). Method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267.
Abdalla, M. A. & Mühling, K. H. (2019). Plant-derived sulfur containing natural products produced as a response to biotic and abiotic stresses: A review of their structural diversity and medicinal importance. Journal of Applied Botany and Food Quality, 92, 204 - 215. https://doi.org/10.5073/JABFQ.2019.092.029
Abduz Zahir, A., Bagavan, A., Kamaraj, C., Elangi, G., & Abdul Rahuman, A. (2012). Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides, 52(2), 95-102.
Anjali, C., Sharma, Y., Mukherjee, A., & Chandrasekaran, N. (2012). Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science, 68(2), 158-163. https://doi.org/10.1002/ps.2233
Aouadi, G., Haouel, S., Soltani, A., Ben Abada, M., Boushih, E., Elkahoui, S., Taibi, F., Mediouni Ben Jemâa, J., & Bennadja, S. (2020). Screening for insecticidal efficacy of two Algerian essential oils with special concern to their impact on biological parameters of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 127(4), 471–482. https://doi.org/10.1007/s41348-020-00340-y
Aslan, İ., Özbek, H., Çalmaşur, Ö., & Şahi̇n, F. (2004). Toxicity of essential oil vapours to two greenhouse pests,
Tetranychus urticae Koch and
Bemisia tabaci Genn.
Industrial Crops and Products,
19(2), 167-173.
https://doi.org/10.1016/j.indcrop.2003.09.003
Bamoniri, A., Gholami, M., Moradi, S., & Shakeri, A. (2019). Chemical composition and insecticidal activity of essential oils rich in sulfur compounds. Journal of Applied Botany and Food Quality, 92, 182–187. https://doi.org/10.5073/JABFQ.2019.092.029
Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84(1), 99-105. https://doi.org/10.1007/s10340-010-0332-3
Ghosh, V., Mukherjee, A., & Chandrasekaran, N. (2013). Formulation and characterization of plant essential oil based nanoemulsion: evaluation of its larvicidal activity against Aedes aegypti. Asian Journal of Chemistry, 25(Supplementary Issue), S321-S323.
Werdin González, J., Yeguerman, C., Marcovecchio, D., Delrieux, C., Ferrero, A., & Fernández Band, B. (2016). Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the German cockroach. Ecotoxicology and Environmental Safety, 130, 11–18. https://doi.org/10.1016/j.ecoenv.2016.03.045Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach. Ecotoxicology and Environmental Safety, 130, 11-18. https://doi.org/10.1016/j.ecoenv.2016.03.045
Goswami, A., Roy, I., Sengupta, S., & Debnath, N. (2010). Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films, 519(3), 1252-1257. https://doi.org/10.1016/j.tsf.2010.08.079
Haghshenas, G., Raouf Fard, F., Golmakani, M. T., Saharkhiz, M. J., Esmaeili, H., Khosravi, A. R., & Sedaghat, S. (2023). Yield, chemical composition, and antioxidant activity of essential oil obtained from Ferula persica oleo-gum-resin: Effect of the originated region, type of oleo-gum-resin, and extraction method. Journal of Applied Research on Medicinal and Aromatic Plants, 35, 100471. https://doi.org/10.1016/j.jarmap.2023.100471
Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F., & Benelli, G. (2018).
Pimpinella anisum essential oil nanoemulsions against
Tribolium castaneum—insecticidal activity and mode of action.
Environmental Science and Pollution Research,
25(19), 18802-18812.
https://doi.org/10.1007/s11356-018-2068-1
Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of
Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species.
Ecotoxicology and Environmental Safety, 142, 423-430.
https://doi.org/10.1016/j.ecoenv.2017.04.041
Heydarzade, A., Moravej, G., Hatefi, S., & Shabahang, J. (2011). Fumigant toxicity of essential oils extracted from three medicinal plants against Callosobruchus maculatus adults (Coleoptera: Bruchidae). Iranian Journal of Plant Protection Science, 42(2), 275-284. https://doi.org/10.22059/IJPPS.2012.24335
Ikawati, S., Himawan, T., Abadi, A. L., & Tarno, H. (2021). Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum (Herbst). Journal of Pesticide Science, 46(2), 222-228. https://doi.org/10.1584/jpestics.D20-059
Isman, M. B. (2020). Botanical insecticides in the twenty-First Century—Fulfilling Their Promise? Annual Review of Entomology, 65(1), 233-249. https://doi.org/10.1146/annurev-ento-011019-025010
Karalius, V., & Bûda, V. (1995). Mating delay effect on moths’ reproduction: correlation between reproduction success and calling activity in females Ephestia kuehniella, Cydia pomonella, Yponomeuta cognagellus (Lepidoptera: Pyralidae, Tortricidae, Yponomeutidae). Pheromones, 5(2), 169-190.
Lima Filho, M., Favero, S., & Lima, J. O. G. de. (2001). Produção de Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae) com a utilização de fubá de milho na dieta artificial. Neotropical Entomology, 30(1), 37-42. https://doi.org/10.1590/S1519-566X2001000100007
López, M. D., & Pascual-Villalobos, M. J. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, 31(2), 284-288. https://doi.org/10.1016/j.indcrop.2009.11.005
Margulis-Goshen, K., & Magdassi, S. (2013). Nanotechnology: An advanced approach to the development of potent insecticides. In Advanced Technologies for Managing Insect Pests (pp. 295–314). Netherlands: Springer. https://doi.org/10.1007/978-94-007-4497-4_15
Menossi, M., Ollier, R. P., Casalongué, C. A., & Alvarez, V. A. (2021). Essential oil‐loaded bio‐nanomaterials for sustainable agricultural applications. Journal of Chemical Technology & Biotechnology, 96(8), 2109-2122. https://doi.org/10.1002/jctb.6705
Nenaah, G. E. (2014). Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst). Industrial Crops and Products, 53, 252-260. https://doi.org/10.1016/j.indcrop.2013.12.042
Peixoto, M. G., Bacci, L., Fitzgerald Blank, A., Araújo, A. P. A., Alves, P. B., Silva, J. H. S., Santos, A. A., Oliveira, A. P., da Costa, A. S., & Arrigoni-Blank, M. de F. (2015). Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Industrial Crops and Products, 71, 31-36. https://doi.org/10.1016/j.indcrop.2015.03.084
Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. (2007). Bioassays with arthropods (2nd ed.). Boca Raton, FL: CRC Press.
Sabbour, M. M., & Abd El-Aziz, S. E.-S. (2019). Impact of certain nano oils against Ephestia kuehniella and Ephestia cutella (Lepidoptera-Pyralidae) under laboratory and store conditions. Bulletin of the National Research Centre, 43(1), 80. https://doi.org/10.1186/s42269-019-0129-3
Safa, M., Yazdanian, M., & Sarailoo, M. H. (2014). Larval feeding from some artificial diets and its effects on biological parameters of the Mediterranean flour moth. Munis Entomology and Zoology, 9(2), 678-686. http://www.munisentzool.org
Sereshti, H., Izadmanesh, Y., & Samadi, S. (2011). Optimized ultrasonic assisted extraction–dispersive liquid–liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. Journal of Chromatography A, 1218(29), 4593-4598. https://doi.org/10.1016/j.chroma.2011.05.037
Sfara, V., Zerba, E. N., & Alzogaray, R. A. (2009). Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of rhodnius prolixus.
Journal of Medical Entomology,
46(3), 511-515.
https://doi.org/10.1603/033.046.0315
Tapondjou, A. L., Adler, C., Fontem, D. A., Bouda, H., & Reichmuth, C. (2005). Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. Journal of Stored Products Research, 41(1), 91-102. https://doi.org/10.1016/j.jspr.2004.01.004
Upadhyay, R. K., & Ahmad, S. (2011). Management strategies for control of stored grain insect pests in farmer stores and public ware houses. World Journal of Agricultural Sciences, 7(5), 527-549.
Veal, L. (1996). The potential effectiveness of essential oils as a treatment for headlice, Pediculus humanus capitis. Complementary Therapies in Nursing and Midwifery, 2(4), 97-101. https://doi.org/10.1016/S1353-6117(96)80083-7
Werdin González, J. O., Stefanazzi, N., Murray, A. P., Ferrero, A. A., & Fernández Band, B. (2015). Novel nanoinsecticides based on essential oils to control the German cockroach. Journal of Pest Science, 88(2), 393-404. https://doi.org/10.1007/s10340-014-0607-1
Zallaghi, N., & Ahmadi, M. (2021). Combined action of Lavandula angustifolia Miller essential oil and gamma irradiation treatment on some biological aspects of the Mediterranean flour moth Ephestia kuehniella (Zeller).
International Journal of Pest Management,
67(3), 203-215.
https://doi.org/10.1080/09670874.2020.1723819