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Abstract— We present a new and efficient method for identifying the modulation type of a bursty
QAM signal in the presence of additive white Gaussian noise (AWGN) in unknown fading
channels and with unknown carrier phase. Our approach is based on an iterative combination of
blind equalization and soft-clustering techniques, utilizes the constant modulus algorithm (CMA)
for an initial reconstruction of the received signal constellation, and employs a nonparametric soft
clustering method to identify a small set of possible modulations based on the partition coefficient
(PC) criterion. We then use an iterative approach in utilizing the decision adjusted modulus
algorithm (DAMA) to refine our choices until we reach two hypotheses. Besides, we propose a
parallel implementation of the proposed method, and provide an asymptotic analysis as well as
simulation results to demonstrate the validity and usefulness of the proposed method. Simulation
results indicate that our proposed method achieves a significant gain as compared to the cumulant-
based approach for burst mode transmissions in fading channels.
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1. INTRODUCTION

Recent advances in wireless communications include concepts such as software defined radio (SDR)
systems and cognitive radio networks. In both systems, a smart receiver that can adaptively tune into
various unknown modulation formats and time-varying environments is required. In conventional
receivers, supplementary information such as training and/or signalling data are periodically sent by the
transmitter, which allows the receiver to recognize the transmitted signals with acceptable quality.
However, transmission of such redundant and supplementary information may either not be possible, or
would reduce the efficiency of transmission; therefore, in some systems, a blind adaptive algorithm for
identifying the modulation type of the received signal is desirable. Furthermore, modulation classification
is an active research area in the design of receivers for non-cooperative communication systems.

As defined in [1], a modulation classifier (MC) is a system that, given a measurement r(t) 0<t<T,,
recognizes the modulation type of r(t) from N possible modulations A = {C;,C,,,...,Cy}. The received
signal r(¢) is typically considered as a modulated signal received through, and corrupted by the
communication channel and additive noise

r(6) = fo,(s(0).h, )+ z(2) (1

where s(¢) is the modulated signal, /4, is the channel impulse response, and z(r) is the additive white
Gaussian noise. As quadrature amplitude modulation (QAM) is widely used in wireless communication
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systems [2-3], we concentrate on the treatment of unknown linearly modulated QAM signals denoted by
s(t) in (1).

Modulation classification of QAM signals within a set of candidate constellations A has been studied
in the past decade (see, e.g., [1, 3-7] and references therein). In doing so, two main approaches have been
broadly followed, namely decision theoretic algorithms and pattern recognition schemes [4]. In the
decision theoretic approach, the problem is formulated by a multiple hypothesis testing approach, and the
decision is made based on the likelihood function for the received signal under each hypothesis. In [8], a
quasi log-likelihood ratio classifier (QLLRC) is developed to distinguish BPSK from QPSK modulations
in additive white Gaussian noise (AWGN) environments assuming a small value for the signal-to-noise
ratio (SNR). In [9] and [10], this approach is extended to MPSK and QAM signals. In [11], the sequential
probability ratio test (SPRT) is proposed for hypothesis testing to classify QAM signals. In [1] and [12],
another likelihood-based approach is formulated that can be applied to any digital amplitude-phase
modulation.

In maximum-likelihood (ML) classifiers, noise is assumed to be AWGN. The drawbacks of ML
classifiers include very high computational complexity, and lack of robustness to model mismatches such
as phase and frequency offsets, residual channel effects, timing errors, non-Gaussian noise distributions,
and symbol sets with unequal sizes [13]. Such effects, which emanate from blind acquisition,
synchronization, and equalization, are not easily modelled in the ML framework.

Compared to decision theoretic approaches, pattern recognition approaches take another viewpoint
and attempt to extract some discriminating features from a received signal to identify the modulation type
by using statistical classifiers (e.g., the K-nearest-neighbour classifier) [4]. In order to classify QAM
signals in AWGN environments, some features such as constellation magnitude [14], higher-order
cumulants [3], wavelets [5], cyclostationary properties [15], phase histogram [16], regular distance
between constellation points [17-18], first zero-crossing location of the characteristic function [19], and
constellation shape [20-22] are utilized. In [17], the regular distance between constellation points and the
associated constellation size is used together with the characteristic function (2-D Fourier transform of the
observed symbols’ histogram) or 1-D Radon transform to estimate the constellation size. This feature can
be successfully extracted for square and cross-shaped constellations when SNR is high and the residual ISI
is negligible. In [19], the sensitivity of this feature to SNR variations is studied, and the first zero crossing
(FZC) of the characteristic function is used as a more reliable method for estimating the constellation size.
However, both methods are inappropriate for diamond-shaped constellations (e.g., V.29) with frequency
offsets, and imperfect equalization conditions.

Approaches that exploit the constellation magnitude are insensitive to frequency offset and phase
variations. However, their performances degrade with increase of noise level and constellation size.
Among the aforementioned techniques, the constellation classification method proposed in [3], which uses
the estimated fourth order cumulant of AWGN channel output, is promising due to its invariance to
constellation rotation, its low computational complexity, and its robust performance, even at low SNR
values. This method, however, requires an accurate estimate of noise variance in the channel and needs
excessive data for correct classification.

Clustering algorithms in pattern recognition techniques [22] have also been applied for constellation
identification. These include the agglomerative [23], the divisive [24], the hard C-means [12], and the
fuzzy C-means [20] cluster analysis. All of these techniques are sensitive to SNR as well as to parameter
values. Moreover, they allow cluster centres to scatter in all directions during the clustering process, which
implies that the limited available information on candidate constellations is ignored [25].

All of the aforementioned methods for classification of QAM signals assume AWGN channels, and
their performances may drastically deteriorate in multipath fading environments. In [17], a cascade
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architecture that consists of a blind equalizer and a modulation classifier is employed for mitigating the
impact of inter-symbol interference (ISI) that emanates from channel effects, as shown in Fig. 1. This
concept is also used in [10] and [21]. We employ the same structure in this paper.

The main contribution of this paper is the development of a novel modulation classification technique
for identifying the modulation type and the size of burst mode QAM signals in the presence of AWGN,
multipath fading channel, and unknown phase offsets. Our proposed scheme is iterative and is based on a
combination of blind equalization and soft-clustering classification techniques.

We introduce an iterative approach in the conventional blind equalizer-classifier cascade structure
(BECC) by using the classifier’s soft-output to iteratively adjust the equalizer’s settings. By soft-output we
mean that the classifier does not decide on one class as its final result (i.e., hard-output), but associates a
degree of resemblance with each class. We also exploit the constellation information in our soft-clustering
algorithm.

Z(t) Cascade System

st ) ‘ |

v —p|  Channel k* o Blind Modulation -
N Eaualizer Classifier

Fig.1. Conventional blind equalizer-classifier cascade structure

The rest of this paper is organized as follows. In Section II, we present the problem statement, derive the
discrete-time models for a multipath dispersive channel and received signal, and introduce our
assumptions. In Section III, we explain the new iterative BECC structure along with the corresponding
blind equalization algorithms. In Section IV, the proposed scheme for modulation classification is
presented. Our soft-clustering approach for constellation identification is in Section V. In Section VI, we
present asymptotic performance analysis of our classifier for bursty signals at high SNR values.
Simulation results are in Section VII, and conclusions are in Section VIIL

2. PROBLEM STATEMENT AND MODELLING

Given a M-QAM received signal r(¢) in the presence of additive white Gaussian noise, multipath fading,
and absence of special side-knowledge (as explained later in this section), we wish to find the
constellation size (M;) and constellation shape. Specifically, we are interested in bursty signals, in which
the burst length, the symbol rate, and the constellation size are varied in time.

In each burst, the transmitted signal is

s(r) = Re{/& a"g(t - kT)eﬂ”fc’} )

k=0

where f, is the carrier frequency, 7 is the symbol duration, g(s) represents the pulse shaping filter, 4 is

the signal amplitude, and {a,ii)}:;(;

constellations A={C,,C,,...,Cy}. Each constellation (¢, is characterized by M-array alphabet
{81,858, 3> 1.e., C, = {S{,S;',---,S;/l 1. Our focus is limited to 8-PSK, 8QAM-v29, 16-QAM, 16-QAM-
v29, 32-QAM, 64-QAM, 128-QAM, and 256-QAM modulations.

Figure 2 shows the block diagram of the communication system. The continuous time signal #(¢)
observed at the receiver input is modelled as a distorted version of s(¢), degraded by the band-limited

is a symbol sequence of length K drawn from one of the N

June 2010 Iranian Journal of Science & Technology, Volume 34, Number B3



260 H.R. Nikoofar and A. R. Sharafat

multipath fading channel effects, and additive white Gaussian noise. The complex envelope of the
received signal, after down-converting by a local carrier, is

r(t) = v(t) + z(t) = e/ o0 Ih(r, t)s(t —t, —1)dr +z(1) 3)
where Ah(z,t) is the baseband equivalent of the channel impulse response (that may be time-varying), 7,

is the timing epoch, Af, is the residual carrier frequency (also known as frequency offset), 6, is the
carrier phase, and z(¢) is the base-band equivalent of the receiving noise.

=) LPF
l [ = kT,
{ﬁ}> 20 s() o) V() @r(t)= —f1 - RDigi_tal -,

-B B | V) y, = y(kT,)

Fig. 2. Communication scheme in a multipath fading channel [26]

A multipath fading channel can be modelled as a time varying system [26]. The equivalent base band
impulse response /(7,t) represents the output of such a channel at time ¢ if an input impulse is applied at
time ¢ —7 . A tapped-delay-line (TDL) is often used to model a time varying multipath fading channel
[26,27], i.e.,

h(f,T)=ihm(f)5(T—st) 4)

m=0

where T is the sampling period that satisfies 7,<//B (in which B is the signal bandwidth) and is chosen
such that T=N,T;, T is the symbol period, N; is the number of samples per symbol, (L. +1) is the length of
the channel in terms of T, and 4, (¢r) = T, h(t,mT,) is the channel tap coefficient. The discrete-time model
of the received signal, after ideal low-pass filtering with bandwidth B’ = B+ £, (where fp is the maximum
Doppler frequency of the multipath fading channel), and fractionally-spaced sampling at 1=k7 is

Vi = YT,) = /™IROy (KT )s(kT, = mT, ~t,)+ n(KT,) )
where n(t) is the noise at the output of the low-pass filter.

The following are assumed in this paper:

AS1. Constellation size is unknown, however it is in a given set, ¢.g., Al= {8PSK, 8QAM},
A2={V.29¢c, 16QAM}, A3={8QAM, 8PSK, 16QAM, V.29c}, Ad4= {128QAM, 256QAM}, or
AS={16QAM, V.29¢c, 32QAM}. The proposed scheme in this paper is also valid for any A A;.

AS2.  Lack of special side-knowledge means that parameter values 4, Af,, 6., f;, AWGN noise
power, and channel impulse response k(z,r) in (2)-(5) are generally unknown. However, we
estimate the symbol rate R = I/T and the carrier frequency offset Af, by using the
cyclostationary characteristics of the received signal [28-30]. Symbol timing is recovered by
standard fractional sampling as in (5).

AS3. There is no direct path between the transmitter and the receiver. Based on the central limit
theorem, A(z,t) can be modelled as a complex-valued Gaussian random process [31], whose
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mean value is zero,

h(z, t)‘ at any instant ¢ is Rayleigh distributed [26], and the corresponding
wireless channel is a Rayleigh multipath fading channel.
AS4. Using (5), the channel coefficients at time r=kT; are

h, = [ho,k’ hl,k""ﬁhl,c,k }/ (6)

where h, , =h,(kT,), and [] denotes transposition. Assuming uncorrelated scattering [31],
channel tap coefficients are treated as a zero-mean complex Gaussian random process with
the following covariance matrix [26]

R, =1 Eh, b, |=J,@,T)E (7)
where J () is the zero-order Bessel function of the first kind, f;, is the maximum Doppler
frequency, and ()" denotes the Hermitian of a matrix. The diagonal matrix X, is

X = diag [Jj,af,---,ai] )

where 2 =%E[\hm, k‘z] is obtained from the channel multipath intensity profile (MIP), also

known as the multipath delay-power profile [26-27].

AS5. Data is transmitted burst-by-burst, and the channel is slow fading (i.e., f,7 <0.01), such that
the channel tap coefficients do not change during each burst (i.e., 4,, =4, and R, =X).
However, the coefficients’ values may change from one burst to another.

AS6. Channel noise z(¢) is additive, and is modelled as a circularly symmetric zero-mean white
complex Gaussian random process having an autocorrelation function R_(r)= N,5(¢), where
N, is the noise power spectral density. Thus, n, =n(kT) in (5) is a circularly symmetric
discrete complex Gaussian random process with variance 2 = £[jn,['1=28'N, . The average

SNR is [27]
L L, 5 , L, ,
LAPT Y B[y 4] ATy o
SNR gyiracr = ng_z = ;;0 : ©)
g g

In order to increase the utilization of the channel’s capacity, the transmitter is assumed to adapt its symbol
rate and modulation type to channel conditions [2, 32]. That is, when the transmitter finds a channel in
which higher transmission rates are permissible, it switches to a higher order modulation. This means that
under such circumstances, channel conditions are more stable and the burst length is relatively long (there
are more symbols available in one burst). In contrast, transmitting on lower order modulations means a
bad fading channel and short burst length. Therefore, when the constellation size is large, bursts are
relatively long and more symbols are transmitted in each burst.

3. NEW BLIND EQUALIZATION-CLASSIFICATION CASCADE STRUCTURES

Modulation Classification (MC) in unknown dispersive channels in [13, 14, 17, 21] are based on a cascade
equalizer-classifier set up as shown in Fig.1, and use of the constant modulus algorithm (CMA) [33] for
blind equalization. In this, what follows is, we first review the strengths and weaknesses of CMA in the
conventional blind equalizer-classifier cascade (BECC) structure, and state our motivation for its
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improvement by using the decision adjusted modulus algorithm (DAMA) [34-35]. Subsequently, we
introduce our novel iterative and parallel BECC structures.

The CMA equalizer has an adaptive linear transversal structure, as shown in Fig. 3. The equalizer tap
coefficient vector W is chosen in such a way to minimize the CMA cost function, defined by [33]
R, (10)

Al ,\
S :ZE[( Vi

where P, is the output of the blind equalizer, and R is the dispersion constant [33]

14 12
r=fa['1/ (] 1 (11
The expected values in (11) are taken over the constellation points {Sj }Z} assuming that all A7, points are
equally probable. Using fractionally spaced CMA (FSE-CMA) [33] and LMS (least mean square)
implementation of the algorithm, the equalizer tap coefficients are iteratively updated by

Wi =W, + X 0.( 5 P -R)? (12)

where W, =[w, ., W, W, ,k],/, is the equalizer tap coefficient vector, X, =[xy, X, ;,**, X, ,k],/, is the
equalizer input vector at time k, u is the step size, L, is the length of FIR equalizer, and * denotes
complex conjugate.

Adaptive Blind Equalizer

{x,} )
A H
Ve = Wi Xy >
Wk (Adaptive)
Coefficient Update | g
Algorithm h
A

a-priori information on modulation

Fig. 3. Linear blind equalizer structure

The dispersion constant R in (11) depends on modulation type, and its values for different
modulation types are shown in Table I. Figs. 4a and 4b show circles with radius VR for 16QAM and
16QAM-V29c constellations, respectively.

While CMA can be successfully applied to QAM signals [34], its cost function (10) is better matched
to PSK in the sense that R™® —| 4, |, and the cost function goes to zero at all signal points of a PSK
constellation (when R=R™")). For a QAM constellation C,, constellation points lie on the multiple radii
{4.1,-. . also known as multiple modulus, and typically R = 1, Vd,1<d < D,. Note that I6QAM-V29c, as
shown in Fig. 4(b), is an exception. This means that (10) does not go to zero for any constellation point in
the majority of standard QAM constellations. See, for example Fig. 5, where multiple modulus of 16QAM
and 16QAM-V29c are shown. The mismatch between the constellation and the CMA’s cost function
causes excessive misadjustments for QAM signals [35].
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Table 1. Values of R for different QAM modulations

Modulation Type R
8 PSK 1.0000
8 QAM-V29 1.405
16 QAM 1320
16QAM-V.29¢ 1.4189
32 QAM 1.310
64 QAM 1.381
128 QAM 1.3427
256QAM 1.3953
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Fig. 4. Circles with radius equal to the square root of the dispersion constant for
(a) Square 16QAM (b) Star shaped 16QAM-V.29¢
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Fig. 5. Circles with radius equal to multi-modulus {ﬂd }f;l of (a) 16QAM : D=3 1 =(0.44721,,1.3417}
(b) 16QAM-V.29¢c: D=4 1 ={0.3849,0.81651.1547,1.3607}

Since no prior knowledge on the underlying constellation is assumed, the CMA equalizer sets an
initial arbitrary modulus R in cost function (10), regardless of the modulation type. As shown in [21], if
the value of R is not far from its exact value R, it does not significantly impact misadjustment and speed
of convergence of the CMA equalizer. For this reason, we use R=1.3 for the set of constellations in
Table L.

By using the CMA equalizer in a conventional BECC structure, the residual channel effects are not
sufficiently equalized for large constellation size QAM signals (a7, > 16) and the remaining ISI renders our
estimate of the constellation shape inaccurate. Furthermore, due to slow convergence of CMA, its
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performance is not satisfactory, especially for burst transmissions where the number of received symbols
is limited.

To tackle this issue, we propose a novel structure that operates iteratively. Figure 6 shows our
proposed structure, in which we perform joint equalization and classification repeatedly, and combine two
different adaptive algorithms for blind equalization in sequence, namely the constant modulus algorithm
(CMA) and the decision adjusted modulus algorithm (DAMA) in [35]. The main objective of employing
DAMA instead of CMA in subsequent iterations is to reduce the misadjustment.

Received Burst 'y k>1 Adjusted Modulus | §
—» __57——» Blind Equalizer »| Soft-Classifier

k=1

v

Module Set p={p. 0}

Initial Module p, Adaptsive.Module <
» etting

Fig. 6. Block diagram of the proposed iterative equalizer-classifier cascade

For unknown constellations, we use a modified DAMA as in [35]

2
2

) 1<p<P, (13)

|3A/k|2 ~Pp

1 .
Epama=—FE mm(
4 14

where ¥, is the output of the blind equalizer and {pp };1 are the arbitrary radii. The coefficient update
equation for DAMA equalizer is

Wiy =W, + 15, 9,( ¥, |2 —,03), (14)

where
A

v=argmian/k\2—pp2). (15)

p

4. PROPOSED SCHEME FOR MODULATION CLASSIFICATION

As shown in Fig. 6, we adjust the number of radii P and the values {pi },’; , iteratively by using the soft
classifier output. Box 1 describes the iterative procedure in this structure, and Figs. 7(a) and 7(b) show its
corresponding block diagram.

In iteration 1, input burst goes through CMA equalizer (the E-Step in Box 1). In the next step, the soft
classification algorithm is applied to the equalizer’s output, and the degree of resemblance R(C, | y) of the
reconstructed constellation to every modulation type in the initial set of candidate modulations A@ =4 is
calculated (the C-Step in Box 1). Now, we use a threshold to determine a smaller subsequent set of
possible modulations A" for the D-Step in Box 1. The combination of these steps (E, C, and D) is shown
in Fig. 7a. We use the decision in the first iteration A"’ in DAMA (the S-step in Box 1, and Fig 7b). In the
second iteration and further, pre-equalized symbols are processed by the adjusted modulus DAMA
equalizer followed by a soft-classifier and a threshold comparator as shown in Fig 7b. This procedure is
terminated when we reach a two class problem, and the one that has a larger value of R is selected.
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Box 1. Iterative procedure for the BECC structure

I-Step: Initializing
Iteration index x =0,

Compute R for each modulation in the set A:

RO = Ella? [/ Ha[1. aeC. e h
Set:
1< (i) (0)
py=— R P =100
NI
A®_p
Input Burst: y = [yl,yz,---,yK]T
X=Yy

E-Step: Blind Equalization

Iteration index kK = K +1
Input Burst: X =[x, X, -,xK]T
Reverse Burst : X =[xp, Xz, -,xl]T
Virtual Burst : %, =[x",x",x",x",x"]"
Run {Adaptive DAMA Equalization with p = p*™"

Input * Xy,

S 55 ~qr
Output: Y ivia = [V Vo s Vsl )

5’ = [JA’4K+1:)A’4K+2»"':J’>5K]T
x=y
C-Step: Soft-Classification
Run {Soft-Classification Algorithm
Input: y (recovered constellation)

Output: R(C, | y) (degree of resemblance (likelihood) of recovered constellation

with respect to constellation C; in the set A (= 1) )}
D-Step: Narrowing Down Modulations Set
AN =(CIRC 192 p.Ce AN
if there are two remaining modulations
i = argmax{R(C, | )| C, e A}
Break (%END OF CLASSIFICATION}

End
S-Step : Adaptive Modulus Setting

Select adjusted-modulus p™ ={p,, p,,-+-, p,,} that better matches the remaining
modulations in the set A ¥)
Go to E-Step (next iteration)

In the first iteration (Fig 7a), CMA is used as a pre-equalizer, and despite its slow convergence and
relatively high misadjustment (especially for large QAM constellations), serves two purposes. First, it
reduces channel effects on the received signal, thus enabling the classifier to reduce the number of
possible modulations for subsequent iterations. Second, it sufficiently equalizes amplitude distortions
caused by fading, so that DAMA can converge [35]. In fact, DAMA requires that amplitude distortions be
sufficiently equalized.

For a fast procedure, we use parallel DAMA structures as in Fig. 8, in which the adjusted-modulus
{pp}i _, of DAMA equalizers are matched to the exact multi-modulus {2,}7 ~of the corresponding
modulation C, with a view to improving the performance of the equalizer in removing the channel effects
[35]. Of course, this requires additional computations in the receiver.
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Since the burst length is usually shorter than what is required for convergence of the blind equalizer,

we reuse the captured burst in a forward/reverse scenario to generate a virtual burst that is long enough for
the blind equalizer to converge (see E-step in Box 1). In [36], it is shown that if the number of symbols in
a burst exceeds the number of possible channel outputs, convergence of the blind equalizer can be

achieved similar to the case of infinite data length.

I-step E-step E P D-step
: : R, Y)
> oot}
R, 1Y)
——  CMA RC 927" |
Initial 4
Module . .
setting Po
N popemee) B

At’) =A

Fig. 7a. Block diagram of /-D Steps in the first iteration of iterative BECC structure

S-step E-step

X y
DAMA

>
n
]
=]
a
o
7]
2.
=
a
=

D-step

- A
Adaptive
Module
. 1
setting | p" ={p .o p,}

ATI,)

| Soft Classifier

Select
RC,|9=2r?

Fig. 7b. Block diagram of S-D Steps in the second iteration of iterative BECC structure

Exact modulus of modulation C;

pr={2 A )

R, 1Y)

v
_>| DAMA Equalizer |—> Soft Classifier

P2 :{112:"':1%5}

Exact modulus of modulation

—>—>| DAMA Equalizer

y R, 1Y)
Soft Classifier |———

Select
Largest

. 5\/ . .
—>| DAMA Equalizer |—> Soft Classifier

R 1Y)

Exact modulus of modulation C;

P = A}

Iranian Journal of Science & Technology, Volume 34, Number B3

Fig. 8. Block diagram of E-D Steps in the second iteration of hybrid (parallel) BECC structure
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5.SOFT CLUSTERING ALGORITHM FOR MODULATION CLASSIFICATION

We now introduce our soft clustering algorithm for modulation classification, which exploits the
constellation shape as a key signature of the modulation type. We consider the sequence of reconstructed
symbols y at the output of the blind equalizer as a geometrical pattern in the inphase-quadrature (IQ)
scatter diagram in Fig. 9, and develop a soft clustering method that measures the degree of resemblance of
the estimated constellation y to constellation C; in the set of candidate modulations A ={C,,C,,,...,Cy}.
We use this measure as a decision-making parameter introduced in Section III.

In order to deal with the effects of noise, residual channel effects, and unknown phase offsets, we take
a soft clustering approach to identify the modulation type of the received bursty signal. In doing so, we
note that fuzzy-based clustering methods are useful in such applications (e.g., [37]). Soft clustering means
that any given data point p, may belong to several clusters (with cluster centres at
{Sie’ S5 -8, ¢’}) each with a different fuzzy membership value u), [0,1]. which is a measure of
similarity between the equalized symbol j, and the rotated symbol §ie/?, where §! is a symbol in
constellation Cj, ie., §;e(s],s;, .S, }- The fuzzy membership matrix U, =[u},] is a measure of
similarity —between the equalized symbol vector 'y and the rotated constellation
C,e’g = {Sl’e'fg,S;e’b),---,S]’;llejg} .

We wish to find a membership matrix U, that minimizes the following cost function
M,
Q= zu/ikz
=

1 k=1

7, - st (16)

9 500 received symbols (unequalized) of 16-QAM Constellation of the received symbols at the output of the CMA equalizer
1 . . " LY .&
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Fig. 9a. A typical received signal constellation of 16 QAM modulation with SNR = 30 dB, (b) — Signal
constellation of the received symbols at the output of CMA equalizer

where d), = ‘ Ve — S;e"e‘ is the Euclidian distance between an equalized symbol P, and a rotated symbol
Sie’”, where ! e C,.

For fuzzy partitioning, the elements of U, are between 0 and 1, and normalization requires that the
sum of membership functions for each ), be equal to unity, therefore

MX
Y, =1, Vk=loK a7)
1=1

The minimum of cost function €2 can be obtained by forming the Lagrangian cost function
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E?(U,,Q,é/l, “G) = Zzuzk dzlk ng(zuzk (18)
1=l k=1 k=1 =l

where £, for k£ =1 to K are Lagrangian multipliers. Setting all gradients of Q with respect to each input

argument equal to zero yields

Uy, = Z( ‘k) (19
and from (16) »

M,
>
0 =AU,C,,y) =tan " S
~

/=1

ul, {im( $,)Re( S!) = Re( §,) Im(S!)} 20)

D= |10

ul,” Re( §,)Re( )+ Im( $,)Im( S|}

=
I

Equations (19) and (20) show that membership values u,, and unknown phase € are nonlinearly inter-
related. To obtain € and U,, we propose the iterative procedure in Box 2.

Box. 2. Iterative Soft Clustering.

CLU-0: Initialize parameters for n=0
Set modulation under test: C; = {S/,S%,---,8,, } .

Select a stopping threshold o

Find the starting point:

* U, (0)=[u,(Ce” ‘a (use Eq.19)

-0 T 37 Im
16" 8716

* 99= argmin {QU'(0),C, ¢, §)} (use Eq. 16)
16 8716

o 0O
« U/ =U,1")
e OV =0, 09)Ce"" )
CLU-1: Compute parameters for iteration n-+1
o HUV =9 L AU, ,C?.¥) (use Eq. 20)

A(nHl)

° é@n) _ égn)e.fﬁ
° ﬁfnﬂ) =[uy (é;(ml)sy)]
CLU-2: Convergence checking
N Q(/Hl) Q(U(nﬂ) C(n+1) e(lﬁl))
. If ‘Q’(nﬂ) _an) <5
Break (%END OF CLUSTERING)

End
e  Go tostep CLU-1

We use the elements of U, to examine how data points correspond to modulation type C.. In doing
so, we employ the partition coefficient (PC) in [38] as the degree of resemblance R(C,|y). Given a
M, x K membership matrix U, , the PC of U, is

N N 1%L E o2
R(C,13) = PCU, [§) =2, > uly @h

=1 k=1
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A value of PC(U,) close to 1 indicates a good classification, and a value equal to //M; indicates no
cluster. In practice, the use of PC is not suitable when K and {M,}", have a wide range, as PC is
sensitive to the number of clusters N and the length of data K. It has been shown that PC identifies
constellations with smaller values of M, [37].

We use this soft clustering algorithm as our classification method to compute the degree of
resemblance R(C, | y) in the conventional (Fig. 1), in the iterative (Fig. 7), and in the parallel (Fig. 8)
BECC structures in Section III. We compare the asymptotic performances of these structures for
classification of QAM signals in AWGN and multipath fading channels in Section VI.

6. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we show that the performance of the proposed fuzzy-based clustering scheme approaches
that of the optimum classifier, i.e., the generalized likelihood ratio classifier (GLR). However, our
proposed scheme is non-parametric, meaning that it is more robust compared to parametric (e.g., the
maximum likelihood) classifiers. This is an important point for fading channels.

Due to the complexity associated with fuzzy parameters, it is not easy to analyze the performance of
our proposed scheme in general. As an alternative, we can consider two asymptotic conditions, namely
long bursts (K — o), and high SNR (SNR — o). Since our focus is on the burst mode, we present the
asymptotic analysis for SNR — «.

We use the average probability of correct classification F.. as a measure of performance

N
P = %Z Pr(success| C,) (22)
i=1

where Pr(success | C,) means the probability of identifying C, when C, was transmitted. For the proposed
soft clustering classifier, Pr(success | C,) is

Pr(success| C,) = Pr{R(C, |§) > R(C, | §).¥j =1...,N, j #i| C;} (23)

Since the proposed soft clustering algorithm exploits the constellation shape as its discriminating
feature, increasing the burst length above a threshold K > K does not increase P... This is confirmed by
simulations.

We study R(C, | y) for high SNR and fixed K, which is a possible and important case in our problem.
From (21), we note that the membership values {u;,} play an important role in the analysis of R(C, | ).

We now show that at high enough SNR (SNR — ), R(C, |y,C,) — 1. Without loss of generality, for
€ =0 and high SNR e.g., SNR — o, the received symbol after applying the equalizer, i.c., J,, gets
closer to one of the symbols § /’k of the transmitted constellation C; (e.g., Fig. 9b). Therefore,

d},{ = - S,’}k — 0. Considering Eq. (19), we then conclude by simple mathematical manipulations that
i[>0 (=)
kT 51, (=0 o))

In other words, at high SNRs, the membership vector u/, =[u,, ] . tends to a fuzzy singleton vector, i.c.,
S(¢—1",). Therefore, using Eq. (21) yields R(C, |y.C,) —>1.

In what follows, we also show that in high SNRs, the proposed soft-clustering technique and the
generalized maximum likelihood classifier are equivalent. Under such assumptions, we write the soft-
clustering cost function (16) as

K 0
Q=[5 -S| (25)
k=1
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Similarly, the distance between the equalized symbol J, and the rotated symbol S, e(ie., P =S, e))
is minimized
9o - e <[p -5 veenm) (26)
Then, we have
K
_ i_jo
Q, _Z’G[ in ‘yk Sie’ ‘ (27)

which is the same as that of the generalized likelihood ratio classifier (GLR) developed in [12, 7]. This
implies that our soft clustering method in high SNR approaches the performance of the optimum classifier
in [7].

6. SIMULATION RESULTS

We use simulations to observe the performance of our proposed method in additive white Gaussian noise
and fading channels. The probability of correct classification Pc¢ is utilized to compare our proposed
approach with the cumulant based methods in [3]. This was done by 1000 Monte Carlo simulations for
each modulation in the set A. We consider the following two examples. In Example 1, we consider an
AWGN channel and short burst transmissions, and in Example 2, we consider a fading channel.

Example 1- AWGN Channel: We assume the channel is completely equalized by the blind equalizer for
the received burst of K=256 symbols, and consider the performance of our soft clustering algorithm for
classifying the modulation type from Al= {8 PSK, 8 QAM}, A2={V.29¢, 16 QAM}, A3={8 QAM, 8 PSK,
16QAM, V.29c}, and A4= {128QAM, 256QAM}. Simulation results are shown in Figs. 10-12. Fig. 10
shows the performances of the soft-clustering method for the two-class problems Al and A2 and for the
four class problem A3. Figures 11-12 compare the performances of soft-clustering and cumulant-based
methods for the two class problems A2 and A4, respectively. We note that for short burst K=256, the value
of Pcc for the soft-clustering method approaches unity (accurate classification) when SNR>10dB, whereas
P for cumulant based method in [3] is much less.

-7 Vet 7
o~ 7 /
/ / !
oof ,/ ! .
. , , //
/ X /
/ / /
/
08t/ / J/ J
/ , ?)/é
/>< /
o / /
o 07 / / B
7/ /
7/ /
/ /
¥
0.6+ e i
K
/%/
0.5+
, -0 A1={8QAM,8PSK}
7 -xX- A2= {16QAM V290}
o %K A3—{8QAM 8PSK, 16Q/-\M V29c}
04 L ! !
2 4 6 8 10 12 14 16 18 20

SNR(dB)

Fig 10. Probability of correct classification P of soft-clustering classifier versus SNR
for Al, A2, and A3 modulation sets in AWGN and K=256
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Fig 11. Probability of correct classification P of soft-clustering and cumulant-based classifiers
versus SNR for A2={16QAM,V29c} modulation set in AWGN and K=256
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Fig 12. Probability of correct classification Pc¢ of soft-clustering and cumulant-based classifiers
versus SNR for A4={128QAM,256QAM} modulation set in AWGN and K=256

Note that as Fig. 11 shows, our proposed classifier has a significantly higher Pc- compared to the
cumulant-based classifier for short bursts, particularly for higher values of SNR.

Example 2- Fading Channel: We evaluate the performance of our method for AS={16 QAM, V.29c, 32
QAM} in multipath fading channels. The fading channel is assumed to be a slow fading wireless mobile
channel with £, 7 =5x10™*. We use a method proposed in [39] to simulate the discrete time model of the
fading channel. We also use the six-path channel model described in [27] for the typical urban (TU)
wireless system. The channel intensity profile is shown in Table 2 and the sampling time T is T/4.

Table 2. TU Six-Path Channel Model (T=3.7 psec) [27]

Path delay | Fractional Path Fractional
psec power delay kT power
0.0 0.189 0 0.189
0.2 0.379 1 0.618
0.5 0.239 2 0.095
1.6 0.095 3 0.061
2.3 0.061 4 0.000
5.0 0.037 5 0.037
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We compare the performances of the following three different classifiers in the above mentioned
fading channel using 1000 Monte Carlo trials for each modulation type, i.e., a total of 3000 trials for the
three class problem AS for each value of SNR.

Classifier 1: CMA + cumulant-based modulation classifier as a benchmark (shown in Fig. 1 in which the
CMA is used as the equalizer, and the cumulant-based method [3] is used as its classification
algorithm).

Classifier 2: CMA + soft clustering algorithm (SCA) modulation classifier (shown in Fig. 7a in which
soft-clustering is used for classification).

Classifier 3: Iterative DAMA + soft clustering algorithm modulation classifier (with the iterative
structure shown in Figs. 7a-b and soft-clustering used as its classification algorithm).

As we are focusing on fading channels, short bursts are inadequate for modulation classification. In
order to alleviate this, each Monte Carlo trial uses k=800 independent symbols in each burst (as compared
to 256 independent symbols used in Example 1). As per assumption AS7, the transmitter switches to
higher order modulations when the channel is relatively stable during a burst. Thus, it is reasonable to
assume that for A5={16 QAM, V.29c, 32 QAM}, bursts of 800 symbols length are available. Each burst
was reused 5 times in forward-reverse to generate a long burst. We observed that longer bursts would not
have a significant impact on the classifier’s performance. The results are shown in Fig. 13.

T \ \
0.8} -+ |
+
classifier 3
Pe i —+ DAMA+SCA | |
o - CMA+SCA
O CMA+Cumulan
t
classifier 2 - é
< o
oO— S
O .
classifier 1
0.6 |
5<> ; . L 1 L L 1 1 1
25 26 27 28 29 30 31 32 33 34 35
SNR (dB)

Fig. 13. Probability of classification Pcc of three classifiers of Example 2, for three class
problem AS ={16QAM, V.29c, 32QAM}in a slow fading channel

The proposed iterative method (classifier 3) outperforms one-pass CMA+Cumulant (classifier 1) and
CMA+SCA (classifier 2). The iterative classifier has a significant gain in SNR as compared to classifiers 1
and 2. The SNR gain js achieved at a higher computational cost. The complexity of the proposed method
in this paper is O(K Z M;) compared to that of the cumulant-based method which is O(K). In a similar
setting, the cumulant-based classifier in [3] requires significantly more symbols to achieve the same
performance as our proposed iterative classifier. Although the performances of both classifiers 1 and 2 are
not satisfactory, the CMA+Cumulant-based classifier (Classifier 1) requires 7-8 dB higher SNR to match
the performance of the CMA+SCA (classifier 2).
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7. CONCLUSION

We proposed a novel scheme for identifying the modulation types of bursty QAM signals. This structure
is based on iterative adjusted-modulus blind equalization and soft clustering. As the number of available
symbols in the received burst may not be sufficient for equalizer training, we repeatedly use the available
symbols in a forward-reverse manner. Moreover, for fast processing, we employ parallel structures. Our
soft clustering algorithm does not require a precise statistical model of the input signal and noise
parameters, as compared to the decision theoretic approach in [1].

In order to show the effectiveness of our approach, we compared our results with those of the
cumulant method in [3]. For a multipath fading channel, our algorithm requires significantly fewer
symbols to achieve the same classification as compared to the use of cumulants. This is particularly
important in bursty transmissions where high number of symbols are not available.
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