Abu-Doush, I., Ahmed, B., Awadallah, M. A., Al-Betar, M. A., & Rababaah, A. R. (2023). Enhancing multilayer perceptron neural network using archive-based harris hawks optimizer to predict gold prices. Journal of King Saud University – Computer and Information Sciences, 35(9), 101557. https://doi.org/10.1016/j.jksuci.2023.101557.
Alameer, Z., Abd Elaziz, M., Ewees, A. A., Ye, H., & Jianhua, Z. (2019). Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resources Policy, 61, 250–260. https://doi.org/10.1016/j.resourpol.2019.02.014 .
Amini, A., & Kalantari, R. (2023). Gold price prediction by a CNN-Bi-LSTM model along with automatic parameter tuning. AUT Journal of Modeling and Simulation, 50(1), 71–82. https://doi.org/10.22060/miscj.2018.13508.5074 .
Baradaran, A. H., Bohlouli, M., & Jahed Motlagh, M. R. (2023). Decoding tomorrow's gold prices: A comparative study of GRU and CNN-LSTM in the Iranian market. Applied Soft Computing, 140, 110–125. https://doi.org/10.1016/j.asoc.2023.110325 .
Ben Jabeur, S., Mefteh-Wali, S., & Viviani, J.-L. (2021). Forecasting gold price with the XGBoost algorithm and SHAP interaction values. International Review of Financial Analysis, 78, 101976. https://doi.org/10.1016/j.irfa.2021.101976 .
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555 .
Cohen, G., & Aiche, A. (2023). Forecasting gold price using machine learning methodologies. Journal of Commodity Markets, 30, 100–115. https://doi.org/10.1016/j.jcomm.2023.100115 .
Dewi, N. P. J. R., Indrawan, I. G. A., Ginantra, N. L. W. S. R., & Darma, I. W. A. S. (2022). Application of long short-term memory (LSTM) and gated recurrent unit (GRU) algorithm in gold price prediction. International Journal of Intelligent Systems and Applications, 14(4), 45–58. https://doi.org/10.5815/ijisa.2022.04.05 .
Dhuhita, W. M. P., Haryoko, Farid, M. F. A., Huda, A. A., & Yaqin, A. (2022). Gold price prediction based on Yahoo finance data using LSTM algorithm. Journal of Physics: Conference Series, 2157(1), 012038. https://doi.org/10.1088/1742-6596/2157/1/012038 .
E, J., Ye, J., & Jin, H. (2023). A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting. Knowledge-Based Systems, 278, 110–125. https://doi.org/10.1016/j.knosys.2023.110876 .
Ghute, M., & Korde, M. (2021). Efficient machine learning algorithm for future gold price prediction. International Journal of Engineering and Advanced Technology, 10(5), 78–85. https://doi.org/10.35940/ijeat.E3064.0510521 .
Gong, W. (2022). Research on gold price forecasting based on LSTM and linear regression. Journal of Physics: Conference Series, 2189(1), 012015. https://doi.org/10.1088/1742-6596/2189/1/012015 .
Hafezi, R., & Akhavan, A. N. (2018). Forecasting gold price changes: Application of an equipped artificial neural network. AUT Journal of Modeling and Simulation, 50(1), 71–82. https://doi.org/10.22060/miscj.2018.13508.5074 .
Hajek, P., & Novotny, J. (2021). Fuzzy rule-based prediction of gold prices using news affect. International Journal of Information Management, 58, 102–115. https://doi.org/10.1016/j.ijinfomgt.2021.102415 .
Hosseinpour, M. J., & Jahan, M. H. (2023). Gold price forecasting based on hybrid methods of deep learning and Shahin Harris. In Proceedings of the 7th International Conference on Global Studies in Computer, Electrical and Mechanical Engineering (pp. 112–118). IEEE. https://doi.org/10.1109/GSCEEM57105.2023.10152467 .
Jaiswal, R., & Singh, B. (2022). A hybrid convolutional recurrent (CNN-GRU) model for stock price prediction. International Journal of Pattern Recognition and Artificial Intelligence. Advance online publication. https://doi.org/10.1142/S021800142350015X .
Jovanovic, A., Dogandzic, T., Dobrojevic, M., Sarac, M., Bacanin, N., & Zivkovic, M. (2023). Gold prices forecasting using recurrent neural network with attention tuned by metaheuristics. Expert Systems with Applications, 215, 119–132. https://doi.org/10.1016/j.eswa.2023.119324 .
Liang, Y., Lin, Y., & Lu, Q. (2023). Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Engineering Applications of Artificial Intelligence, 120, 105–120. https://doi.org/10.1016/j.engappai.2023.105912 .
Livieris, I. E., Pintelas, E., & Pintelas, P. (2020). A CNN–LSTM model for gold price time-series forecasting. Neural Computing and Applications, 32(23), 17351–17360. https://doi.org/10.1007/s00521-020-04867-x .
Mamipour, S., & Vaezi Jezeie, F. (2014). Non-linear relationships among oil price, gold price and stock market returns in Iran: A multivariate regime-switching approach. Energy Economics, 45, 285–297. https://doi.org/10.1016/j.eneco.2014.08.001 .
Mohsin, M., & Jamaani, F. (2022). A novel deep-learning technique for forecasting oil price volatility using historical prices of five precious metals in context of green financing. Resources Policy, 79, 102–115. https://doi.org/10.1016/j.resourpol.2022.102876 .
Nanthiya, D., Gopal, S. B., Balakumar, S., Harisankar, M., & Midhun, S. P. (2021). Gold price prediction using ARIMA model. Materials Today: Proceedings, 47, 5122–5128. https://doi.org/10.1016/j.matpr.2021.05.445 .
Payandeh Najafabadi, A. T., Qazvini, M., & Ofoghi, R. (2012). The impact of oil and gold prices’ shock on Tehran Stock Exchange: A copula approach. Iranian Journal of Economic Studies, 1(2), 23–47.
Rezazadeh, A., & Mohseninia, R. (2019). The impact of financial stress on the Iranian gold, currency and stock markets: A time-varying Granger-causality approach. Journal of International Financial Markets, Institutions and Money, 63, 101–115. https://doi.org/10.1016/j.intfin.2019.101142 .
Shafiee, S., & Topal, E. (2010). An overview of global gold market and gold price forecasting. Resources Policy, 35(3), 178–189. https://doi.org/10.1016/j.resourpol.2010.05.004 .
Singh, U., Saurabh, K., Trehan, N., Vyas, R., & Vyas, O. P. (2024). GA-LSTM: Performance optimization of LSTM driven time series forecasting. Applied Soft Computing. Advance online publication. https://doi.org/10.1016/j.asoc.2023.110456 .
Song, Y., Huang, J., Xu, Y., Ruan, J., & Zhu, M. (2023). Multi-decomposition in deep learning models for futures price prediction. Resources Policy, 83, 103–118. https://doi.org/10.1016/j.resourpol.2023.103621 .
Stankovic, M., Bacanin, N., Budimirovic, N., Zivkovic, M., Sarac, M., & Ivana. (2023). Bi-directional long short-term memory optimization by improved teaching-learning based algorithm for univariate gold price forecasting. Expert Systems with Applications, 215, 119–132. https://doi.org/10.1016/j.eswa.2023.119324 .
Vidal, A., & Kristjanpoller, W. (2023). Gold volatility prediction using a CNN-LSTM approach. International Review of Economics & Finance, 87, 102–115. https://doi.org/10.1016/j.iref.2023.102345 .
Wagenaar, T. (n.d.). GRU - Built-ins. Neataptic. Retrieved October 26, 2023, from https://wagenaartje.github.io/neataptic/docs/builtins/gru/ .
Wang, H., Zhang, Y., Liang, J., & Liu, L. (2022). DAFA-BiLSTM: Deep autoregression feature augmented bidirectional LSTM network for time series prediction. Knowledge-Based Systems, 243, 108–125. https://doi.org/10.1016/j.knosys.2022.108456 .
Yurtsever, M. (2021). Gold price forecasting using LSTM, Bi-LSTM and GRU. European Journal of Science and Technology, (31), 341–347.