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Bone milling, a crucial biomechanical process in medical engineering, finds applications in 

dentistry, orthopedic surgery, and bone-related treatments. The utilization of computer 

numerical control (CNC) surgical mills has significantly enhanced this process, but it comes 

with challenges such as elevated temperatures that induce thermal necrosis in bone tissue. 

This study examines key inputs, including tool diameter, feed rate, rotational speed, and 

cutting depth, conducting a detailed experiment to predict maximum process temperature 

using the XGBoost machine learning algorithm. The XGBoost model consistently 

demonstrated exceptional predictive accuracy, yielding high determination coefficients of 

0.99 in training and 0.94 in testing. Accurate predictions were evident through close 

alignment between model-predicted and actual values, with mean absolute percentage error 

(MAPE) values of 0.33% and 3.38% for training and testing, respectively. Rotational speed 

emerged as a critical factor, indicating a key point where temperature trends shift. Higher 

speeds are correlated with lower temperatures due to enhanced chip removal and reduced 

bone heat conductivity. Elevated feed rates were associated with increased bone temperature, 

emphasizing the intricate interplay between frictional forces and heat production. 

Additionally, often-overlooked factors like cutting depth and tool diameter substantially 

influenced process temperature, impacting surgery recovery times. Sobol sensitivity analysis 

identified cutting depth, rotational speed, tool diameter, and feed rate as primary factors 

influencing maximum process temperature fluctuations, with effectiveness percentages of 

46.7%, 36%, 13.2%, and 4.1%, respectively. This comprehensive analysis sheds light on 

optimizing bone milling processes and mitigating thermal risks in medical applications.                    
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1. Introduction 

Most orthopedic surgeries involve bone cutting and/or 

machining, with the machining process including 

grinding, sawing, drilling, milling, and turning [1, 2]. 

Sport injuries, aging and high-weight overloads are 

major causes of orthopedic issues, leading to the 
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increasing prevalence of total knee arthroplasty (TKA) 

[3]. This surgery is necessary due to knee abrasion. The 

common method to prepare the surface for an artificial 

joint is bone sawing, which can result in high 

temperature and rough surfaces [4, 5]. Milling, on the 
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other hand, is employed to produce more accurate 

surfaces. Accurate orientation and positioning of the 

bone during femur and tibia surgeries are crucial for the 

proper functioning of the ligaments and the knee [6]. 

When assisted by robots, milling can achieve higher 

resilience and accuracy [7]. Bone surgery is frequently 

performed in cranial, otological, and spinal operations 

[8]. Force and temperature play crucial roles in bone 

machining. Excessive heat can lead to increased tissue 

damage and potential breakage which in turn can cause 

infection and thermal necrosis (cell death) [9]. In knee 

replacement, the occurrence of thermal necrosis can 

impair bone development around the prosthetic joint 

[10]. Thermal necrosis disrupts blood flow, degrades 

tissue, and compromises bone integrity [11]. The extent 

of the bone injury depends on the temperature and the 

duration of contact [12]. Various studies indicate that 

thermal necrosis is more likely to occur within the 

temperature range of 44 to 100 °C, with temperatures 

above 70 °C resulting in acute thermal necrosis. In a 

study on rabbit bone, Berman et al. [13] found that 

thermal necrosis became inevitable once the temperature 

reached 70 °C. Lundskog [14] in his studies of rabbit 

bone concluded that bone temperature of 55 °C for 30 

seconds leads to inevitable cell death. Bonfield and Li 

[15] observed similar effects in dog’s femur, with 

thermal necrosis occurring at 55 °C. Eriksson et al. [16], 

through microscopic examination of rabbit bone, found 

that maintaining bone temperature of 47 °C for one-

minute results in thermal necrosis. In a follow up study, 

they noted that increasing the temperature from 47 to 50 

°C had a detrimental effect on bone, while temperatures 

below 44 °C did not cause harm within one minute [17]. 

It should be mentioned that these reports focused on 

animal bones, which may differ from human femurs. The 

precise behavior of thermal necrosis in human bones is 

still not fully understood. Researchers propose that 

temperatures above 47 °C for one minute could lead to 

thermal necrosis in human bones [18]. 

Therefore, optimizing the process temperature is 

essential for a successful operation, Al-Abdullah et al. 

[19] investigated cancellous bone machining and 

predicted the process temperature based on experimental 

rotational speeds and feed rates. Liao et al. [20] 

employed an analytical method to calculate the 

temperature variation in the bone's cutting area. The 

most and least optimal cutting orientations were found 

to be 60 and 30 degrees, respectively, according to 

Esteon's direction. Tahmasbi et al. [21] employed the 

response surface method (RSM) to model the process 

temperature in bone drilling, focusing on the impact of 

input parameters on temperature. They found that the 

temperature increased in correlation with the rotational 

speed, whereas the impact of feed rate was more intricate 

as indicated by the reference. Hassanalideh and 

Gholampour [22] examined the impact of tool diameter, 

drilling depth, and drilling angles on temperature and 

compared their experimental findings with results from 

the finite element method. They found that increase in 

drilling depth and bit diameter, along with a reduction in 

drilling angles, led to higher temperatures. Shin and 

Yoon [23] developed an analytical heat model to predict 

bone temperature distribution during milling. They 

utilized thermal imaging cameras to capture the 

temperature of the freshly milled surface. The highest 

temperature ranged from 49 and 115 °C, with thermal 

necrosis expected to occur at a depth of 2 mm. Increasing 

feed rates and reducing cutting depths were found to 

lower the maximum temperature. Sugita et al. [24] 

explored the temperature distribution in pig bone during 

grinding. They determined the temperature distribution 

using a linear movable heat source on an infinitely long 

surface. Thermocouples measured the tool's 

temperature, while a thermograph assessed the bone's 

temperature. The model and experimental results 

confirmed the potential for heat necrosis within 0.1 

millimeters of the surface. Their research showed that 

cutting temperature increased with the feed rate. Malvisi 

et al. [25] recorded the highest temperature fluctuations 

during grinding and sawing procedure and evaluated 

various tools to reduce the temperature. 

Applying machine learning techniques to predict 

temperatures in machining operations is a crucial area 

for enhancing the efficiency and precision of these 

processes. Machine learning algorithms can 

significantly enhance temperature prediction due to the 
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intricate and varied working conditions. These 

techniques can identify patterns and intricate 

connections among variables, thereby enhancing 

precision in determining process parameters [26-28]. By 

utilizing machine learning techniques and artificial 

intelligence, it is possible to reduce energy wastage, 

extend tool lifespan, and improve productivity in 

machining operations. Recently, there has been a 

substantial focus on utilizing various machine learning 

techniques to predict temperature, tool life, surface 

roughness, tool wear, and cutting force during milling 

operations. For instance, Liu et al. [29] extensively 

analyzed remaining features, such as full-width half-

maximum and stress of the ball screw raceway following 

dry machining. They used machine learning methods 

like neural networks and support vector machine (SVM). 

SVM outperformed neural networks in predicting 

machining parameters and improving ball screw 

performance. Du et al. [30] analyzed quality parameters 

in CNC machining with a specific focus on cutting force 

and spindle vibration as the variables. A power 

spectrum-based feature extraction method was 

suggested, which achieved good prediction accuracy 

using neural network. The coefficient of determination 

was 0.92 for roughness, 0.86 for profile, and 0.95 for 

roundness. He et al. [31] utilized a deep learning 

approach, namely the stacked sparse autoencoders 

model with a backpropagation neural network, to predict 

tool wear by examining raw temperature data from an 

intelligent cutting tool. The methodology surpassed 

conventional approaches, demonstrating superior 

accuracy and reliability in forecasting tool wear. 

Varghese et al. [32] studied tool condition monitoring in 

micro-milling to forecast tool life phases until breaking 

by analyzing force data. The study utilized the random 

forest machine learning technique and achieved a 

prediction accuracy of 88.5%, which was exceptional. 

Adding an initial cutting-edge radius improved the 

model's performance much further. Tahmasbi and 

Rabiee [33] investigated temperature forecasting in 

robotic bone grinding by utilizing the design of 

experiments and an adaptive neuro-fuzzy inference 

system (ANFIS) enhanced with the teaching-learning-

based optimization algorithm. ANFIS accurately 

predicted temperatures, with minimal errors of 1.74% 

during training and 3.17% during testing. Safari et al. 

[34] explored the concurrent development of force and 

temperature while drilling bones, focusing on helix and 

point angles. They utilized a central composite 

experimental combined with an ANFIS network 

optimized by particle swarm optimization (PSO). The 

ANFIS-PSO model accurately forecasted force and 

temperature, with mean errors of 1.249% and 3.818%, 

respectively. Their analysis showed that higher helix and 

point angles reduced temperature but raised force, with 

helix angle changed having a slightly greater impact. 

Banda et al. [35] studied optimizing the progression of 

flank wear width during face milling of Inconel 718, 

addressing the challenges posed by intricate wear 

mechanisms. They utilized Gaussian kernel ridge 

regression to create a model that achieved a root mean 

square error of 30.9 μm and a determination coefficient 

of 0.93. This experimentally validated model helps 

predictand optimize vibration behavior during real face 

milling operations of Inconel 718. Rabiee et al. [36] 

investigated the impact of micro-milling parameters on 

cutting force and temperature during cortical bone 

operations. By utilizing support vector regression (SVR) 

and sensitivity analysis, researchers developed a highly 

accurate SVR predictor. This tool enables surgeons to 

anticipate and optimize machining conditions, 

ultimately minimizing temperature and cutting force 

before surgery. Zeng and Pi [37] employed a hybrid 

model combining physics-based simulation and machine 

learning to predict milling forces. This method 

significantly improved precision, reaching an accuracy 

of up to 98%, even with limited test data, particularly for 

various materials and unique milling equipment. 

Araghizad et al. [38] utilized deep learning to forecast 

milling surface roughness by combining physical 

principles with deep learning. Data augmentation and a 

physically guided loss function were implemented. The 

convolutional neural network model outperformed 

current techniques, improving prediction accuracy by an 

average of 3.029%, showing promising advancements in 

machine learning. 
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This study examines how input parameters, such as 

the tool's rotating speed, feed rate, cutting depth, and 

diameter, as well as their relationships, impact process 

temperature during bone milling. Necrosis is a 

significant issue in orthopedic surgery that can lead to 

surgical inefficiency. This work investigates the 

occurrence and non-occurrence of necrosis during bone 

grinding. Therefore, it is essential to understand the 

impact of each input parameter and their interactions on 

the temperature increase in surgeries involving milling 

instruments. Optimizing milling parameters is crucial to 

achieve ideal machining conditions and minimize the 

risk of necrosis. Identifying safe zones where necrosis is 

unlikely is essential to ensuring safe surgical procedures. 

These concerns regarding bone grinding remain 

unresolved. The end milling procedure was conducted 

vertically on the cortical bone. Various factors, including 

rotating speed, feed rate, cutting depth, and tool 

diameter, were used to measure temperature. The 

XGBoost approach was employed for intelligent 

modeling, and the Sobol method was used for sensitivity 

analysis to quantitatively and qualitatively assess the 

outcomes. 

 

2. XGBoost Machine Learning Model 

XGBoost is a highly accurate and efficient machine 

learning model that can be employed for predicting 

crucial outcomes in various machining processes. This 

method utilizes the gradient boosting algorithm and 

excels at modeling intricate and non-linear interactions 

[39]. XGBoost is structured as an ensemble model, 

utilizing a collection of weak models as boosters to create 

a stronger model. This method uses decision trees as a 

base model and iteratively enhances the model using an 

incremental approach. XGBoost stands out for its 

capability to efficiently handle time and memory, making 

it well-suited for complicated tasks [40]. This method 

also incorporates techniques like feature selection and 

dimension reduction to enhance performance and 

mitigate overfitting. XGBoost is a versatile approach 

known for its numerous capabilities, such as 

customizable hyperparameters. This method involves 

specifying different hyperparameters, including learning 

rate, maximum tree depth, number of trees, gamma, etc. 

These factors significantly impact the model's 

performance and accuracy. For example, a lower learning 

rate steadily strengthens the model step by step, 

potentially resulting in improved accuracy and 

preventing overfitting. Increasing the maximum depth of 

the tree can enhance the model's predictive capability. 

However, this increment must be executed cautiously to 

prevent overfitting. Moreover, adding more trees can 

lead to a higher number of models and potentially 

improve accuracy. However, a significant rise could be 

linked to issues with time and memory. Increasing the 

proportion of randomly selected samples compared to the 

total samples leads to heightened variability in the data, 

aiding in the prevention of overfitting. Gamma 

determines the point at which the model is trained to 

reduce errors. Decreasing this parameter could mitigate 

overfitting. Based on the mentioned impacts, precise 

adjustment of hyperparameters is essential to enhance the 

efficiency of the XGBoost model in forecasting the bone 

machining temperature. Adjusting these hyperparameters 

can enhance the XGBoost model's capability to 

accurately forecast the machining temperature during 

bone milling. This approach excels at modeling intricate 

relationships and is adept at identifying various patterns 

in temperature data during the machining process. The 

XGBoost model's adaptability has established it as an 

effective tool for temperature prediction and control in 

diverse industrial settings [41]. In this study, the 

XGBoost model was developed and implemented using 

the Python programming language in the Google Colab 

environment. XGBoost was chosen over other ensemble 

and deep learning methods due to its superior 

performance with small datasets, its effective 

regularization mechanisms, and its ability to model 

complex nonlinear relationships with low computational 

overhead.  

 

3. Sensitivity Analysis 

Sensitivity analysis in engineering is a valuable method 

for assessing the impact of individual variables on a 

system's overall response. This study can be categorized 

as deterministic or probabilistic depending on its 
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approach, or as graphical, mathematical, or statistical 

depending on its form.  The graphical sensitivity analysis 

method represents sensitivity using diagrams, tables, and 

surfaces. This method is used when the variation of 

output is illustrated upon the change in input parameters. 

Nonetheless, in the mathematical method, the sensitivity 

is derived mathematically from the variation of the 

output when input parameters are varied. Computational 

tools in this method can sense the variation in the output 

even with an infinitesimal change in input parameters. 

Finally, in the statistical sensitivity analysis method, 

simulation of input variables as probabilistic 

distributions is performed. Subsequently, the impact of 

these input parameters is assessed on the system's output. 

These methods allow for the simultaneous evaluation of 

the impact of certain input factors. 

Sobol sensitivity analysis is a statistical tool for 

sensitivity analysis that is model-independent and relies 

on variance decomposition. This technique is suitable for 

non-linear and non-uniform systems [42]. The Sobol 

method was selected for sensitivity analysis due to its 

ability to provide a detailed and reliable quantitative 

assessment of both the direct and interaction effects of 

input parameters on the model output. Unlike qualitative 

screening methods such as Morris, which only offer 

approximate rankings of input importance, or ANOVA-

based methods that rely on assumptions like linearity, 

the Sobol method is model-independent and capable of 

decomposing the variance of the output into 

contributions from each input and their interactions. 

Despite its higher computational cost, this approach is 

particularly suitable for complex models like ours, where 

multiple input parameters (tool diameter, feed rate, 

rotational speed, and cutting depth) can interact in non-

trivial ways to influence the maximum process 

temperature. 

Sobol sensitivity analysis is a statistical tool for 

sensitivity analysis that is model-independent and relies 

on variance decomposition. This technique is suitable for 

non-linear and non-uniform systems [43]. The model is 

represented by the equation Y = f(X), where Y is the 

output of the model and X is a vector containing input 

parameters 𝑥1‚ 𝑥2‚ … ‚ 𝑥𝑛. The variance of the model 

output V is calculated by summing the variances of each 

decomposed term as shown in Eq. (1): 

 

𝑉(𝑌) = ∑ 𝑉𝑖

𝑛

𝑖=1

+ ∑ 𝑉𝑖𝑗

𝑛

𝑖≤𝑗≤𝑛

+ ⋯ + 𝑉1‚…‚𝑛 (1)  

 

The term 𝑉𝑖 represents the first-order impact of each 

input parameter, whereas 𝑉𝑖𝑗 is the interaction effect 

among 𝑛 factors, calculated as 𝑉[𝐸(𝑌|𝑥𝑖 ‚ 𝑥𝑗)] − 𝑉𝑖 − 𝑉𝑗. 

Sensitivity indices are expressed as the ratio of the 

variance of a specific order to the total variance. For 

example, 𝑆𝑖 = 𝑉𝑖/𝑉 represents the first-order sensitivity 

index, and 𝑆𝑖𝑗 = 𝑉𝑖𝑗/𝑉 represents the second-order 

sensitivity index, and so on. 

The total sensitivity index, which represents the 

overall impact of each parameter, is calculated by 

summing all orders of sensitivity indices as shown in Eq. 

(2): 

 

𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗

𝑖≠𝑗

+ ⋯ (2) 

 

Complementary explanations and details about the 

Sobol method can be found in [44]. To determine an 

appropriate sample size for Sobol sensitivity analysis, a 

convergence test was conducted by gradually increasing 

the sample size from 100 to 5000. The evolution of both 

first-order and total-order indices was monitored as a 

function of sample size. The indices showed noticeable 

variations up to around 1000 samples, but remained 

stable beyond that point. Although further increasing the 

sample size led to more scattering and longer 

computation times, no significant improvements in the 

stability or accuracy of the indices were observed. 

Therefore, a sample size of approximately 1000 was 

chosen to ensure a balance between computational 

efficiency and result reliability. 

 

4. Experimental Procedures 

4.1. Material and limitation 

Bovine cortical bone is commonly used as a model for 

human cortical bone in biomechanical and thermal 

studies due to its availability and similar structural 

characteristics. The physical and mechanical properties 
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of bovine cortical bone are close to those of human long 

bones. Therefore, many researchers have used the 

bovine femur to investigate the cortical bone drilling 

process. Table 1 shows some physical and mechanical 

properties of fresh bovine cortical bone and fresh human 

cortical bone. Both bones are composed largely of 

hydroxyapatite and collagen, giving them comparable 

stiffness and strength. Thermal properties are quite 

close, as both are largely mineralized tissues. Variability 

in microstructure (e.g., Haversian system density) can 

influence crack propagation and fatigue properties. 

Slight differences may arise due to age, disease state, or 

gender. With appropriate modeling and safety 

adjustments, bovine-based findings can be a strong 

foundation for developing human clinical protocols.  

 

Table 1. Comparison for the properties of human cortical 

bone and bovine cortical bone 

Bone property Human Bovine 

Tensile strength (MPa) 140-250 130-200 

Compressive strength (MPa) 45-150 40-145 

Young’s modulus (GPa) 10-22 10-17 

Shear modulus (MPa) 3 3 

Density (kg/m3) 1950-2100 1800-2000 

Poisson's ratio 0.33 0.4 

Specific heat (J/kg.K) 1300 1330 

Thermal conductivity (W/m.K) 0.1-0.3 0.1-0.43 

 

4.2. Method 

The design of experiments (DOE) approach plays a 

crucial role in optimizing the bone milling process by 

enabling systematic and structured testing of influential 

parameters. This methodology allows for the 

identification of key variables and facilitates the 

determination of optimal conditions to achieve accurate 

and reliable results. By analyzing the influence of each 

input factor, DOE supports the development of 

predictive models that clarify interdependencies and 

improve forecasting accuracy. In this study, maximum 

bone temperature was selected as the output variable, 

influenced by input parameters including tool diameter, 

feed rate, rotational speed, and cutting depth. Five fresh 

bovine femur samples were selected for 

experimentation, focusing on the diaphysis region, 

approximately 90 cm in length, composed of cortical 

bone with a thickness ranging from 8 to 10 mm. Table 2 

provides the physical characteristics of each bone 

sample. To prepare the samples, both ends of the bones 

were trimmed using a saw. To enhance the reliability of 

the results, each experimental condition was repeated 

three times, and the average of the maximum 

temperature values was recorded. The use of DOE in this 

context enhances process efficiency, reduces material 

waste, and promotes improved clinical outcomes. Fig. 1 

illustrates the experimental setup, and Table 3 presents 

the outcomes of all 27 experimental conditions. It is 

worth noting that these experimental procedures and 

results were previously reported in [33]. For the sake of 

brevity, detailed descriptions are omitted here, and 

readers are encouraged to refer to the cited work for 

additional information. 

 

5. Results and Discussion 

5.1. Temperature modeling 

The XGBoost machine learning algorithm was utilized 

to develop the model based on the outcomes of 

experiments. The hyperparameter values significantly 

impact the accuracy and robustness of the model. The 

hyperparameters for learning rate, maximum tree depth, 

number of trees, and gamma are set to 0.1, 6, 1000, and 

0, respectively. In this study, hyperparameter values 

such as learning rate, maximum tree depth, number of 

trees, and gamma were determined through a series of 

 

 
Fig. 1. Experimentation tooling and setup in study of bone 

milling. 
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Table 2. Bone specification used for milling 

Sample Age (year) Sex of bovine Slaughter time Min. of sample width Sample length Max. of thickness 

1 3 bull 3h 40 mm 9 cm 1 cm 

2 3-3.5 bull 4h 45 mm 10 cm 1.5 cm 

3 3-4 bull 3.5h 38 mm 8.5 cm 1 cm 

4 4 bull 4.5h 42 mm 9.5 cm 1.2 cm 

5 3.5 bull 3h 45 mm 10.5 cm 1.5 cm 

 

Table 3. Experimental findings on temperature variations dependent on bone milling input parameters [33] 

Set number 𝐍 (𝐫𝐩𝐦) 𝐅 (𝐦𝐦/𝐦𝐢𝐧) 𝐃𝐞𝐩𝐭𝐡 (𝐦𝐦) 𝐃 (𝐦𝐦) 𝐓 (°𝐂) 

1 1000 100 1 4 42.3 

2 3000 100 1 4 50.4 

3 1000 300 1 4 48 

4 3000 300 1 4 46.8 

5 1000 100 3 4 58.7 

6 3000 100 3 4 68.1 

7 1000 300 3 4 62.5 

8 3000 300 3 4 65.4 

9 1000 100 1 8 52.3 

10 3000 100 1 8 55.3 

11 1000 300 1 8 58.8 

12 3000 300 1 8 54.4 

13 1000 100 3 8 63.5 

14 3000 100 3 8 72.2 

15 1000 300 3 8 65.4 

16 3000 300 3 8 64.7 

17 1000 200 2 6 57.5 

18 3000 200 2 6 65.1 

19 2000 100 2 6 66.2 

20 2000 300 2 6 69.8 

21 2000 200 1 6 64.4 

22 2000 200 3 6 74.5 

23 2000 200 2 4 59.6 

24 2000 200 2 8 67.3 

25 2000 200 2 6 70.1 

26 2000 200 2 6 69.8 

27 2000 200 2 6 68.7 

manual tests. XGBoost's robustness allowed the model 

to perform well across a broad range of parameter 

values, reducing the sensitivity to exact tuning. To assess 

and mitigate overfitting, the model's performance was 

evaluated on a separate test dataset that was not involved 

in the training process. 

Fig. 2 displays a scatter plot used for predicting the 

temperature of the milling process in two separate 

phases: training and testing. The graphic displays actual 

values in relation to predicted ones using XGBoost, with 

green and orange symbols denoting training and test 

data, respectively. The middle line A = P is provided for 

better accuracy assessment of the model. The training 

data aligns with the middle line. To evaluate the model's 

accuracy, it is essential to focus on the test data as it was 

not utilized during the development of the model. The 

data from the test section closely align with the middle 

line, indicating the excellent effectiveness of the 

XGBoost model. 

 

 
Fig. 2. Actual data in terms of predicted ones by XGBoost in 

two parts of training and testing. 
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Fig. 3 displays the temperature of the process for all 

samples, comparing predicted and actual data in two 

phases: training and testing. The predicted data during 

the training phase (blue symbols) align with the actual 

data in this phase (green solid line). It is evident that the 

predicted results during the test phase closely match the 

actual data. The model's accuracy is higher in the 

training phase than in the testing stage due to the 

utilization of training data in the learning process, while 

the test data is set aside for accuracy assessment. 

Fig. 4 displays a histogram illustrating the error 

between the predicted and actual data for the process 

temperature in two phases: training and testing. The 

error formation is predominantly centered around zero 

during the training phase. During the training phase, the 

error values typically fall within the range of -0.6 to 0.4. 

In contrast, during the testing phase, the error values are 

observed to be within the range of -1 to 3. 

The XGBoost model is quantitatively evaluated 

using root mean square error (RMSE), mean absolute 

error (MAE), determination coefficient (R2), and mean 

absolute percentage error (MAPE), for both the training 

and testing stages, as shown in Table 4. The RMSE and 

MAE values for the training data are exceptionally low 

and near zero. It is essential to focus on the error criteria 

in the test stage to evaluate the efficiency of the model, 

which is also low. MAPE and R2 are superior measures 

for comparing machine learning models. MAPE is 

0.33% for the training phase and 3.38% for the testing 

stage. The coefficients of determination for the training 

and testing phases are computed as 0.99 and 0.94, 

respectively, indicating the great accuracy of the 

XGBoost model in predicting the process temperature in 

this study.  

 

Table 4. MAE, RMSE, MAPE and 𝑅2 for predicting 

temperature in both the training and test phases 
2R MAPE (%) RMSE MAE  

0.99 0.33 0.25 0.19 Train 

0.94 3.38 2.41 2.13 Test 

 

5.2. Effect of input parameters 

This section analyzes the impact of feed rate, rotational 

speed, tool diameter, and cutting depth on process 

temperature using the XGBoost machine learning model 

with an expanded dataset. The Sobol approach enables 

the simultaneous adjustment of all parameters, unlike 

graphical methods, which typically alter one variable at 

a time while keeping others constant. Up to now, there is 

no exact report value in which thermal necrosis of 

human bone would occur. However, temperature as high 

as 47 °C, is considered sufficient to initiate thermal 

necrosis in human bone. An increase of just 5 °C to 52 

°C can causes thermal necrosis within 1 minute. 

However, this threshold applies more to bone drilling, 

where the tool remains stationary for a longer period. In 

bone milling, the tool rapidly removes chips and moves 

away, with higher feed rates causing the tool to move 

further away more rapidly. The relatively low thermal 

conductivity and specific heat of bone lead to quicker 

heat distribution, making the threshold of 47 °C less 

appropriate for bone milling. On the other end of 

spectrum, at higher temperatures of 70 °C, thermal 

necrosis becomes abrupt and inevitable. Given the nature 

of the milling process, where the tool quickly moves 

away from the cutting zone, a triggering temperature of 

55 °C is considered for the initiation of thermal necrosis. 

While previous studies have often cited 44 °C as the 

threshold for thermal necrosis, more recent findings 

suggest that temperatures up to 55 °C for durations under 

30 seconds do not cause irreversible bone damage. 

Given the transient nature of heat in bone milling, where 

the tool moves continuously and the heat dissipates 

quickly, 55 °C is considered a clinically reasonable limit. 

This selection aligns with reported clinical observations 

and allows for more flexibility in optimizing machining 

parameters without compromising patient safety. 

The temperature response surface based on tool 

diameter, feed rate, rotational speed, and cutting depth is 

depicted in Fig. 5. Fig. 6 shows interaction effects of 

feed rate and rotational speed at different cutting depths, 

while Fig. 7- 10 illustrate temperature evolution with the 

main input parameters. The data points in these graphs 

were generated using SimLab software with the Sobol 

method. From this point onward, the temperature unit in 

all figures is expressed in degrees Celsius. 

As depicted in Fig. 5, The process temperature is 

significantly influenced by rotational speed and feed rate
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Fig. 3. Process temperature for all samples for predicted and actual data in two stages of training and testing. 

 

 
Fig. 4. The discrepancy between the predicted and actual data during the training and testing stages. 

 

with a saddle point exhibiting a maximum along the 

rotational speed axis and a minimum along the feed rate 

axis. This critical point is crucial, as previous reports 

have suggested lower temperatures with lower rotational 

speeds or higher speeds. As illustrated in Fig. 7, when 

the rotational speed increases, the temperature first 

grows until reaching a critical point, then drops. Lower 

rotating speeds result in minimal bone injury, and it is 

possible to reach temperatures below 47 °C with high-

speed milling. This is due to reduced process forces 

caused by easy chip removal from the machined groove, 

which is attributed to the bone's weaker thermal 

conductivity compared to the tools. The results indicate 

that high-speed milling decreases thermal necrosis by 

reducing the rate of temperature increase at higher 

cutting speeds. 

Feed rate is a crucial factor in the selection of a tool 

type and feed rate, as it affects the velocity of the heat 

source. The thermometer's accuracy and precision, along 

with the chosen tool type and feed rate range, 

significantly influence the selection of feed rate. The 

study uses a thermometer to measure the temperature at 

the point where the tool meets the freshly machined bone  

 

surface. The study shows that bone temperature typically 

increases with a rise in feed rate as illustrated in Fig. 8. 

At smaller feed rates, the process force, tool-bone 

friction, and cut chip thickness are reduced, leading to 

lower heat generation and temperature levels. However, 

at high feed rates, the force applied to the workpiece and 

chip thickness increases exponentially, resulting in 

increased heat generation. Larger feed rates generally 

result in higher temperatures within the investigated 

range of input variables. 

Cutting depth has been largely overlooked in previous 

studies, with only one study by Shin and Yoon [23] 

exploring its impact at a cutting depth of less than 1 mm. 

The study found that increasing cutting depth led to higher 

process temperatures, as depicted in Fig. 9. Other studies 

have typically assumed a constant cutting depth. 

However, cutting depth significantly influences the 

material removal rate and the duration of surgery. This 

paper investigates cutting depths ranging from 1 to 3 mm, 

showing that increasing cutting depth results in higher 

process temperatures due to the larger contact area, which 

requires more force to detach the chip from the base, 

leading to increased friction, forces, and heat production. 
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Fig. 5. Temperature response surface based on rotational 

speed (N) and feed rate (f) at different cutting depths with 

tool diameters (D) of 4 mm: (a) cutting depth = 1 mm, (b) 

cutting depth = 2 mm, and (c) cutting depth = 3 mm. 

 

The tool diameter plays a crucial role in generating 

heat and thermal necrosis during a process. Fig. 10 

illustrates that larger tool diameters result in increased 

temperatures due to the extended contact area, in which 

leads to higher heat and frictional forces. Larger 

diameters also increase axial force, positively impacting 

heat production. Overall, temperature rises 

exponentially with increasing tool diameter. For 

instance, a tool with an 8 mm diameter has a narrower 

safe zone for thermal necrosis compared to 6 mm or 4 

mm diameters. In medical terms, using a thinner tool 

diameter can reduce the surgery's recovery period. 

5.3. Sensitivity analysis 

Based on the diagrams shown in Fig. 7-10, it can be 

deduced that cutting depth, rotating speed, tool diameter, 

and feed rate have the most significant impact on the 

maximum process temperature within the range of input 

parameters analyzed. This can be computed considering 

the slope of graphical representation of each diagram. 

Sobol sensitivity analysis offers advantages over 

analysis of variance (ANOVA) in several aspects. In 

addition to providing a qualitative understanding, it can 

 

 
Fig. 6. Interaction effects of feed rate (f) and rotational speed 

(N) in different cutting depths and tool diameters on process 

temperature: (a) cutting depths: 1 mm, tool diameter: 4 mm, 

(b) cutting depths: 3 mm, tool diameter: 8 mm, and (c) cutting 

depth: 2 mm, tool diameter: 6 mm. 
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simultaneously identify all the effective parameters. 

However, when analyzing the interaction effects of 

parameters, the response surface method generally 

yields more reliable results than Sobol sensitivity 

analysis. 

Fig. 11 displays the outcomes of Sobol sensitivity 

analysis. The Figure indicates that cutting depth has the 

most significant effect at 47.7%, followed by tool 

rotational speed at 36%, tool diameter at 13.2%, and feed 

rate at 4.1% on the maximum process temperature. 

 

 
Fig. 7. Impact of rotational speed on temperature: (a) RSM 

and (b) sensitivity analysis. 

 

 
Fig. 8. Impact of feed rate on temperature: (a) RSM and (b) 

sensitivity analysis. 

 
Fig. 9. Impact of cutting depth on temperature: (a) RSM and 

(b) sensitivity analysis. 

 

 
Fig. 10. Impact of tool diameter on temperature: (a) RSM and 

(b) sensitivity analysis. 

 

 

 
 

Fig. 11. Effectiveness of each process parameters on process 

temperature. 



Predicting Maximum Process Temperature in Cortical Bone Milling: An XGBoost Approach with …                                   15 

 

IJMF, Iranian Journal of Materials Forming, 2025, Volume 12, Number 3 

5.4. Optimization of process parameters 

Optimization of input parameters was performed to find 

the least maximum process temperature. The 

optimization was carried out on the proposed model over 

the range of input parameters. Results are depicted in 

Fig. 12. To evaluate the prediction of the optimum 

combination found by the model, validating 

experimentations were conducted. The results are 

compared in Table 5. 

As can be seen from Table 5, the error of the model 

in predicting temperature with the optimum combination 

of input parameters is only 0.28%, which proves the 

accurate anticipation of the model and its functionality. 

Thus, the least maximum process temperature occurs 

with a tool diameter of 4 mm, feed rate of 100 mm/min, 

rotational speed of 1000 rpm and cutting depth of 1 mm. 

This temperature is about 42 °C. The diagrams presented 

in Fig. 12 allow the surgeon to identify the effect of each 

individual parameter and adjust the input parameters to 

achieve no thermal necrosis and shortest possible 

surgery time. 

It is worth noting that, in addition to evaluating 

temperature, the role of the material removal rate (MRR) 

during the unloading process should also be considered. 

The faster the unloading process can be carried out, the 

 

 
Table 5. Validity of the model for the optimum combination 

of parameters 

T 

(°C) 

D 

(mm) 

Depth 

(mm) 

F 

(mm/min) 

N 

(rpm) 
Optimization 

42.58 4 1 100 1000 Model 

42.3 4 1 100 1000 Experiment 

0.28% - - - - 
Error 

percentage 

 

more beneficial it is in terms of reducing surgery and 

anesthesia time, minimizing tissue damage, and 

shortening the patient’s recovery period. Therefore, the 

material removal rate can be regarded as an influential 

factor alongside the thermal effects of the process. 

According to the results obtained from the optimization 

study, the parameters that lead to the minimum process 

temperature also correspond to the minimum material 

removal rate. Under these conditions, the theoretical 

material removal rate is 400 mm³/min. However, to 

achieve the maximum material removal rate while 

considering necrosis prevention, optimal input 

parameters were identified as follows: tool diameter of 

4 mm, feed rate of 100 mm/min, spindle speed of 1000 

rpm and cutting depth of 1 mm. Under these conditions, 

the temperature reaches 54.4 °C, and the material 

removal rate is 2400 mm³/min. These conditions, which 

simultaneously account for both temperature control and 

material removal efficiency, can be clinically effective 

and beneficial. 

In orthopedic surgeries, the speed of surgery is very 

crucial, especially with the usage of assisting robots. 

This is highly influenced by feed rate and cutting depth. 

The results of this study provide meaningful guidance 

for surgical tool selection. Specifically, using tools with 

smaller diameters leads to lower temperatures during the 

milling process, thereby reducing the risk of thermal 

necrosis. From a clinical perspective, this implies that 

thinner tools not only improve thermal safety but also 

may contribute to shorter recovery times and reduced 

surgical complications. These insights support more 

informed decisions in selecting surgical parameters to 

balance efficiency and patient safety.

 

Fig. 12. Optimization of input parameters to achieve the minimum temperature. 
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6. Conclusions 

This paper performed a systematic design of experiment, 

intelligent modeling, and sensitivity analysis of the bone 

grinding process using the XGBoost machine learning 

method and the Sobol approach. The input parameters 

tested were tool rotational speed, feed rate, cutting depth, 

and tool diameter, with process temperature being the 

output parameter. The primary findings of the current 

study are as follows: 

• The XGBoost model continually showed strong 

performance in predicting the temperature of the 

milling process. During the training phase, the 

model demonstrated a noteworthy alignment 

between predicted and actual values as it gathered 

the data. This alignment was also evident in the 

testing phase, as the model's predictions closely 

corresponded with the actual data points. The 

assessment emphasized the model's accuracy in 

predicting temperature, focusing on the consistency 

between test data and the model's predictions as a 

key indicator of its reliability. 

• The XGBoost model's performance was thoroughly 

evaluated utilizing key metrics including 

determination coefficient (𝑅2) and mean absolute 

percentage error (MAPE) throughout both training 

and testing phases. The 𝑅2 values of 0.99 for the 

training phase and 0.94 for the testing phase 

demonstrate a high degree of accuracy in 

representing the fluctuation of the process 

temperature. The model's efficiency in reducing 

prediction errors across all study stages is 

highlighted by the low MAPE values of 0.33% for 

training and 3.38% testing, respectively.  

• Process temperature is greatly impacted by 

rotational speed. The study reveals a crucial 

juncture where temperature patterns shift. Reduced 

rotational speeds decrease the likelihood of thermal 

damage by lowering process forces, while higher 

speeds result in lower temperatures due to easier 

chip removal and the bone's poorer thermal 

conductivity.  

• The feed rate, comparable to the velocity of the heat 

source, is essential. Typically, higher feed rates 

result in increased bone temperature because of 

elevated process pressures and chip thickness. The 

study highlights the relationship between frictional 

forces and heat generation, showing that higher feed 

rates lead to higher temperatures within the 

specified range of input variables.  

• Cutting depth and tool diameter are often 

overlooked but significantly affect the process 

temperature. Greater cutting depths raise process 

temperature by expanding contact surfaces and 

increasing pressures. Tool diameter significantly 

impacts temperature, with larger diameters leading 

to exponential temperature rises. Larger tool sizes 

result in a narrower safe zone for avoiding thermal 

necrosis, which impacts surgery recovery times.  

• Sobol sensitivity analysis is an accurate technique, 

although it can be costly to use. The parameters that 

had the greatest significant impact on maximum 

process temperature were cutting depth, rotating 

speed, tool diameter, and feed rate, with 

effectiveness percentages of 46.7%, 36%, 13.2%, 

and 4.1% correspondingly.  

• The model was optimized to achieve the minimum 

process temperature and desirability value. 

Validating experiments showed an accuracy of 

0.28% in predicting temperature with the optimum 

combination of input parameters. The least maximum 

process temperature was found at 4 mm tool 

diameter, 100 mm/min feed rate, 1000 rpm rotational 

speed, and 1 mm cutting depth, achieving 42 °C. 

• To achieve the Maximum material removal rate 

while considering necrosis prevention, the optimal 

input parameters were identified as follows: tool 

diameter of 4 mm, feed rate of 100 mm/min, spindle 

speed of 1000 rpm, and cutting depth of 1 mm. Under 

these conditions, the temperature reaches 54.4 °C, 

and the material removal rate is 2400 mm³/min. 
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