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Bone milling, a crucial biomechanical process in medical engineering, finds applications in
dentistry, orthopedic surgery, and bone-related treatments. The utilization of computer
numerical control (CNC) surgical mills has significantly enhanced this process, but it comes
with challenges such as elevated temperatures that induce thermal necrosis in bone tissue.
This study examines key inputs, including tool diameter, feed rate, rotational speed, and
cutting depth, conducting a detailed experiment to predict maximum process temperature
using the XGBoost machine learning algorithm. The XGBoost model consistently
demonstrated exceptional predictive accuracy, yielding high determination coefficients of
0.99 in training and 0.94 in testing. Accurate predictions were evident through close
alignment between model-predicted and actual values, with mean absolute percentage error
(MAPE) values of 0.33% and 3.38% for training and testing, respectively. Rotational speed
emerged as a critical factor, indicating a key point where temperature trends shift. Higher
speeds are correlated with lower temperatures due to enhanced chip removal and reduced
bone heat conductivity. Elevated feed rates were associated with increased bone temperature,
emphasizing the intricate interplay between frictional forces and heat production.
Additionally, often-overlooked factors like cutting depth and tool diameter substantially
influenced process temperature, impacting surgery recovery times. Sobol sensitivity analysis
identified cutting depth, rotational speed, tool diameter, and feed rate as primary factors
influencing maximum process temperature fluctuations, with effectiveness percentages of
46.7%, 36%, 13.2%, and 4.1%, respectively. This comprehensive analysis sheds light on
optimizing bone milling processes and mitigating thermal risks in medical applications.

© Shiraz University, Shiraz, Iran, 2025

1. Introduction

Most orthopedic surgeries involve bone cutting and/or
machining, with the machining process including
grinding, sawing, drilling, milling, and turning [1, 2].

Sport injuries, aging and high-weight overloads are

increasing prevalence of total knee arthroplasty (TKA)
[3]. This surgery is necessary due to knee abrasion. The
common method to prepare the surface for an artificial
joint is bone sawing, which can result in high

temperature and rough surfaces [4, 5]. Milling, on the

major causes of orthopedic issues, leading to the
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other hand, is employed to produce more accurate
surfaces. Accurate orientation and positioning of the
bone during femur and tibia surgeries are crucial for the
proper functioning of the ligaments and the knee [6].
When assisted by robots, milling can achieve higher
resilience and accuracy [7]. Bone surgery is frequently
performed in cranial, otological, and spinal operations
[8]. Force and temperature play crucial roles in bone
machining. Excessive heat can lead to increased tissue
damage and potential breakage which in turn can cause
infection and thermal necrosis (cell death) [9]. In knee
replacement, the occurrence of thermal necrosis can
impair bone development around the prosthetic joint
[10]. Thermal necrosis disrupts blood flow, degrades
tissue, and compromises bone integrity [11]. The extent
of the bone injury depends on the temperature and the
duration of contact [12]. Various studies indicate that
thermal necrosis is more likely to occur within the
temperature range of 44 to 100 °C, with temperatures
above 70 °C resulting in acute thermal necrosis. In a
study on rabbit bone, Berman et al. [13] found that
thermal necrosis became inevitable once the temperature
reached 70 °C. Lundskog [14] in his studies of rabbit
bone concluded that bone temperature of 55 °C for 30
seconds leads to inevitable cell death. Bonfield and Li
[15] observed similar effects in dog’s femur, with
thermal necrosis occurring at 55 °C. Eriksson et al. [16],
through microscopic examination of rabbit bone, found
that maintaining bone temperature of 47 °C for one-
minute results in thermal necrosis. In a follow up study,
they noted that increasing the temperature from 47 to 50
°C had a detrimental effect on bone, while temperatures
below 44 °C did not cause harm within one minute [17].
It should be mentioned that these reports focused on
animal bones, which may differ from human femurs. The
precise behavior of thermal necrosis in human bones is
still not fully understood. Researchers propose that
temperatures above 47 °C for one minute could lead to
thermal necrosis in human bones [18].

Therefore, optimizing the process temperature is
essential for a successful operation, Al-Abdullah et al.
[19] investigated cancellous bone machining and

predicted the process temperature based on experimental

rotational speeds and feed rates. Liao et al. [20]
employed an analytical method to calculate the
temperature variation in the bone's cutting area. The
most and least optimal cutting orientations were found
to be 60 and 30 degrees, respectively, according to
Esteon's direction. Tahmasbi et al. [21] employed the
response surface method (RSM) to model the process
temperature in bone drilling, focusing on the impact of
input parameters on temperature. They found that the
temperature increased in correlation with the rotational
speed, whereas the impact of feed rate was more intricate
as indicated by the reference. Hassanalideh and
Gholampour [22] examined the impact of tool diameter,
drilling depth, and drilling angles on temperature and
compared their experimental findings with results from
the finite element method. They found that increase in
drilling depth and bit diameter, along with a reduction in
drilling angles, led to higher temperatures. Shin and
Yoon [23] developed an analytical heat model to predict
bone temperature distribution during milling. They
utilized thermal imaging cameras to capture the
temperature of the freshly milled surface. The highest
temperature ranged from 49 and 115 °C, with thermal
necrosis expected to occur at a depth of 2 mm. Increasing
feed rates and reducing cutting depths were found to
lower the maximum temperature. Sugita et al. [24]
explored the temperature distribution in pig bone during
grinding. They determined the temperature distribution
using a linear movable heat source on an infinitely long
surface.  Thermocouples measured the tool's
temperature, while a thermograph assessed the bone's
temperature. The model and experimental results
confirmed the potential for heat necrosis within 0.1
millimeters of the surface. Their research showed that
cutting temperature increased with the feed rate. Malvisi
et al. [25] recorded the highest temperature fluctuations
during grinding and sawing procedure and evaluated
various tools to reduce the temperature.

Applying machine learning techniques to predict
temperatures in machining operations is a crucial area
for enhancing the efficiency and precision of these
Machine

significantly enhance temperature prediction due to the

processes. learning  algorithms  can
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intricate and varied working conditions. These
techniques can identify patterns and intricate
connections among variables, thereby enhancing
precision in determining process parameters [26-28]. By
utilizing machine learning techniques and artificial
intelligence, it is possible to reduce energy wastage,
extend tool lifespan, and improve productivity in
machining operations. Recently, there has been a
substantial focus on utilizing various machine learning
techniques to predict temperature, tool life, surface
roughness, tool wear, and cutting force during milling
operations. For instance, Liu et al. [29] extensively
analyzed remaining features, such as full-width half-
maximum and stress of the ball screw raceway following
dry machining. They used machine learning methods
like neural networks and support vector machine (SVM).
SVM outperformed neural networks in predicting
machining parameters and improving ball screw
performance. Du et al. [30] analyzed quality parameters
in CNC machining with a specific focus on cutting force
and spindle vibration as the variables. A power
spectrum-based feature extraction method was
suggested, which achieved good prediction accuracy
using neural network. The coefficient of determination
was 0.92 for roughness, 0.86 for profile, and 0.95 for
roundness. He et al. [31] utilized a deep learning
approach, namely the stacked sparse autoencoders
model with a backpropagation neural network, to predict
tool wear by examining raw temperature data from an
intelligent cutting tool. The methodology surpassed
conventional approaches, demonstrating superior
accuracy and reliability in forecasting tool wear.
Varghese et al. [32] studied tool condition monitoring in
micro-milling to forecast tool life phases until breaking
by analyzing force data. The study utilized the random
forest machine learning technique and achieved a
prediction accuracy of 88.5%, which was exceptional.
Adding an initial cutting-edge radius improved the
model's performance much further. Tahmasbi and
Rabiee [33] investigated temperature forecasting in
robotic bone grinding by utilizing the design of
experiments and an adaptive neuro-fuzzy inference

system (ANFIS) enhanced with the teaching-learning-

V. Tahmasbi et al.

based optimization algorithm. ANFIS accurately
predicted temperatures, with minimal errors of 1.74%
during training and 3.17% during testing. Safari et al.
[34] explored the concurrent development of force and
temperature while drilling bones, focusing on helix and
point angles. They utilized a central composite
experimental combined with an ANFIS network
optimized by particle swarm optimization (PSO). The
ANFIS-PSO model accurately forecasted force and
temperature, with mean errors of 1.249% and 3.818%,
respectively. Their analysis showed that higher helix and
point angles reduced temperature but raised force, with
helix angle changed having a slightly greater impact.
Banda et al. [35] studied optimizing the progression of
flank wear width during face milling of Inconel 718,
addressing the challenges posed by intricate wear
mechanisms. They utilized Gaussian kernel ridge
regression to create a model that achieved a root mean
square error of 30.9 um and a determination coefficient
of 0.93. This experimentally validated model helps
predictand optimize vibration behavior during real face
milling operations of Inconel 718. Rabice et al. [36]
investigated the impact of micro-milling parameters on
cutting force and temperature during cortical bone
operations. By utilizing support vector regression (SVR)
and sensitivity analysis, researchers developed a highly
accurate SVR predictor. This tool enables surgeons to
anticipate and optimize machining conditions,
ultimately minimizing temperature and cutting force
before surgery. Zeng and Pi [37] employed a hybrid
model combining physics-based simulation and machine
learning to predict milling forces. This method
significantly improved precision, reaching an accuracy
of up to 98%, even with limited test data, particularly for
various materials and unique milling equipment.
Araghizad et al. [38] utilized deep learning to forecast
milling surface roughness by combining physical
principles with deep learning. Data augmentation and a
physically guided loss function were implemented. The
convolutional neural network model outperformed
current techniques, improving prediction accuracy by an
average of 3.029%, showing promising advancements in

machine learning.
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This study examines how input parameters, such as
the tool's rotating speed, feed rate, cutting depth, and
diameter, as well as their relationships, impact process
temperature during bone milling. Necrosis is a
significant issue in orthopedic surgery that can lead to
surgical inefficiency. This work investigates the
occurrence and non-occurrence of necrosis during bone
grinding. Therefore, it is essential to understand the
impact of each input parameter and their interactions on
the temperature increase in surgeries involving milling
instruments. Optimizing milling parameters is crucial to
achieve ideal machining conditions and minimize the
risk of necrosis. Identifying safe zones where necrosis is
unlikely is essential to ensuring safe surgical procedures.
These concerns regarding bone grinding remain
unresolved. The end milling procedure was conducted
vertically on the cortical bone. Various factors, including
rotating speed, feed rate, cutting depth, and tool
diameter, were used to measure temperature. The
XGBoost approach was employed for intelligent
modeling, and the Sobol method was used for sensitivity
analysis to quantitatively and qualitatively assess the

outcomes.

2. XGBoost Machine Learning Model

XGBoost is a highly accurate and efficient machine
learning model that can be employed for predicting
crucial outcomes in various machining processes. This
method utilizes the gradient boosting algorithm and
excels at modeling intricate and non-linear interactions
[39]. XGBoost is structured as an ensemble model,
utilizing a collection of weak models as boosters to create
a stronger model. This method uses decision trees as a
base model and iteratively enhances the model using an
incremental approach. XGBoost stands out for its
capability to efficiently handle time and memory, making
it well-suited for complicated tasks [40]. This method
also incorporates techniques like feature selection and
dimension reduction to enhance performance and
mitigate overfitting. XGBoost is a versatile approach
known for its numerous capabilities, such as
customizable hyperparameters. This method involves

specifying different hyperparameters, including learning

rate, maximum tree depth, number of trees, gamma, etc.
These factors significantly impact the model's
performance and accuracy. For example, a lower learning
rate steadily strengthens the model step by step,
potentially resulting in improved accuracy and
preventing overfitting. Increasing the maximum depth of
the tree can enhance the model's predictive capability.
However, this increment must be executed cautiously to
prevent overfitting. Moreover, adding more trees can
lead to a higher number of models and potentially
improve accuracy. However, a significant rise could be
linked to issues with time and memory. Increasing the
proportion of randomly selected samples compared to the
total samples leads to heightened variability in the data,
aiding in the prevention of overfitting. Gamma
determines the point at which the model is trained to
reduce errors. Decreasing this parameter could mitigate
overfitting. Based on the mentioned impacts, precise
adjustment of hyperparameters is essential to enhance the
efficiency of the XGBoost model in forecasting the bone
machining temperature. Adjusting these hyperparameters
can enhance the XGBoost model's capability to
accurately forecast the machining temperature during
bone milling. This approach excels at modeling intricate
relationships and is adept at identifying various patterns
in temperature data during the machining process. The
XGBoost model's adaptability has established it as an
effective tool for temperature prediction and control in
diverse industrial settings [41]. In this study, the
XGBoost model was developed and implemented using
the Python programming language in the Google Colab
environment. XGBoost was chosen over other ensemble
and deep learning methods due to its superior
performance with small datasets, its effective
regularization mechanisms, and its ability to model
complex nonlinear relationships with low computational

overhead.

3. Sensitivity Analysis

Sensitivity analysis in engineering is a valuable method
for assessing the impact of individual variables on a
system's overall response. This study can be categorized

as deterministic or probabilistic depending on its
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approach, or as graphical, mathematical, or statistical
depending on its form. The graphical sensitivity analysis
method represents sensitivity using diagrams, tables, and
surfaces. This method is used when the variation of
output is illustrated upon the change in input parameters.
Nonetheless, in the mathematical method, the sensitivity
is derived mathematically from the variation of the
output when input parameters are varied. Computational
tools in this method can sense the variation in the output
even with an infinitesimal change in input parameters.
Finally, in the statistical sensitivity analysis method,
simulation of input variables as probabilistic
distributions is performed. Subsequently, the impact of
these input parameters is assessed on the system's output.
These methods allow for the simultaneous evaluation of
the impact of certain input factors.

Sobol sensitivity analysis is a statistical tool for
sensitivity analysis that is model-independent and relies
on variance decomposition. This technique is suitable for
non-linear and non-uniform systems [42]. The Sobol
method was selected for sensitivity analysis due to its
ability to provide a detailed and reliable quantitative
assessment of both the direct and interaction effects of
input parameters on the model output. Unlike qualitative
screening methods such as Morris, which only offer
approximate rankings of input importance, or ANOVA-
based methods that rely on assumptions like linearity,
the Sobol method is model-independent and capable of
decomposing the variance of the output into
contributions from each input and their interactions.
Despite its higher computational cost, this approach is
particularly suitable for complex models like ours, where
multiple input parameters (tool diameter, feed rate,
rotational speed, and cutting depth) can interact in non-
trivial ways to influence the maximum process
temperature.

Sobol sensitivity analysis is a statistical tool for
sensitivity analysis that is model-independent and relies
on variance decomposition. This technique is suitable for
non-linear and non-uniform systems [43]. The model is
represented by the equation Y = f(X), where Y is the
output of the model and X is a vector containing input

parameters Xxq, X,, ..., X,. The variance of the model

V. Tahmasbi et al.

output V is calculated by summing the variances of each

decomposed term as shown in Eq. (1):

n n
V) = D Vik ) VgtV (M
i=1

isjsn

The term V; represents the first-order impact of each
input parameter, whereas V;; is the interaction effect
among n factors, calculated as V[E(lei, xj)] -Vi=V.

Sensitivity indices are expressed as the ratio of the
variance of a specific order to the total variance. For
example, S; = V;/V represents the first-order sensitivity
index, and S;; =V;;/V represents the second-order
sensitivity index, and so on.

The total sensitivity index, which represents the
overall impact of each parameter, is calculated by

summing all orders of sensitivity indices as shown in Eq.

2):

Sri =Si+ZSij+~~ 2)

i#j

Complementary explanations and details about the
Sobol method can be found in [44]. To determine an
appropriate sample size for Sobol sensitivity analysis, a
convergence test was conducted by gradually increasing
the sample size from 100 to 5000. The evolution of both
first-order and total-order indices was monitored as a
function of sample size. The indices showed noticeable
variations up to around 1000 samples, but remained
stable beyond that point. Although further increasing the
sample size led to more scattering and longer
computation times, no significant improvements in the
stability or accuracy of the indices were observed.
Therefore, a sample size of approximately 1000 was
chosen to ensure a balance between computational

efficiency and result reliability.

4. Experimental Procedures

4.1. Material and limitation

Bovine cortical bone is commonly used as a model for
human cortical bone in biomechanical and thermal
studies due to its availability and similar structural

characteristics. The physical and mechanical properties
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of bovine cortical bone are close to those of human long
bones. Therefore, many researchers have used the
bovine femur to investigate the cortical bone drilling
process. Table 1 shows some physical and mechanical
properties of fresh bovine cortical bone and fresh human
cortical bone. Both bones are composed largely of
hydroxyapatite and collagen, giving them comparable
stiffness and strength. Thermal properties are quite
close, as both are largely mineralized tissues. Variability
in microstructure (e.g., Haversian system density) can
influence crack propagation and fatigue properties.
Slight differences may arise due to age, disease state, or
gender. With appropriate modeling and safety
adjustments, bovine-based findings can be a strong

foundation for developing human clinical protocols.

Table 1. Comparison for the properties of human cortical
bone and bovine cortical bone

Bone property Human Bovine
Tensile strength (MPa) 140-250 130-200
Compressive strength (MPa) 45-150 40-145
Young’s modulus (GPa) 10-22 10-17
Shear modulus (MPa) 3 3
Density (kg/m?) 1950-2100  1800-2000
Poisson's ratio 0.33 0.4
Specific heat (J/kg.K) 1300 1330
Thermal conductivity (W/m.K) 0.1-0.3 0.1-0.43

4.2. Method

The design of experiments (DOE) approach plays a
crucial role in optimizing the bone milling process by
enabling systematic and structured testing of influential
parameters. This methodology allows for the
identification of key variables and facilitates the
determination of optimal conditions to achieve accurate
and reliable results. By analyzing the influence of each
input factor, DOE supports the development of
predictive models that clarify interdependencies and
improve forecasting accuracy. In this study, maximum
bone temperature was selected as the output variable,
influenced by input parameters including tool diameter,
feed rate, rotational speed, and cutting depth. Five fresh
bovine femur samples were selected for
experimentation, focusing on the diaphysis region,
approximately 90 cm in length, composed of cortical
bone with a thickness ranging from 8 to 10 mm. Table 2

provides the physical characteristics of each bone

sample. To prepare the samples, both ends of the bones
were trimmed using a saw. To enhance the reliability of
the results, each experimental condition was repeated
three times, and the average of the maximum
temperature values was recorded. The use of DOE in this
context enhances process efficiency, reduces material
waste, and promotes improved clinical outcomes. Fig. 1
illustrates the experimental setup, and Table 3 presents
the outcomes of all 27 experimental conditions. It is
worth noting that these experimental procedures and
results were previously reported in [33]. For the sake of
brevity, detailed descriptions are omitted here, and
readers are encouraged to refer to the cited work for

additional information.

5. Results and Discussion

5.1. Temperature modeling

The XGBoost machine learning algorithm was utilized
to develop the model based on the outcomes of
experiments. The hyperparameter values significantly
impact the accuracy and robustness of the model. The
hyperparameters for learning rate, maximum tree depth,
number of trees, and gamma are set to 0.1, 6, 1000, and
0, respectively. In this study, hyperparameter values
such as learning rate, maximum tree depth, number of

trees, and gamma were determined through a series of

Thermometer

Dvnamometer

Fig. 1. Experimentation tooling and setup in study of bone
milling.
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Table 2. Bone specification used for milling

Sample Age (year) Sex of bovine Slaughter time  Min. of sample width  Sample length Max. of thickness
1 3 bull 3h 40 mm 9 cm 1 cm
2 3-3.5 bull 4h 45 mm 10 cm 1.5cm
3 3-4 bull 3.5h 38 mm 8.5cm 1 cm
4 4 bull 4.5h 42 mm 9.5 cm 1.2 cm
5 3.5 bull 3h 45 mm 10.5 cm 1.5 cm

Table 3. Experimental findings on temperature variations dependent on bone milling input parameters [33]

Set number N (rpm) F (mm/min) Depth (mm) D (mm) T (°C)
1 1000 100 1 4 42.3
2 3000 100 1 4 50.4
3 1000 300 1 4 48
4 3000 300 1 4 46.8
5 1000 100 3 4 58.7
6 3000 100 3 4 68.1
7 1000 300 3 4 62.5
8 3000 300 3 4 654
9 1000 100 1 8 52.3
10 3000 100 1 8 553
11 1000 300 1 8 58.8
12 3000 300 1 8 54.4
13 1000 100 3 8 63.5
14 3000 100 3 8 72.2
15 1000 300 3 8 654
16 3000 300 3 8 64.7
17 1000 200 2 6 57.5
18 3000 200 2 6 65.1
19 2000 100 2 6 66.2
20 2000 300 2 6 69.8
21 2000 200 1 6 64.4
22 2000 200 3 6 74.5
23 2000 200 2 4 59.6
24 2000 200 2 8 67.3
25 2000 200 2 6 70.1
26 2000 200 2 6 69.8
27 2000 200 2 6 68.7

manual tests. XGBoost's robustness allowed the model
to perform well across a broad range of parameter
values, reducing the sensitivity to exact tuning. To assess
and mitigate overfitting, the model's performance was
evaluated on a separate test dataset that was not involved
in the training process.

Fig. 2 displays a scatter plot used for predicting the
temperature of the milling process in two separate
phases: training and testing. The graphic displays actual
values in relation to predicted ones using XGBoost, with
green and orange symbols denoting training and test
data, respectively. The middle line A = P is provided for
better accuracy assessment of the model. The training
data aligns with the middle line. To evaluate the model's
accuracy, it is essential to focus on the test data as it was
not utilized during the development of the model. The

data from the test section closely align with the middle

line, indicating the excellent effectiveness of the
XGBoost model.

75 A
o
L 70+ 4
)
5 +
= <
T 65 &4
=% *
g *
t 60 1 ’0
2 »
(1]
g 551 *
E *
E 50
2 '
i » A=P
& 45 & Training Data
Y Testing Data

45 50 55 60 65 70 75
Actual Values for Temperature (°C)
Fig. 2. Actual data in terms of predicted ones by XGBoost in
two parts of training and testing.
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Fig. 3 displays the temperature of the process for all
samples, comparing predicted and actual data in two
phases: training and testing. The predicted data during
the training phase (blue symbols) align with the actual
data in this phase (green solid line). It is evident that the
predicted results during the test phase closely match the
actual data. The model's accuracy is higher in the
training phase than in the testing stage due to the
utilization of training data in the learning process, while
the test data is set aside for accuracy assessment.

Fig. 4 displays a histogram illustrating the error
between the predicted and actual data for the process
temperature in two phases: training and testing. The
error formation is predominantly centered around zero
during the training phase. During the training phase, the
error values typically fall within the range of -0.6 to 0.4.
In contrast, during the testing phase, the error values are
observed to be within the range of -1 to 3.

The XGBoost model is quantitatively evaluated
using root mean square error (RMSE), mean absolute
error (MAE), determination coefficient (R?), and mean
absolute percentage error (MAPE), for both the training
and testing stages, as shown in Table 4. The RMSE and
MAE values for the training data are exceptionally low
and near zero. It is essential to focus on the error criteria
in the test stage to evaluate the efficiency of the model,
which is also low. MAPE and R? are superior measures
for comparing machine learning models. MAPE is
0.33% for the training phase and 3.38% for the testing
stage. The coefficients of determination for the training
and testing phases are computed as 0.99 and 0.94,
respectively, indicating the great accuracy of the
XGBoost model in predicting the process temperature in
this study.

Table 4. MAE, RMSE, MAPE and R? for predicting
temperature in both the training and test phases

MAE RMSE MAPE (%) R?
Train 0.19 0.25 0.33 0.99
Test 2.13 241 3.38 0.94

5.2. Effect of input parameters
This section analyzes the impact of feed rate, rotational
speed, tool diameter, and cutting depth on process

temperature using the XGBoost machine learning model

with an expanded dataset. The Sobol approach enables
the simultaneous adjustment of all parameters, unlike
graphical methods, which typically alter one variable at
a time while keeping others constant. Up to now, there is
no exact report value in which thermal necrosis of
human bone would occur. However, temperature as high
as 47 °C, is considered sufficient to initiate thermal
necrosis in human bone. An increase of just 5 °C to 52
°C can causes thermal necrosis within 1 minute.
However, this threshold applies more to bone drilling,
where the tool remains stationary for a longer period. In
bone milling, the tool rapidly removes chips and moves
away, with higher feed rates causing the tool to move
further away more rapidly. The relatively low thermal
conductivity and specific heat of bone lead to quicker
heat distribution, making the threshold of 47 °C less
appropriate for bone milling. On the other end of
spectrum, at higher temperatures of 70 °C, thermal
necrosis becomes abrupt and inevitable. Given the nature
of the milling process, where the tool quickly moves
away from the cutting zone, a triggering temperature of
55 °C is considered for the initiation of thermal necrosis.
While previous studies have often cited 44 °C as the
threshold for thermal necrosis, more recent findings
suggest that temperatures up to 55 °C for durations under
30 seconds do not cause irreversible bone damage.
Given the transient nature of heat in bone milling, where
the tool moves continuously and the heat dissipates
quickly, 55 °C is considered a clinically reasonable limit.
This selection aligns with reported clinical observations
and allows for more flexibility in optimizing machining
parameters without compromising patient safety.

The temperature response surface based on tool
diameter, feed rate, rotational speed, and cutting depth is
depicted in Fig. 5. Fig. 6 shows interaction effects of
feed rate and rotational speed at different cutting depths,
while Fig. 7- 10 illustrate temperature evolution with the
main input parameters. The data points in these graphs
were generated using SimLab software with the Sobol
method. From this point onward, the temperature unit in
all figures is expressed in degrees Celsius.

As depicted in Fig. 5, The process temperature is

significantly influenced by rotational speed and feed rate

IJMF, Iranian Journal of Materials Forming, 2025, Volume 12, Number 3



12

V. Tahmasbi et al.

80 Actual Values (Training) # Predicted by XGBoost (Training)
701 o . "
g L . o *
E 60 v, * *
o
£

50 1
o .

*
40

Actual Values (Testing) Predicted by XGBoost (Testing)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

Sample Number

Fig. 3. Process temperature for all samples for predicted

Histogram of Training Errors

71
Ze
g
3
5 "N
T 41
[=%
53
= \
£ 21
3
O 11
0 T T - - :
-0.6 -0.4 -0.2 0.0 0.2 0.4

Errors Range

and actual data in two stages of training and testing.

Histogram of Testing Errors

NoWow s
n o U0 o

2.0

=R
o U

Count Temperature (°C)

ot
n

o
=]

-1 0 1

Errors Range

2 3

Fig. 4. The discrepancy between the predicted and actual data during the training and testing stages.

with a saddle point exhibiting a maximum along the
rotational speed axis and a minimum along the feed rate
axis. This critical point is crucial, as previous reports
have suggested lower temperatures with lower rotational
speeds or higher speeds. As illustrated in Fig. 7, when
the rotational speed increases, the temperature first
grows until reaching a critical point, then drops. Lower
rotating speeds result in minimal bone injury, and it is
possible to reach temperatures below 47 °C with high-
speed milling. This is due to reduced process forces
caused by easy chip removal from the machined groove,
which

conductivity compared to the tools. The results indicate

is attributed to the bone's weaker thermal

that high-speed milling decreases thermal necrosis by
reducing the rate of temperature increase at higher
cutting speeds.

Feed rate is a crucial factor in the selection of a tool
type and feed rate, as it affects the velocity of the heat
source. The thermometer's accuracy and precision, along
with the chosen tool type and feed rate range,
significantly influence the selection of feed rate. The
study uses a thermometer to measure the temperature at

the point where the tool meets the freshly machined bone

surface. The study shows that bone temperature typically
increases with a rise in feed rate as illustrated in Fig. 8.
At smaller feed rates, the process force, tool-bone
friction, and cut chip thickness are reduced, leading to
lower heat generation and temperature levels. However,
at high feed rates, the force applied to the workpiece and
chip thickness increases exponentially, resulting in
increased heat generation. Larger feed rates generally
result in higher temperatures within the investigated
range of input variables.

Cutting depth has been largely overlooked in previous
studies, with only one study by Shin and Yoon [23]
exploring its impact at a cutting depth of less than 1 mm.
The study found that increasing cutting depth led to higher
process temperatures, as depicted in Fig. 9. Other studies
have typically assumed a constant cutting depth.
However, cutting depth significantly influences the
material removal rate and the duration of surgery. This
paper investigates cutting depths ranging from 1 to 3 mm,
showing that increasing cutting depth results in higher
process temperatures due to the larger contact area, which
requires more force to detach the chip from the base,

leading to increased friction, forces, and heat production.
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cutting depth =2 mm, and (c) cutting depth = 3 mm.

The tool diameter plays a crucial role in generating
heat and thermal necrosis during a process. Fig. 10
illustrates that larger tool diameters result in increased
temperatures due to the extended contact area, in which
leads to higher heat and frictional forces. Larger
diameters also increase axial force, positively impacting
heat  production.  Overall, temperature  rises
exponentially with increasing tool diameter. For
instance, a tool with an 8 mm diameter has a narrower
safe zone for thermal necrosis compared to 6 mm or 4
mm diameters. In medical terms, using a thinner tool

diameter can reduce the surgery's recovery period.

5.3. Sensitivity analysis

Based on the diagrams shown in Fig. 7-10, it can be
deduced that cutting depth, rotating speed, tool diameter,
and feed rate have the most significant impact on the
maximum process temperature within the range of input
parameters analyzed. This can be computed considering
the slope of graphical representation of each diagram.
Sobol sensitivity analysis offers advantages over
analysis of variance (ANOVA) in several aspects. In

addition to providing a qualitative understanding, it can
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simultaneously identify all the effective parameters.

However, when analyzing the interaction effects of &
parameters, the response surface method generally E“
yields more reliable results than Sobol sensitivity E“

analysis. "
Fig. 11 displays the outcomes of Sobol sensitivity ¢
analysis. The Figure indicates that cutting depth has the ™

most significant effect at 47.7%, followed by tool ”

&5

rotational speed at 36%, tool diameter at 13.2%, and feed

rate at 4.1% on the maximum process temperature.
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5.4. Optimization of process parameters

Optimization of input parameters was performed to find
the least maximum process temperature. The
optimization was carried out on the proposed model over
the range of input parameters. Results are depicted in
Fig. 12. To evaluate the prediction of the optimum
combination found by the model, validating
experimentations were conducted. The results are
compared in Table 5.

As can be seen from Table 5, the error of the model
in predicting temperature with the optimum combination
of input parameters is only 0.28%, which proves the
accurate anticipation of the model and its functionality.
Thus, the least maximum process temperature occurs
with a tool diameter of 4 mm, feed rate of 100 mm/min,
rotational speed of 1000 rpm and cutting depth of 1 mm.
This temperature is about 42 °C. The diagrams presented
in Fig. 12 allow the surgeon to identify the effect of each
individual parameter and adjust the input parameters to
achieve no thermal necrosis and shortest possible
surgery time.

It is worth noting that, in addition to evaluating
temperature, the role of the material removal rate (MRR)
during the unloading process should also be considered.

The faster the unloading process can be carried out, the

Table 5. Validity of the model for the optimum combination

of parameters
T D Depth F N Ao
€O ) (G e AR
42.58 4 1 100 1000 Model
423 4 1 100 1000 Experiment
0.28% ) ) ) ) Error
percentage
Optimal High N(rpm) F(mm/min
g g 3000.0 300.0
BREUESTE) ey [1000.0] [100.0]
Predict Low 1000.0 100.0
Temperat
Minimum
y = 42.5798
d = 099131

more beneficial it is in terms of reducing surgery and
anesthesia time, minimizing tissue damage, and
shortening the patient’s recovery period. Therefore, the
material removal rate can be regarded as an influential
factor alongside the thermal effects of the process.
According to the results obtained from the optimization
study, the parameters that lead to the minimum process
temperature also correspond to the minimum material
removal rate. Under these conditions, the theoretical
material removal rate is 400 mm3/min. However, to
achieve the maximum material removal rate while
considering necrosis prevention, optimal input
parameters were identified as follows: tool diameter of
4 mm, feed rate of 100 mm/min, spindle speed of 1000
rpm and cutting depth of 1 mm. Under these conditions,
the temperature reaches 54.4 °C, and the material
removal rate is 2400 mm>3/min. These conditions, which
simultaneously account for both temperature control and
material removal efficiency, can be clinically effective
and beneficial.

In orthopedic surgeries, the speed of surgery is very
crucial, especially with the usage of assisting robots.
This is highly influenced by feed rate and cutting depth.
The results of this study provide meaningful guidance
for surgical tool selection. Specifically, using tools with
smaller diameters leads to lower temperatures during the
milling process, thereby reducing the risk of thermal
necrosis. From a clinical perspective, this implies that
thinner tools not only improve thermal safety but also
may contribute to shorter recovery times and reduced
surgical complications. These insights support more
informed decisions in selecting surgical parameters to

balance efficiency and patient safety.

Depth(mm D(mm)
3.0 8.0
[1.0) [4.0)
1.0 40

Fig. 12. Optimization of input parameters to achieve the minimum temperature.
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6. Conclusions

This paper performed a systematic design of experiment,

intelligent modeling, and sensitivity analysis of the bone

grinding process using the XGBoost machine learning

method and the Sobol approach. The input parameters

tested were tool rotational speed, feed rate, cutting depth,

and tool diameter, with process temperature being the

output parameter. The primary findings of the current

study are as follows:

The XGBoost model continually showed strong
performance in predicting the temperature of the
milling process. During the training phase, the
model demonstrated a noteworthy alignment
between predicted and actual values as it gathered
the data. This alignment was also evident in the
testing phase, as the model's predictions closely
corresponded with the actual data points. The
assessment emphasized the model's accuracy in
predicting temperature, focusing on the consistency
between test data and the model's predictions as a
key indicator of its reliability.

The XGBoost model's performance was thoroughly
evaluated utilizing key metrics including
determination coefficient (R?) and mean absolute
percentage error (MAPE) throughout both training
and testing phases. The R? values of 0.99 for the
training phase and 0.94 for the testing phase
demonstrate a high degree of accuracy in
representing the fluctuation of the process
temperature. The model's efficiency in reducing
prediction errors across all study stages is
highlighted by the low MAPE values of 0.33% for
training and 3.38% testing, respectively.

Process temperature is greatly impacted by
rotational speed. The study reveals a crucial
juncture where temperature patterns shift. Reduced
rotational speeds decrease the likelihood of thermal
damage by lowering process forces, while higher
speeds result in lower temperatures due to easier
chip removal and the bone's poorer thermal
conductivity.

The feed rate, comparable to the velocity of the heat

source, is essential. Typically, higher feed rates

V. Tahmasbi et al.

result in increased bone temperature because of
elevated process pressures and chip thickness. The
study highlights the relationship between frictional
forces and heat generation, showing that higher feed
rates lead to higher temperatures within the
specified range of input variables.

Cutting depth and tool diameter are often
overlooked but significantly affect the process
temperature. Greater cutting depths raise process
temperature by expanding contact surfaces and
increasing pressures. Tool diameter significantly
impacts temperature, with larger diameters leading
to exponential temperature rises. Larger tool sizes
result in a narrower safe zone for avoiding thermal
necrosis, which impacts surgery recovery times.
Sobol sensitivity analysis is an accurate technique,
although it can be costly to use. The parameters that
had the greatest significant impact on maximum
process temperature were cutting depth, rotating
speed, tool diameter, and feed rate, with
effectiveness percentages of 46.7%, 36%, 13.2%,
and 4.1% correspondingly.

The model was optimized to achieve the minimum
process temperature and desirability value.
Validating experiments showed an accuracy of
0.28% in predicting temperature with the optimum
combination of input parameters. The least maximum
process temperature was found at 4 mm tool
diameter, 100 mm/min feed rate, 1000 rpm rotational
speed, and 1 mm cutting depth, achieving 42 °C.

To achieve the Maximum material removal rate
while considering necrosis prevention, the optimal
input parameters were identified as follows: tool
diameter of 4 mm, feed rate of 100 mm/min, spindle
speed of 1000 rpm, and cutting depth of 1 mm. Under
these conditions, the temperature reaches 54.4 °C,

and the material removal rate is 2400 mm?/min.
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