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ABSTRACT 
 

Colony Stimulating Factor-1 Receptor (CSF1R) is a tyrosine kinase transmembrane 

receptor that plays a vital role in innate immunity and neurogenesis and controls the 

differentiation and maintenance of most tissue-resident macrophages. CSF1R mutations have 

been linked with many neurodegenerative diseases. In this work, we aim to identify the 

functional and structural impact of deleterious non-synonymous single nucleotide 

polymorphisms (nsSNPs) mutations on CSF1R, which could help understand the consequences 

of these mutational changes. A consensus-based prediction approach was used to screen the 

missense SNPs using six in-silico tools: SIFT, PROVEAN, PMut, MutPred, MISSENSE 3D, 

and FATHMM. SNPs found to be deleterious by more than five out of six tools were subjected 

to further analysis, such as protein secondary structure and domain architecture analysis by 

PSIPRED and NCBI-CDD, respectively. Mutant models of highly deleterious SNPs were 

modeled using PyMol, followed by energy minimization and Root Mean Square Deviation 

(RMSD) analysis and molecular dynamic (MD) simulation by YASARA, TM-ALIGN, and 

WebGro, respectively. Out of 780 missense SNPs screened, we found the four most deleterious 

SNPs (L301S, A770P, I775N, and F849S) that decreased the protein stability because of their 

presence in the conserved regions of wild-type CSF1R. Structural and functional studies 

revealed that these mutations could disrupt the protein's core and surface interactions, leading to 

destabilization and functional impairment. Moreover, the mutated proteins exhibited enhanced 

conformational flexibility and instability, as confirmed by MD simulation analysis. 
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INTRODUCTION 
 

Colony stimulating factor-1 receptor (CSF1R), belonging to the type III protein tyrosine 

kinase receptor family, is recognized as the cell surface receptor for the macrophage colony-

stimulating factor 1 (CSF-1). The proto-oncogene c-fms, which is located on chromosome 
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5q33.3, is known to encode it [1]. CSF1R consists of extracellular domains, a transmembrane 

domain, and an intracellular tyrosine kinase domain [2]. CSF1R, known for its multifaceted 

roles, is considered to play a fundamental function in innate immunity by governing the 

proliferation of various cell types, including tissue macrophages, osteoclasts, Langerhans cells 

in the skin, Paneth cells in the small intestine, and microglia in the cerebrum. Predominantly 

expressed in microglia within the central nervous system, CSF1R is believed to be crucial for 

their proliferation and maintenance under normal conditions [3]. Moreover, its broad tissue 

expression pattern has been descibed as pivotal in various pathological conditions such as 

neoplastic, inflammatory, and neurological diseases [2]. 

The discovery and purification of CSF-1 led to the recognition of CSF1R and the 

demonstration of its intracellular tyrosine kinase domain activity [4-6]. Studies have shown the 

human CSF1R has been shown to share around 75% and 84% overall homology with the mouse 

and feline versions, respectively [7, 8]. Besides this, it has been demonstrated in several studies 

that genetic excision or loss of CSF1R function results in microglial depletion across species, 

highlighting the dependence of microglial proliferation and development on CSF1R [9, 10]. 

Genetic variations of the CSF1R gene have been implicated in several neurodegenerative 

diseases. For instance, loss-of-function mutations in the CSF1R gene are the major cause of 

adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) [11]. Single 

nucleotide polymorphisms (SNPs) associated with the CSF1R gene are associated with inhibitor 

development in hemophilia A [12]. Furthermore, these mutations have also been linked to 

hereditary diffuse leukoencephalopathy with spheroids (HDLS) and pigmented orthochromatic 

leukodystrophy (POLD) [13, 14]. 

SNPs are regarded as the most prevalent form of chromosomal variations, occurring once 

every 100–300 base pairs, and are known to have a crucial impact on disease outcomes [15, 16]. 

Among them, non-synonymous single nucleotide polymorphisms (nsSNPs) are particularly 

noted for their potential to alter the structure and function of the protein due to modifications in 

the amino acid sequence. Such modifications can significantly influence the disease’s 

development and progression [17].  

Given the large amounts of variation data generated through genome sequencing efforts, it 

is considered challenging to study the effect of these mutations on gene function and their 

encoded proteins through experimental methoda alone [18]. Therefore, a large number of 

previous studies have been conducted by research community to screen these large variation 

datasets using in-silico approaches [19-28]. 

Considering the involvement of CSF1R mutations in several diseases and the extensive SNP 

dataset that may not be feasibly analysed  through experimental approaches alone, this study 

was designed to screen the missense SNPs of the CSF1R gene and to investigate their damaging 

effects on protein stability using in-silico tools. Furthermore, the screened high-risk SNPs were 

analysed for their effects on domain architecture and for changes in the modeled mutant’s 

secondary and tertiary protein structures.   

 

 

MATERIALS AND METHODS 
 

Retrieval of dataset: The SNP data for the CSF1R gene was retrieved from NCBI SNP 

database (dbSNP) (https://www.ncbi.nlm.nih.gov/snp) [29]. Only missense SNPs were selected, 

as they are potentially capable of altering protein structure and function. The sequence of the 

CSF1R protein (UniProt accession no. P07333) was also retrieved from the UniProt database 

(https://www.uniprot.org/) [30]. A summary of the steps followed in the study is provided in 

Fig. 1.  

 

Prediction of deleterious nsSNPs: The missense SNPs retrieved from dbSNP were 

screened using six bioinformatics tools, namely, SIFT (Sorting Intolerant From Tolerant, 

https://sift.bii.a-star.edu.sg/) [31], PROVEAN (PROtein Variation Effect Analyzer, http:// 
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provean.jcvi.org/index.php) [32], FATHMM (Functional Analysis Through Hidden Markov 

Model, http://fathmm.biocompute.org.uk/) [33], PMut (http://mmb.irbbarcelona.org/PMut/) 

[34], Missense3D-DB (http://missense3d.bc.ic.ac.uk:8080/) [35] and MutPred2 (http://mutpred. 

mutdb.org/) [36]. 

SIFT classifies nsSNPs as deleterious or neutral. The scoring system ranges from 0 to 1. An 

amino acid substitution is classified as deleterious if the score is <= 0.05, and tolerated if >0.05 

[31]. Moreover, PROVEAN classifies single or multiple amino acid substitutions, in-frame 

insertions, and deletions as deleterious if the score is ≤ -2.5 and neutral if >-2.5 [32]. 

 

 
Figure 1: Flowchart of methodology showing the steps followed during analysis 

 

 

To predict the functional implications of missense mutations, FATHMM was employed, 

which integrates sequence conservation via Hidden Markov Models and “pathogenicity 

weights” to assess tolerance to mutations. Variants scoring below the threshold of 0.75 are 

identified as potentially cancer-associated [33]. Furthermore, PMut was used to classify 

mutations as disease-causing or neutral. Scores above 0.5 are considered disease-causing, while 

scores below indicate neutrality [34]. 

Moreover, Missense3D was utilized to assess structural effects of amino acid substitutions 

using 16 structural parameters, categorizing them as “Damaging” or “Neutral” [35]. Besides 

this, MutPred2 was applied to predict whether substitutions are pathogenic or benign, using a 

threshold score of 0.5. Substitutions scoring above 0.5 are interpreted as likely affecting protein 

function [36]. 

 

Predicting the protein stability: We used three web tools, namely, I-Mutant 2.0 

(https://folding.biofold.org/cgi-bin/i-mutant2.0.cgi) [37], iSTABLE (http://predictor.nchu.edu. 

tw/iStable/) [38], and MuPro (http://mupro.proteomics.ics.uci.edu/) to predict the stability of 

mutant protein sequences [39]. I-Mutant 2.0 utilizes a support vector machine (SVM) algorithm 

to predict the effect of amino acid mutations on protein stability. It calculates the energy change 

(∆∆G) value by subtracting the unfolding Gibbs free energy of the wild type from the unfolding 

Gibbs free energy of the mutated protein [37]. Similarly, iSTABLE is an integrated predictor 

constructed using sequence information and prediction results from different predictors to 

provides output in the form of ∆∆G values [38]. 
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Additionally, MuPro, a machine learning (ML) classifier was used to predict the effect of 

amino acid change on protein stability. It predicts ΔΔG and classifies mutations with a 

confidence score based on the effects on stability, using both SVM and neural networks [39]. 

 

Analysis of structural impacts of point mutations: The project HOPE (Have (y)Our 

Protein Explained) (https://www3.cmbi.umcn.nl/hope/input/) server was used to analyze the 

structural effect of mutations on proteins and gain insights into the differences in properties 

between wild-type and mutant amino acids at specific positions. Information from both 2D and 

3D structures, along with sequence annotation data from various protein structural and sequence 

analysis algorithms, is integrated to provide comprehensive predictions [40]. 

 

Secondary structure prediction: PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) was 

utilized to predict the secondary structure of the mutant proteins. The FASTA sequences were 

submitted as input and resulting annotations were provided using color codes: helices in pink, 

strands in yellow, and transmembrane regions in grey [41].  

 

Analysis of domain architecture: The NCBI Conserved Domain Database (CDD) (https:// 

www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was utilized to predict the impact of mutations 

on the domains of the CSF1R protein. CDD is based on reverse position-specific (RPS) 

BLAST, a variant of PSI-BLAST, to scan the query protein against a set of pre-calculated 

Position Specific Scoring Matrices (PSSM) [42, 43]. The wild-type UniProt ID and mutant 

FASTA sequences were used for the domain analysis. 

 

Conservational analysis: The ConSurf server (https://consurf.tau.ac.il/) was used to assess 

the evolutionary conservation scores for each residue using a Bayesian method. Conservation 

was visualized using a 1–9 scale, where 9 represents the most conserved residue and 1 indicates 

the least conserved [44]. FASTA sequences of the wild-type and mutant proteins were used for 

the analysis. 

 

Tertiary structure modeling and energy minimization: The PDB (Protein Data Bank) 

ID: 6WXJ was used as a structural template to generate mutant models (A770P, I775N, and 

F849S) in PyMol using the “Mutagenesis Wizard.” The most stable rotamers were selected, and 

models were refined using YASARA (Yet Another Scientific Artificial Reality Application) 

(http://www.yasara.org/minimizationserver.html), a web-server for protein model refinement 

[45]. Discovery Studio (DS) visualizer was used for model visualization [46]. 

 

Evaluation of mutant models: The refined mutant models were evaluated using SAVES 

v6.0 (https://saves.mbi.ucla.edu/), a collection of six web-based tools for protein structure 

evaluation. PROCHECK within SAVES was used to generate Ramachandran plots, which were 

examined for allowed conformational space [47]. 

 

RMSD value calculation: TM-Align (https://seq2fun.dcmb.med.umich.edu//TM-align/) 

was used to compare the wild-type and mutant models. RMSD (Root Mean Square Deviation) 

and TM-scores (Template Model-Score) were computed to assess global structural deviation. 

TM-scores range from 0–1 (higher indicating better alignment), and smaller RMSD values 

indicate closer structural similarity [48, 49]. 

 

Molecular dynamics (MD) simulation: Molecular dynamics simulations were conducted 

using the GROMACS package via the WebGro server (https://simlab.uams.edu/) [50]. A well-

established simulation protocol [51, 52] was followed, involving the simple point charge (SPC) 

water model in a triclinic periodic box to solvate the system. In addition, the GROMOS96 43a1 

force field was applied to optimize the system. Moreover, the system was equilibrated at 300 K 

and 1.0 bar. Simulations were run for 50 ns, with 1000 frames recorded. To analyze the 
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simulation findings, we calculated the RMSD and root mean square fluctuation (RMSF) of each 

atom. Additionally, radius of gyration (Rg) and solvent-accessible surface area (SASA) were 

calculated to investigate the effects of mutation. 

 

 

RESULTS  
 

The CSF1R gene SNP data was retrieved from the NCBI SNP database, dbSNP. The entire 

set was comprised of 780 missense SNPs, 442 synonymous SNPs, and 21,094 intronic SNPs. 

Given the potential of missense SNPs to impact protein structure and function, we conducted an 

initial screening using the 780 missense SNPs. 

The 780 nsSNPs were subjected to initial screening through six web-based bioinformatics 

tools. SIFT predicted 51 out of 780 SNPs as deleterious and 77 as tolerated, while the rest were 

not reported. These 51 deleterious SNPs were further analyzed using PROVEAN and MutPred. 

PROVEAN predicted 29 SNPs as deleterious, and the remainder were found to be neutral. 

MutPred predicted 24 SNPs with scores above the threshold, suggesting potential structural 

disruption or functional loss. Furthermore, FATHMM categorized 44 SNPs as cancerous, PMut 

predicted 70 as disease-causing, and Missense3D classified 85 SNPs in the damaging category.  

To reduce false positives, a consensus-based approach was implemented to filter out the 

deleterious, damaging, cancerous, and disease-causing SNPs. The consensus demonstrating the 

comparative outputs from the six web-based tools is listed in Supplementary Table S1. SNPs 

predicted as deleterious, damaging, cancerous, and disease-causing by at least five of the six 

tools were selected for further analysis. A total of seven SNPs (rs1801271, rs121913390, 

rs281860269, rs281860271, rs281860273, rs281860277, and rs200489778) were identified that 

follow this filtering criteria, as shown in Table 1.  

 
Table 1. List of deleterious and damaging SNPs predicted by mutation analysis tools 

rs IDs Amino 

Acid 

Change 

SIFT PROVEAN FATHMM PMut MISSENSE 

3D 

MutPred 

rs1801271 Y969C Deleterious Deleterious Cancer Disease - Damaging 

rs121913390 L301S Deleterious Deleterious Cancer - Damaging Damaging 

rs281860269 E633K Deleterious Deleterious Cancer - Damaging Damaging 

rs281860271 A770P Deleterious Deleterious Cancer - Damaging Damaging 

rs281860273 I775N Deleterious Deleterious Cancer - Damaging Damaging 

rs281860277 F849S Deleterious Deleterious Cancer - Damaging Damaging 

rs200489778 T663M Deleterious Deleterious Cancer - Damaging Damaging 

 

Following consensus filtering, protein stability analysis was conducted by MuPro, I-Mutant, 

and iSTABLE algorithms. MuPro and I-Mutant 2.0 are ML-based algorithms, while iSTABLE 

is based on meta-approach that determines protein stability based on sequence data. Again, a 

consensus-based approach was used in which the confidence score from iSTABLE and ∆∆G 

values from the MuPro and I-Mutant were compared (Supplementary Table S2) to filter out 

those nsSNPs that decrease protein stability. We have found that four of the seven nsSNPs 

(rs121913390, rs281860271, rs281860273, rs281860277) were found to decrease protein 

stability as shown in Table 2. 

 
Table 2: Protein stability predictions by I-Mutant, iSTABLE, and MuPro 

rs IDs AMINO ACID 

MUTATIONS 

MuPro 

(∆∆G value) 

I-Mutant 

(∆∆G value) 

iSTABLE 

(Score) 

rs121913390 L301S -1.8671494 (Decrease) -3.14 (Decrease) 0.89314 (Decrease) 

rs281860271 A770P -1.3311997 (Decrease) -2.97 (Decrease) 0.781124 (Decrease) 

rs281860273 I775N - 2.1269065 (Decrease) -1.11 (Decrease) 0.857828 (Decrease) 

rs281860277 F849S -1.3760635 (Decrease) -2.53 (Decrease) 0.872933 (Decrease) 
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The deleterious nsSNPs that predicted to affect protein stability were analysed further using 

Project HOPE. For the rs ID: rs121913390 (L301S), the mutant amino acid residue (serine) was 

observed to be smaller than the wild-type residue (lysine). This mutation was found to creates a 

void in the protein core and to cause a loss of hydrophobic interactions. The mutation was 

located in the Ig-like C2-type 4 domain. Furthermore, substitution of wild-type alanine residue 

with the proline residue (rs ID: rs281860271 (A770P)) introduce a larger mutant residue. Since 

the alanine is located on the protein's surface, this mutation may disrupt interactions with other 

molecules. The addition of proline can also destabilize the α-helix, potentially leading to 

significant structural alterations in the protein. This mutation was found to be occurred within 

the kinase domain of CSF1R.  In the case of isoleucine to asparagine substitution (rs281860273 

(I775N)), the mutant residue was found to be bigger. The wild-type residue isoleucine was 

buried within the protein core, and the bulkier asparagine cannot be accommodated in this 

space, thus resulting in the loss of the hydrophobic interactions. In the instance of rs281860277 

(F849S), the mutant residue serine has been observed to be smaller than the wild-type 

phenylalanine. This mutation causes a loss of hydrophobic interactions in the core of the protein 

and it also causes a void in the core of the protein (Table 3). 

 
Table 3: Summary of structural consequences observed for each mutation using Project HOPE, 

highlighting alterations in amino acid size, hydrophobicity, and spatial accommodation 

Mutation STRUCTURE 

L301S 

      

A770P 

             

I775N 

          
 

F849S 

            

 

Secondary structure prediction was performed using PSIPRED. The FASTA sequences both 

wild-type and mutant proteins were submitted as inputs, with mutations manually inserted. In 

L301S (rs121913390), the loss of beta-strands at positions 48-50, 341-342, 350-352, 436-437, 

471-474, and 953-955 was predicted (Fig. S1). Moreover, the new strand was found to be 
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introduced at positions 358-360, 562-63,575-577,724-725 and 775-776 (Fig. S1B). Beside this, 

a helix was detected at position 701–702, and a helix-to-strand transition was observed at 

position 168–170 (Fig. S1B). 

The PSIPRED analysis of A770P revealed strand additions at 6-7, 22-23, and 576-577, and 

deletions at 48-50 and 953-955 (Fig. S1C). A strand at 618-619 was replaced by a helix. Strands 

were lost at 456-457, 784-786, and 797-802, while new helices emerged at 573-574, 699-700, 

and 702-704 (Fig. S1C). For I775N, strands were found at positions 23-24, 109-110, 576-577, 

775-777, and 791-794 (Fig. S1D), and a helix was predicted at 618-619. In F849S, strand 

deletion was observed at 953-955, with helix formation at 700-702, and strand introduction at 

576-577 (Fig. S1E). These variations were compared with the native structure (Table 4). 

 
Table 4: The change in number of strands and helices between the mutants and the wild-type 

(native state) structure of CSF1R, as predicted by PSIPRED 

Amino acid change No. of helix No. of strands 

Native State 20 53 

L301S 21 54 

A770P 22 55 

I775N 21 58 

F849S 21 56 

 

Domain architecture analysis via CDD indicated the presence of four domains in the wild-

type protein: Ig-like domain, Ig3-CSF1R-like domain, Ig-3 domain, and PTKc-CSF1R domain. 

The PTKc_CSF1R domain contained active-site, ATP-binding, substrate-binding, and 

activation loop sites. In the A770P, I775N, and F849S mutants, the loss of active, substrate-

binding, and activation loop regions was noted (Fig. 2). Surprisingly, no change in domain 

architecture was observed for the mutant L301S. 

 

 

 
Figure 2: Domains predicted by CDD showed the loss of the active site, polypeptide substrate binding 

site, and the activation loop (marked in the red box) in mutants A770P, I775N, and F849S (C) compared 

to wild-type (A) while mutant L301S (B) did not show any loss of these signature elements (marked in 

the red box).  

 

Conservation analysis was conducted using ConSurf. Mutation A770P was found in a 

moderately conserved region (score 8), and I775N and F849S were located in highly conserved 
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regions (score 9) (Fig. S2). These findings suggest that structural and functional alterations may 

result from mutations in evolutionarily conserved residues. Table 5 lists the mutations occurring 

in regions with conservation scores from 7 to 9. 

 
Table 5: Conservational score for the amino acid positions as predicted by ConSurf 

rs ID AMINO ACID CHANGE CONSURF SCORE 

rs281860271 A770P 8/conserved 

rs281860273 I775N 9/conserved 

rs281860277 F849S 9/conserved 

 

 

3D structure prediction was carried out using PyMol. Mutagenesis was performed using the 

Mutagenesis Wizard. The 6WXJ template was used to model A770P, I775N, and F849S 3D 

strcutures. These mutants were selected for modeling due to their loss of domain architecture 

and the alignment of their sequence coordinates within a single PDB template (6WXJ). The 

L301S mutation was excluded due to domain preservation and a different template. During 

modeling of the 3D structure of mutants, the water molecules and the heteroatoms present in the 

template were removed. Multiple rotamers were generated for each mutation, and the one with 

the highest confidence was selected for structure modeling.  

Furthermore, the geometry optimization of  the 3D mutant models was performed by energy 

minimizations through the YASARA server. Mutant and energy-refined models are shown in 

Figure 3. Model evaluation was conducted using SAVES v6.0, with PROCHECK used for 

quality assessment via Ramachandran plot (Fig. 4). The percentage of residues in allowed 

regions is reported in Table 6. 

 

 

 
Figure 3: The predicted and energy-refined mutant models generated by PyMOL and YASARA, 

respectively were visualized using Discovery Studio Visualiser.  

 

 

 

 
Figure 4: Ramachandran Plots of the mutant models, (A) (A770P), (B) (F849S) and (C) (I775N) 

generated by PROCHECK. The plots show the clustering of amino acids in the allowed quadrant of the 

plot. 
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Table 6: Percentage of residues in the allowed regions for three mutants 

rs ID Amino acid change Residues in allowed regions 

rs281860271 A770P 91.8% 

rs281860273 I775N 92.7% 

rs281860277 F849S 94.3% 

 

The energy-minimized mutant models were analysed using TM-Align for RMSD and TM-

score. The TM-Score obtained describes the topological similarity, and the RMSD value 

determines the deviation of the mutant model from the wild-type protein. Structural similarity 

and deviation were determined by comparing mutants to the wild-type. Table 7 depicts the 

values obtained from TM-Align. 

 
Table 7: The TM-Scores and the RMSD values of mutant models compared to the wild-type template 

predicted by TM-Align 

rs ID Amino acid change TM-SCORE RMSD value 

rs281860271 A770P 0.99623 0.38 

rs281860273 I775N 0.99728 0.32 

rs281860277 F849S 0.99623 0.36 

 

MD simulations were conducted to examine the initial configurations of mutant protiens for 

structural flexibility, stability, hydrogen bonding, and solvation over 50 ns in a triclinic box. 

RMSD was computed to analyze conformational changes. The average RMSD of the native 

structure was 0.28 nm, while mutants A770P, F849S, and I775N showed increased values of 

0.36 nm, 0.31 nm, and 0.36 nm, respectively (Fig. 5A). 

To assess dynamic changes, RMSF values were computed. We have observed highest 

RMSF (0.5773 nm) for ASP917 in the native protein. However, mutant A770P and F849S 

showed increased RMSF values of 0.653 nm and 0.61 nm, respectively. Surprisingly mutant 

I775N had the least RMSF value of 0.4683 nm at the same position. Overall, the total RMSF 

value of the mutant A770P and F849S differed considerably from the native, while mutant 

I775N showed a similar level of flexibility compared to the native (Fig. 5B). 

Protein stability was further assessed by analysing total hydrogen bonds. Notably, the 

mutants A770P and F849S displayed fewer overall hydrogen bonds. Furthermore, we calculated 

the SASA values for both the native and mutants. It is worth noting that the F849S mutant 

exhibited a considerably higher average SASA value of 133.67 nm2 in contrast to the native 

protein (131 nm2). Conversely, I775N and A770P showed lower average SASA values of 

129.61 nm2 and 125.22 nm2, respectively, compared to native (Fig. 5C). The Rg was evaluated 

to assess compactness. The native average Rg value was recorded as 1.85 nm, while the values 

for I775N, F849S, and A770P were found to be 1.84 nm, 1.87 nm, and 1.85 nm, respectively. 

F849S displayed the greatest Rg fluctuation (Fig. 5D). 

 

 

DISCUSSION 
 

The emergence of high-throughput genome sequencing technology has made it possible to 

identify a large number of SNPs. This emphasizes the necessity of thorough investigations to 

evaluate the clinical significance of these SNPs [53, 54]. Furthermore, in the advancing age of 

precision medicine, analyzing vast amounts of SNP data can provide valuable insights into the 

structural and functional variations in gene products that can impact several physiological and 

pathological processes [55, 56].  

Moreover, in the last few years, various studies have determined the effect of CSF1R SNPs 

on various pathophysiological conditions [57-61]. Still, given the rise of SNP data, there is an 

increasing need and scope for more analysis. Thus, the present study adds to this objective by 

comprehensively evaluating CSF1R  SNPs and elucidating their  potential  influence on  protein  
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Figure 5: The RMSD (A), RMSF (B), SASA (C) and Radius of gyration (D) plots of the mutant (A770P, 

F849S, and I775N) and wild-type protein models obtained by GROMACS simulation package, accessible 

through the WebGro server. 

 

 

structure and function. The study used a combination of bioinformatics and molecular dynamics 

simulation tools to predict the high-risk deleterious missense SNPs. In this work, we analyzed a 

large dataset of 780 missense SNPs of the CSF1R gene to identify deleterious SNPs. A 

consensus-based approach was followed, which included selecting those SNPs that were 

predicted deleterious or disease-causing across at least five of the six tools used. A consensus-

based approach minimized the chances of false-positive predictions, as demonstrated by 

numerous prior studies that used multiple tool consensuses to enhance predictive accuracy [62-

65]. We have identified seven missense SNPs (Y969C, L301S, E633K, A770P, I775N, F849S, 

and T663M) in the category of deleterious, damaging or disease-causing by at least five tools. 

These filtered SNPs were considered for further downstream analysis. 

Predicting changes in protein stability due to polymorphism in genetic data is of great 

significance because it impacts personalized medicine and diagnostics. With the increased 

sensitivity and specificity of the ML-based tools for predicting protein stability upon point 

mutations, a large volume of SNP data has been screened [62, 66, 67]. In our analysis, we found 

four of the seven identified SNPs (rs121913390 (L301S), rs281860271 (A770P), rs281860273 

(I775N), and rs281860277 (F849S)) were predicted to decrease protein stability, as indicated by 

the prediction results of MuPro, I-Mutant, and iSTABLE. This finding is crucial because 

reduced protein stability is often found to be associated with changes in protein functions; for 

instance, a work by Gerasimavicius et al. deciphered the different roles of loss-of-function, 

gain-of-function, and dominant-negative mutations on the protein [68].   

In addition, the structural analyses performed using Project HOPE and PSIPRED provided 

more insights into the molecular mechanisms that underlie the impacts of these SNPs. The 

L301S and F849S mutations have been predicted to create voids inside the protein core due to 
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the substitution of larger wild-type residues with smaller mutant residues. These voids may 

likely disrupt the hydrophobic core, resulting in an overall decrease in structural integrity.  

Previous research had also shown a similar pattern in the Fibroblast Growth Factor Receptor 

1 (FGFR1) gene, resulting in a decrease in stability upon substitution (P722S) of larger wild-

type residues with smaller mutant residues [69, 70]. Besides this, the A770P mutation would be 

predicted to hinder the protein interactions on the surface, thus possibly affecting the protein's 

ability to interact with other molecules or substrates. In contrast, the I775N mutation resulted in 

the insertion of a bulkier residue within the protein core, which could lead to steric clashes and 

further destabilization of the protein structure. These findings are consistent with previously 

published work that has identified steric hindrance as a key factor in protein destabilization due 

to SNPs [71]. 

 The secondary structure predictions by PSIPRED revealed considerable alterations in 

the protein's secondary structure elements due to these mutations. For example, the mutants 

exhibit beta-strand and alpha-helices changes, indicating that these SNPs cause substantial 

conformational changes, which could alter the protein's functional domains. The secondary 

structure analysis of the A770P mutant revealed an unexpected increase in both beta-strands and 

alpha-helices. Although proline is classically known to disrupt alpha-helices, the A770P 

mutation showed an increase in both strands and helices. This apparent contradiction may be 

due to compensatory structural rearrangements, where regions adjacent to the disrupted site 

reconfigure into stable secondary elements. Moreover, some coil regions may have adopted 

more ordered structures as a consequence of local conformational stress redistribution induced 

by the proline substitution. Such behavior, though less common, has been documented in 

previous studies involving proline mutations [72]. These findings are especially significant 

considering the role of CSF1R protein in signaling pathways related to cell proliferation and 

differentiation.. 

Moreover, the domain analysis also found that mutations such as A770P, I775N, and F849S 

resulted in the loss of critical functional sites, including the active and ATP binding sites. The 

structural and functional aberrations noted in this work could lead to loss of CSF1R activities 

which can result in the lack of microglia and disturbance in brain development that were 

observed by Erblich et al. in their study on homozygous mouse bearing null mutation of CSF1R 

gene [73].  

During the evolutionary conservation analysis, these mutations were found to occur within 

highly conserved regions of the protein, underscoring their potential to disrupt essential 

functions. The high conservation scores of 8 (A770P) and 9 (I775N, F849S) associated with 

these SNPs suggest that these residues are critical for maintaining the structural and functional 

integrity of CSF1R, and mutations in these are expected to have deleterious effects. The 

profound impact of SNPs in modifying evolutionary conservation regions of genes has been a 

subject of tremendous significance that helps in understanding the structural and functional 

changes occurring over time [74-79].    

Lastly, the molecular dynamics simulations validated the destabilizing effects of the 

identified deleterious SNPs. The higher RMSD for the mutant structures than the native 

structure indicates that these SNPs lead to greater conformational flexibility and instability. 

Specifically, the mutations A770P and I775N showed the highest RMSD values, indicating 

significant deviations from the wild-type protein. Furthermore, the RMSF analysis supported 

these findings, with mutations A770P and F849S causing increased flexibility at the residue 

level, notably at position ASP917. Interestingly, the I775N mutation displayed a lower RMSF 

value at this position, indicating a complex interplay between local flexibility and overall 

protein stability.  

The present study comprehensively screened the deleterious nsSNPs based on functional 

and structural stability analysis. However, due to its dependance on computational methods, it 

prompted future research that should aim to decipher the biological implications of these 

mutations using functional in-vitro and in-vivo assays.  
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In conclusion, this study provides an in-depth analysis of the functional and structural 

impacts of deleterious nsSNPs in the CSF1R gene. By employing a consensus-based in-silico 

approach, four highly deleterious mutations, such as L301S, A770P, I775N, and F849S, were 

identified. Furthermore, structural analysis revealed that these mutations not only destabilize the 

protein, particularly within conserved regions, but also lead to substantial alterations in 

secondary structure and domain architecture. Specifically, the A770P, I775N, and F849S 

mutations resulted in the gain or loss of beta-strands and alpha-helices and the disruption of 

essential functional domains such as active sites and ATP-binding regions. Moreover, MD 

simulations highlighted increased conformational flexibility and instability in the mutated 

proteins. Further in vitro and in vivo instigations are required to validate these predictions and 

explore therapeutic interventions targeting these mutations, potentially contributing to the 

development of treatments for diseases associated with CSF1R dysfunction. 

 

Acknowledgements: The authors would like to acknowledge Simlab for providing 

GROMACS's simulation facilities in the form of an open-access server, WebGro. They are also 

thankful to DST (Department of Science and Technology) and DBT (Department of 

Biotechnology), Government of India, for providing the infrastructural facility. 

 

Conflict of Interest: The authors declare no conflicts of interest. 

 

Authors’ Contribution: PM: Methodology, Writing-original draft, Data Curation, Formal 

analysis. AJ: Methodology, Data Curation, Formal analysis. HW: Methodology, Data Curation, 

Formal analysis. OD: Data Curation, Formal analysis. DR: Data Curation, Formal analysis. MH: 

Data Curation, Formal analysis. CJTh: Conceptualization, Methodology, Formal analysis, Data 

curation, Writing–original draft, Writing–review & editing. SS: Conceptualization, 

Methodology, Formal analysis, Data curation, Writing–original draft, Writing–review & editing. 

 

 

REFERENCES 
 

1. Hampe A, Shamoon BM, Gobet M, Sherr CJ, Galibert F. Nucleotide sequence and structural 

organization of the human FMS proto-oncogene. Oncogene Res 1989;4:9-17. 

2. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect 

Biol 2014;6:a021857. 

3. Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony 

stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for 

neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022;79:219. 

4. Stanley ER, Cifone M, Heard PM, Defendi V. Factors regulating macrophage production and 

growth: identity of colony-stimulating factor and macrophage growth factor. J Exp Med 

1976;143:631-647. 

5. Guilbert LJ, Stanley ER. Specific interaction of murine colony-stimulating factor with 

mononuclear phagocytic cells. J Cell Biol 1980;85:153-159. 

6. Yeung YG, Jubinsky PT, Sengupta A, Yeung DC, Stanley ER. Purification of the colony-

stimulating factor 1 receptor and demonstration of its tyrosine kinase activity. Proc Natl 

Acad Sci USA 1987;84:1268-1271. 

7. Rothwell VM, Rohrschneider LR. Murine c-fms cDNA: cloning, sequence analysis and 

retroviral expression. Oncogene Res 1987;1:311-324. 

8. Woolford J, McAuliffe A, Rohrschneider LR. Activation of the feline c-fms proto-oncogene: 

multiple alterations are required to generate a fully transformed phenotype. Cell 1988; 

55:965-977. 

9. Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM, Daza R, Young E, Astle L, van 

der Linde HC, Shivaram GM, Demmers J, Latimer CS, Keene CD, Loter E, Maroofian R, 

van Ham TJ, Hevner RF, Bennett JT. Homozygous mutations in CSF1R cause a pediatric-

http://mbrc.shirazu.ac.ir/


 

 

 

 

Malhotra et al., / Mol Biol Res Commun 2025;14(4):291-306  DOI:10.22099/mbrc.2025.53206.2156    MBRC 

http://mbrc.shirazu.ac.ir                                                                303                                                               

  

onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum 

Genet 2019;104:936-947.  

10. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng 

LG, Stanley ER, Samokhvalov IM, Merad M. Fate mapping analysis reveals that adult 

microglia derive from primitive macrophages. Science 2010;330:841-845. 

11. Hu B, Duan S, Wang Z, Li X, Zhou Y, Zhang X, Zhang YW, Xu H, Zheng H. Insights into 

the role of CSF1R in the central nervous system and neurological disorders. Front Aging 

Neurosci 2021;13:789834. 

12. Zhao M, Zhang Y, Liu Y, Sun G, Tian H, Hong L. Polymorphisms in MAPK9 (rs4147385) 

and CSF1R (rs17725712) are associated with the development of inhibitors in patients with 

haemophilia A in North China. Int J Lab Hematol 2019;41:572-577. 

13. Nicholson AM, Baker MC, Finch NA, Rutherford NJ, Wider C, Graff-Radford NR, Nelson 

PT, Clark HB, Wszolek ZK, Dickson DW, Knopman DS, Rademakers R. CSF1R mutations 

link POLD and HDLS as a single disease entity. Neurology 2013;80:1033-1040. 

14. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, 

Wider C, Wojtas A, DeJesus-Hernandez M, Adamson J, Kouri N, Sundal C, Shuster EA, 

Aasly J, MacKenzie J, Roeber S, Kretzschmar HA, Boeve BF, Knopman DS, Petersen RC, 

Cairns NJ, Ghetti B, Spina S, Garbern J, Tselis AC, Uitti R, Das P, Van Gerpen JA, 

Meschia JF, Levy S, Broderick DF, Graff-Radford N, Ross OA, Miller BB, Swerdlow RH, 

Dickson DW, Wszolek ZK. Mutations in the colony stimulating factor 1 receptor (CSF1R) 

gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet 2011;44:200-

205.  

15. Fareed MM, Ullah S, Aziz S, Johnsen TA, Shityakov S. In-silico analysis of non-

synonymous single nucleotide polymorphisms in human β-defensin type 1 gene reveals 

their impact on protein-ligand binding sites. Comput Biol Chem 2022;98:107669. 

16. Das SC, Rahman MA, Das Gupta S. In-silico analysis unravels the structural and functional 

consequences of non-synonymous SNPs in the human IL-10 gene. Egyptian J Med Human 

Genet 2022;23:10. 

17. Venkata Subbiah H, Ramesh Babu P, Subbiah U. Determination of deleterious single-

nucleotide polymorphisms of human LYZ C gene: an in silico study. J Genet Eng 

Biotechnol 2022;20:92. 

18. Mah JT, Low ES, Lee E. In silico SNP analysis and bioinformatics tools: a review of the 

state of the art to aid drug discovery. Drug Discov Today 2011;16:800-809. 

19. Scotti C, Olivieri C, Boeri L, Canzonieri C, Ornati F, Buscarini E, Pagella F, Danesino C. 

Bioinformatic analysis of pathogenic missense mutations of activin receptor like kinase 1 

ectodomain. PLoS One 2011;6:e26431. 

20. Marjan MN, Hamzeh MT, Rahman E, Sadeq V. A computational prospect to aspirin side 

effects: aspirin and COX-1 interaction analysis based on non-synonymous SNPs. Comput 

Biol Chem 2014;51:57-62. 

21. Fazel-Najafabadi E, Vahdat Ahar E, Fattahpour S, Sedghi M. Structural and functional 

impact of missense mutations in TPMT: An integrated computational approach. Comput 

Biol Chem 2015;59 Pt A:48-55. 

22. Solayman M, Saleh MA, Paul S, Khalil MI, Gan SH. In silico analysis of non-synonymous 

single nucleotide polymorphisms of the human adiponectin receptor 2 (ADIPOR2) gene. 

Comput Biol Chem 2017;68:175-185. 

23. Seifi M, Walter MA. Accurate prediction of functional, structural, and stability changes in 

PITX2 mutations using in silico bioinformatics algorithms. PLoS One 2018;13:e0195971. 

24. Falahi S, Karaji AG, Koohyanizadeh F, Rezaiemanesh A, Salari F. A comprehensive in 

Silico analysis of the functional and structural impact of single nucleotide polymorphisms 

(SNPs) in the human IL-33 gene. Comput Biol Chem 2021;94:107560. 

25. Halder SK, Rafi MO, Shahriar EB, Albogami S, El-Shehawi AM, Daullah SMMU, Himel 

MK, Emran TB. Identification of the most damaging nsSNPs in the human CFL1 gene and 

their functional and structural impacts on cofilin-1 protein. Gene 2022;819:146206. 

http://mbrc.shirazu.ac.ir/


 

 

 

 

Malhotra et al., / Mol Biol Res Commun 2025;14(4):291-306  DOI:10.22099/mbrc.2025.53206.2156    MBRC 

http://mbrc.shirazu.ac.ir                                                                304                                                               

  

26. Kalmari A, Hosseinzadeh Colagar A, Heydari M, Arash V. Missense polymorphisms 

potentially involved in mandibular prognathism. J Oral Biol Craniofac Res 2023;13:453-

460. 

27. Bouqdayr M, Abbad A, Baba H, Saih A, Wakrim L, Kettani A. Computational analysis of 

structural and functional evaluation of the deleterious missense variants in the human 

CTLA4 gene. J Biomol Struct Dyn 2023;41:14179-14196. 

28. Sivakumar K, Subbiah U. Computational analysis of non-synonymous SNPs in the human 

LCN2 gene. Egyp J Med Human Genet 2024;25:94. 

29. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: 

the NCBI database of genetic variation. Nucleic Acids Res 2001;29:308-311. 

30. UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res 

2018;46:2699. 

31. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on 

protein function using the SIFT algorithm. Nat Protoc 2009;4:1073-1081. 

32. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino 

acid substitutions and indels. Bioinformatics 2015;31:2745-2747. 

33. Shihab HA, Gough J, Mort M, Cooper DN, Day IN, Gaunt TR. Ranking non-synonymous 

single nucleotide polymorphisms based on disease concepts. Hum Genomics 2014;8:11. 

34. López-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpí JL. PMut: a web-based tool for 

the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res 2017; 

45:W222-W228. 

35. Khanna T, Hanna G, Sternberg MJE, David A. Missense3D-DB web catalogue: an atom-

based analysis and repository of 4M human protein-coding genetic variants. Hum Genet 

2021;140:805-812. 

36. Pejaver V, Urresti J, Lugo-Martinez J, Pagel KA, Lin GN, Nam HJ, Mort M, Cooper DN, 

Sebat J, Lakoucheva LM, Mooney SD, Radivojac P. Inferring the molecular and phenotypic 

impact of amino acid variants with MutPred2. Nat Commun 2020;11:5918. 

37. Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation 

from the protein sequence or structure. Nucleic Acids Res 2005;33:W306-W310. 

38. Chen CW, Lin J, Chu YW. iStable: off-the-shelf predictor integration for predicting protein 

stability changes. BMC Bioinformatics 2013;14(Suppl 2):S5. 

39. Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations 

using support vector machines. Proteins 2006;62:1125-1132. 

40. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure 

analysis of mutations causing inheritable diseases. An e-Science approach with life scientist 

friendly interfaces. BMC Bioinformatics 2010;11:548. 

41. Jones DT. Protein secondary structure prediction based on position-specific scoring 

matrices. J Mol Biol 1999;292:195-202. 

42. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic 

Acids Res 2004;32(Web Server issue):W327-W331. 

43. Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N. 

ConSeq: the identification of functionally and structurally important residues in protein 

sequences. Bioinformatics 2004;20:1322-1324. 

44. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. ConSurf 2016: 

an improved methodology to estimate and visualize evolutionary conservation in 

macromolecules. Nucleic Acids Res 2016;44:W344-W350. 

45. Land H, Humble MS. YASARA: A tool to obtain structural guidance in biocatalytic 

investigations. Methods Mol Biol 2018;1685:43-67. 

46. Biovia DS. Discovery studio visualizer. San Diego, CA, USA 2017;936:240-249. 

47. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and 

PROCHECK-NMR: programs for checking the quality of protein structures solved by 

NMR. J Biomol NMR 1996;8:477-486. 

http://mbrc.shirazu.ac.ir/


 

 

 

 

Malhotra et al., / Mol Biol Res Commun 2025;14(4):291-306  DOI:10.22099/mbrc.2025.53206.2156    MBRC 

http://mbrc.shirazu.ac.ir                                                                305                                                               

  

48. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-

score. Nucleic Acids Res 2005;33:2302-2309. 

49. Carugo O, Pongor S. A normalized root-mean-square distance for comparing protein three-

dimensional structures. Protein Sci 2001;10:1470-1473. 

50. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High 

performance molecular simulations through multi-level parallelism from laptops to 

supercomputers. SoftwareX 2015;1:19-25. 

51. Feroz T, Islam MK. A computational analysis reveals eight novel high-risk single nucleotide 

variants of human tumor suppressor LHPP gene. Egyp J Med Human Gene 2023;24:47. 

52. Pandey S, Maurya N, Avashthi H, Katara P, Singh S, Gautam B, Singh DB. Comprehensive 

analysis of non-synonymous SNPs related to Parkinson’s Disease and molecular dynamics 

simulation of PRKN mutants. Results in Chemistry 2023;5:100817. 

53. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J. SNP detection for massively 

parallel whole-genome resequencing. Genome Res 2009;19:1124-1132. 

54. Shastry BS. SNPs in disease gene mapping, medicinal drug development and evolution. J 

Hum Genet 2007;52:871-880. 

55. Shastry BS. SNPs: impact on gene function and phenotype. Single nucleotide 

polymorphisms: Methods Mol Biol 2009;578:3-22. 

56. Katara P. Single nucleotide polymorphism and its dynamics for pharmacogenomics. 

Interdiscip Sci 2014;6:85-92. 

57. Kang HG, Lee SY, Jeon HS, Choi YY, Kim S, Lee WK, Lee HC, Choi JE, Bae EY, Yoo 

SS, Lee J, Cha SI, Kim CH, Lee MH, Kim YT, Kim JH, Hong YC, Kim YH, Park JY. A 

functional polymorphism in CSF1R gene is a novel susceptibility marker for lung cancer 

among never-smoking females. J Thorac Oncol 2014;9:1647-1655  

58. Chang KH, Wu YR, Chen YC, Wu HC, Chen CM. Association between CSF1 and CSF1R 

Polymorphisms and Parkinson's Disease in Taiwan. J Clin Med 2019;8:1529. 

59. Shin EK, Lee SH, Cho SH, Jung S, Yoon SH, Park SW, Park JS, Uh ST, Kim YK, Kim YH, 

Choi JS, Park BL, Shin HD, Park CS. Association between colony-stimulating factor 1 

receptor gene polymorphisms and asthma risk. Hum Genet 2010;128:293-302. 

60. Soares MJ, Pinto M, Henrique R, Vieira J, Cerveira N, Peixoto A, Martins AT, Oliveira J, 

Jerónimo C, Teixeira MR. CSF1R copy number changes, point mutations, and RNA and 

protein overexpression in renal cell carcinomas. Mod Pathol 2009;22:744-752. 

61. Kang WS, Kim YJ, Paik JW. PM453. Association between CSF1R gene polymorphism and 

the risk of schizophrenia in Korean population. Int J Neuropsychopharmacology 2016; 

19(Suppl 1):64-65. 

62. Bahia W, Soltani I, Abidi A, Mahdhi A, Mastouri M, Ferchichi S, Almowi WY. Structural 

impact, ligand-protein interactions, and molecular phenotypic effects of TGF-β1 gene 

variants: In silico analysis with implications for idiopathic pulmonary fibrosis. Gene 2024; 

922:148565. 

63. Hasnain MJU, Shoaib M, Qadri S, Afzal B, Anwar T, Abbas SH, Sarwar A, Talha Malik 

HM, Tariq Pervez M. Computational analysis of functional single nucleotide 

polymorphisms associated with SLC26A4 gene. PLoS One 2020;15:e0225368. 

64. Emadi E, Akhoundi F, Kalantar SM, Emadi-Baygi M. Predicting the most deleterious 

missense nsSNPs of the protein isoforms of the human HLA-G gene and in silico evaluation 

of their structural and functional consequences. BMC Genet 2020;21:94. 

65. Thakur CJ, Saini S, Notra A, Chauhan B, Arya S, Gupta R, Thakur J, Kumar V. 

Deciphering the functional role of hypothetical proteins from Chloroflexus aurantiacs J-10-

f1 using bioinformatics approach. Mol Biol Res Commun 2020;9:129-139.  

66. Fang J. A critical review of five machine learning-based algorithms for predicting protein 

stability changes upon mutation. Brief Bioinform 2020;21:1285-1292. 

67. Ho DSW, Schierding W, Wake M, Saffery R, O'Sullivan J. Machine Learning SNP Based 

Prediction for Precision Medicine. Front Genet 2019;10:267. 

http://mbrc.shirazu.ac.ir/


 

 

 

 

Malhotra et al., / Mol Biol Res Commun 2025;14(4):291-306  DOI:10.22099/mbrc.2025.53206.2156    MBRC 

http://mbrc.shirazu.ac.ir                                                                306                                                               

  

68. Gerasimavicius L, Livesey BJ, Marsh JA. Loss-of-function, gain-of-function and dominant-

negative mutations have profoundly different effects on protein structure. Nat Commun 

2022;13:3895. 

69. Doss CG, Rajith B, Garwasis N, Mathew PR, Raju AS, Apoorva K, William D, Sadhana 

NR, Himani T, Dike IP. Screening of mutations affecting protein stability and dynamics of 

FGFR1-A simulation analysis. Appl Transl Genom 2012;1:37-43.  

70. Xiong D, Lee D, Li L, Zhao Q, Yu H. Implications of disease-related mutations at protein-

protein interfaces. Curr Opin Struct Biol 2022;72:219-225. 

71. Petrosino M, Novak L, Pasquo A, Chiaraluce R, Turina P, Capriotti E, Consalvi V. Analysis 

and interpretation of the impact of missense variants in cancer. Int J Mol Sci 2021;22:5416. 

72. Li SC, Goto NK, Williams KA, Deber CM. Alpha-helical, but not beta-sheet, propensity of 

proline is determined by peptide environment. Proc Natl Acad Sci USA 1996;93:6676-

6681. 

73. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation 

factor-1 receptor results in loss of microglia, disrupted brain development and olfactory 

deficits. PLoS One 2011;6:e26317. 

74. Plyler ZE, McAtee CW, Hill AE, Crowley MR, Tindall JM, Tindall SR, Joshi D, Sorscher 

EJ. Relationships between genomic dissipation and de novo SNP evolution. PLoS One 

2024;19:e0303257. 

75. Fadason T, Farrow S, Gokuladhas S, Golovina E, Nyaga D, O’Sullivan JM, Schierding W. 

Assigning function to SNPs: considerations when interpreting genetic variation. Semin Cell 

Dev Biol 2022;121:135-142. 

76. Hu G, Hovav R, Grover CE, Faigenboim-Doron A, Kadmon N, Page JT, Udall JA, Wendel 

JF. Evolutionary conservation and divergence of gene coexpression networks in gossypium 

(cotton) seeds. Genome Biol Evol 2016;8(12):3765-3783.  
77. Jordan DM, Ramensky VE, Sunyaev SR. Human allelic variation: perspective from protein 

function, structure, and evolution. Curr Opin struct Biol 2010;20:342-250. 

78. Saini S, Jyoti-Thakur C, Kumar V, Suhag A, Jakhar N. In silico mutational analysis and 

identification of stability centers in human interleukin-4. Mol Biol Res Commun 2018;7:67-

76. 

79. Sharma D, Singh H, Arya A, Choudhary H, Guleria P, Saini S, Thakur CJ. Comprehensive 

computational analysis of deleterious nsSNPs in PTEN gene for structural and functional 

insights. Mol Biol Res Commun 2025;14:219-239. 

 

http://mbrc.shirazu.ac.ir/

