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Abstract– Dissolved Gas Analysis (DGA) is the most reliable technique to identify the incipient 
faults in power transformers. There are several DGA techniques in use such as Doernenburg, 
Rogers, IEC, etc. On the other side there is an increasing tendency to combine data from multiple 
sources and models to achieve more reliable results than individuals.  This investigation proposes 
two fusion approaches consisting of fusion architectures and respective combination methods to 
combine DGA techniques and the gas ratios utilized in these techniques. The proposed approaches 
in this article apply a modified flexible neuro-fuzzy and a gating network as combination methods. 
Various gas concentration data were used for training and validating the models. Results showed 
that the proposed approaches have more advantages compared to the conventional DGA 
techniques. Finally, the importance degree of each gas-ratio to detect each fault was investigated.           
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1. INTRODUCTION 
 

Power transformers are vital and important equipment in power supply utilities. Ageing wave, rising 
energy consumption and liberation have caused an increase in loading power transformers. It causes 
thermal, electrical and mechanical stresses of transformers to increase. Therefore, it is very essential to 
have a suitable and effective evaluation of power transformer conditions. 

For many years, dissolved gas-in-oil analysis (DGA) has been one method used to identify the 
incipient faults in oil-filled power transformers. Insulation oils under thermal and electrical stresses 
produce combustible gases through chemical reactions. These gases are dissolved in oil and include 
hydrogen, methane, ethane, ethylene, acetylene, carbon monoxide and carbon dioxide. Gas concentrations 
in ppm are measured by chromatographic analysis. The proportion of each gas concentration depends on 
the type and severity of the fault. Partial discharge (with low energy), thermal faults (medium energy up to 
large-scale), and electrical arcing (with high energy discharge) are the principal faults which can be 
identified by DGA techniques. Rogers [1], IEC-60599 [2], Doernenburg [1, 3] and Duval [4] are the most 
commonly used DGA techniques. Each technique uses some gas ratios for fault diagnosis and some 
techniques compare gas concentrations to the specified levels to evaluate a transformer's condition. Table 
1 shows eight gas ratios applied in the mentioned DGA techniques, while Tables 2-4 and Fig. 1 show 
corresponding criteria for each technique.   

Furthermore, several artificial intelligent methods have been applied to obtain accurate results. Wang 
[5] proposed a model to combine a fault diagnosis neural network and conventional DGA techniques. The 
model combines each fault probability in decision level through a simple geometric mean and represents 
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more efficient results than individual techniques. In [6], Chen applied a fuzzy method with soft boundaries 
and acquired more precise fault diagnosis. Huang [7] handled a special evolving wavelet network for 
transformer condition monitoring with fast training process. Moreover, some efforts have been made to 
utilize self organization map networks (SOM) [8], CMAC neural networks [9] and other artificial 
intelligent methods [10-11] for increasing fault diagnosis performance. Insufficient data samples for 
testing and applying artificial intelligent systems regardless of the existent knowledge of conventional 
methods are the main weaknesses of the mentioned researches.  

Nowadays hybrid models and combination methods are noteworthy and expose more effective 
performances. The main objective of these methods is to use existent knowledge (criteria, conditions and 
gas ratios) in the conventional DGA techniques and the learning ability of the artificial intelligent models 
simultaneously. In [12], a Dempster-Shafer's method has been used to combine the diagnostic results of 
three DGA techniques. This is a static method based on the evidence theory [12]. In [13] a computational 
system, based on a combination of some traditional techniques, a general regression neural network and a 
fuzzy system, was introduced. Recently, a new multi-agent system was introduced in [14] for detecting 
incipient faults in power transformers. They employed a fusion approach to combine the results of the 
Roger, IEC, Duval’s-triangle and ANN techniques. The proposed fusion approach is a Dempster-Shafer's 
method the same as the applied method in [12]. In this method, portions of each technique in the output 
are fixed, and so it is a static method based on the evidence theory. A significant improvement in the 
diagnosis results compared to the individual techniques was reported. Using dynamic method with flexible 
weights is the main difference between our proposed approaches and the applied technique in [12, 14]. 
Furthermore, we proposed a new fusion approach in feature level fusion which has more accurate results 
than the fusion in decision level.         

    
Table 1. Key gas ratios 
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Table 2. Rogers ratios technique [1] 

 
2R  1R  5R  Diagnosis 

<0.1 >0.1 
<1.0 

<1.0 Unit normal 

<0.1 <0.1 <1.0 PD 
0.1-
3.0 

0.1-
1.0 

>3.0 Arcing 

<0.1 >0.1 
<1.0 

1.0 
3.0 

Low 
temperature 

thermal 
<0.1 >1.0 1.0- 

3.0 
Thermal<700 C°  

<0.1 >1.0 >3.0 Thermal>700 C°  
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Table 3. Doernenburg ratios technique [1] 
 

1R  2R  3R  4R  Diagnosis 
>1.0 <0.75 <0.3 >0.4 Thermal 

<0.1 NS <0.3 >0.4 PD 
>0.1 
<1.0 

>0.75 >0.3 <0.4 Arcing 

 
Table 4. IEC ratios technique [2] 

 
Diagnosis R5

 R1 R2 

Partial 
Discharge(PD) <0.2 <0.1 NS 

Discharge of low    
energy(D1) >1 0.1-.5 >1 

Discharge of high 
energy(D2) >2 0.1-1 0.6-2.5 

Thermal fault T1 
(T<300ºc) <1 NS NS 

Thermal fault T2 
(300 ºc< T<700ºc) 1-4 >1 <0.1 

Thermal fault T3 
(T>700ºc) >4 >1 <0.2 

 
The proposed tool uses a rules table for combining methods output (approximately a voting- table). 
Another research has been done to combine some traditional DGA ratios and obtain more accurate 
performances by using grey clustering analysis [15]. These methods need less time and data for training. 

 

 
Fig. 1. Coordinates and fault zones of Duval’s Triangle [4]  

 
This paper proposes two new architectures and relevant methods to combine data in the feature and 
decision level of the DGA techniques. In other words, using existent knowledge of the conventional 
methods and a combination of their features (gas ratios) to increase the diagnostic accuracy is the most 
important aim of the investigation.  In section II two proposed combination architectures are described and 
respective combination methods, including gating network and flexible neuro-fuzzy method, are 
introduced in section 3. Finally, section 4 demonstrates the diagnosis results of the two proposed models. 
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2. FUSION ARCHITECTURES 
 

New researches have a growing tendency toward using data fusion approaches, especially in signal 
processing, diagnostics and image processing systems. These approaches combine received information 
from various sources and models in different levels to achieve improved accuracies and more specific 
inferences than could be achieved by the use of a single source or model alone [16]. Various data fusion 
structures could be used in the different applications, but the most suitable architecture for diagnostic 
systems is the parametric data fusion architecture [17]. In such system data combination could be 
implemented in three ways as follows: 

 
a) Data level fusion 

 
In this architecture, raw data received from sensors or measurement devices are combined in an 

appropriate method to achieve more reliable and accurate data. The fused data are used for feature 
extraction. Subsequently, a fault identity process is performed to detect the type of fault from the extracted 
feature vector. The identity process in fault diagnostic systems creates a fault probability vector. This 
vector consists of probabilities for all types of faults. Raw data fusion gives the most accurate and also 
time-consuming results, assuming appropriate data association. 

 
b) Feature level fusion 

 
In this architecture, individual data sources produce respective features. These features are combined 

to give a new feature which is applied in the fault identification process to produce a fault probability 
vector. Since the feature vector has a smaller size than the raw data it needs less time to combine. 

 
c) Decision level fusion 

 
In this architecture, each data source performs an identity process based on its own data and features. 

Different identity processes could use the same data source or features. The fault probability vector 
provided individual identity processes are combined using decision level fusion techniques such as 
Bayesian inference, weighted decision methods, or Dempster-Shafer's method [17]. 

The selection among the mentioned architectures depends on the type of data, number of data sources, 
features and identity processes. In DGA, data sources and sensors are usually limited, but there are several 
features, especially gas ratios and diagnostic techniques, as mentioned before. For applying data fusion 
advantages in DGA techniques, two architectures are investigated and proposed as presented in Fig. 2. 

 Fig. 2a shows the proposed architecture for decision level fusion (DLF). In this architecture, gas 
concentrations are input data and the R1-R8 ratios act as features in four conventional DGA techniques. 
Each DGA technique uses its own ratios and predicts the fault probability vector individually. Four 
achieved fault probability vectors are combined in association module. A gating network module 
calculates a portion of each technique in the outputs. The gating network topology will be described in the 
next section. 

Fig. 2b illustrates the proposed architecture for feature level fusion (FLF). This architecture applies 
and combines all ratios to calculate a fault probability vector, whereas in an ideal feature level fusion all 
ratios are combined to produce a new feature. So it is essential to realize that the architecture has some 
differences with the mentioned feature level fusion. A flexible neuro-fuzzy system defines the criteria and 
weight of each ratio through a learning process. The neuro-fuzzy system will be explained in the next part 
as a fusion method. 

Detectable faults by DGA techniques vary in type and number as shown in Tables 2-4 and Fig. 1. All 
detected faults in the DGA techniques are divided to Partial Discharge Fault (PDF), Thermal Fault (THF), 
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and Discharge Fault (DF). 
 
 

 
Fig. 2. The proposed fusion architectures, a): decision level fusion structure, 

b): feature (ratio) level fusion structure 
 

3. FUSION METHODS 
 

a) Gating network 
 

This method is used for decision level fusion architecture. It basically combines available knowledge in 
the expert DGA systems, assuming the achieved results from the fused techniques are more accurate than 
individuals. The proposed block diagram with one layer neural network and softmax function for gating 
network is shown in Fig. 3. The weights of each DGA technique in the output vector depends on the gas 
concentrations and can change, hence it is called a dynamic method [18].  

The output of gating networks j
ig  shows a portion of the i-th DGA technique in the j-th fault 

probability and can be calculated as follows by softmax function: 
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where j

is is the inner product of the gas concentrations vector and gating networks weights as follows: 
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In which kx is the percentage of k-th gas concentration to all gases. j

ikw  is the connecting weight between 
k-th gas and j

ig . On the other side, i-th DGA technique gives fault probability vector io  using its criteria 
and ratios. Since these techniques use crisp criteria, io  elements belong to{ }1,0 .   
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Fig. 3.  Topology of the gating network 

 
Now, the overall probability for each fault can be calculated as follows using gating network output and 
obtained fault probability vectors: 
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where )Pr( jf  is j-th overall fault probability and j=1,2,3 for PDF,THF, DF, respectively. 
Assuming j-th desired output jO  for input vector x  is jd , and applying mean squared error (MSE), the 
performance index can be expressed as follows: 
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According to gradient descent method and chain rule: 
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Then incremental variation j
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where η  is the backpropagation learning rate. So during training j

ikw  are updated as follows:   
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b) Flexible neuro-fuzzy system 

 
Neuro-Fuzzy systems exploit the learning capability of neural networks for enhancing the 

performances of fuzzy systems. A neuro-fuzzy system is a neural network with antecedent and 
consequents of fuzzy rules as nodes. The aim is optimizing the weights and parameters of the model 
through minimization of mean squared error [19]. There are several neuro-fuzzy system structures such as 
Adaptive Network-Based Fuzzy Inference System (ANFIS), Self Adaptive Neuro-Fuzzy Inference System 
(SANFIS), Flexible Neuro-Fuzzy System and others. 

Referring to Tables 2-4 shows each DGA technique applies a set of predefined criteria for some ratios 
to detect the type of fault. To survey the importance and adjust the new boundary conditions of each of the 



Novel fusion approaches for the dissolved gas… 
 

June 2011                                                                            IJST, Transactions of Electrical Engineering, Volume 35, Number E1       

19

DGA ratios a flexible neuro-fuzzy system has been designed and is depicted in Fig. 4. Flexible neuro-
fuzzy systems use a variable structure. Connectives and everything else are flexible to improve 
performance compared to the usual neuro-fuzzy systems [19].  

The proposed system has an independent network for each fault, which acts individually. 
Furthermore, each network uses other networks data as input for training. After training, the weights of the 
ratios in the outputs and the new appropriate criteria (boundary conditions) would be determined. 

In Fig. 4, j
iΩ  is the output of sigmoid membership function for iR  in j-th fault and can be calculated 

as follows: 
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where iR  is i-th ratio as shown in Table 1, j

icp  is crossover point and ia  is responsible for the slope of 
function at the crossover point. For simplicity we utilize unique and fixed ia  for each iR . Crossover points 
are computed as: 
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where j

i
i c,ε  are calculated through network learning. 

In (9), iε  determines the variation domain of crossover point j
icp , and for simplicity we utilize fixed 

values using conventional DGA techniques as presented in the next section. 
To calculate the weights of i-th rule in j-th fault detection network, j

iFw  is used as follows: 
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where j

iw  is calculated through network learning. Small and near to zero j
iFw  represents a negligible 

portion of iR  in the j-th fault detection network and vice versa. Now each neuron output is given by: 
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Therefore, the fault probability is calculated as: 
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where T is a fuzzy t-norm such as min or product. Backpropagation algorithm and MSE as the 
performance index were applied for learning procedure and parameter adjustment.  

 

 
Fig. 4. Flexible neuro-fuzzy system structure 



M. Allahbakhshi and A. Akbari 
 

IJST, Transactions of Electrical Engineering, Volume 35, Number E1                                                                            June 2011 

20 

4. RESULTS AND DISCUSSION 
 

To investigate the performances of the conventional DGA techniques and compare their ability with the 
proposed systems based on soft computing methods, an effort was made to collect sufficient data from 
several sources. About 200 cases of various faults and corresponding gas concentrations were obtained 
from five published articles [5-6], [20-22]. The mentioned data consist of 13 PDF, 70 THF and 101 DF 
cases. Since the number of PDF was not enough, 15 PDF cases simulated in the laboratory from [4] were 
used. Subsequently, 117 collected data from [22] and 5 PDF cases from [4] were used as the training data 
and the remaining data as the test data in the proposed systems for the performance evaluation process. 

Total Diagnostic accuracy was calculated based on the successful diagnosis for all faults to the total 
data. For each fault, diagnostic accuracy was calculated based on the successful fault detection to the 
related data for each type of fault.  

For comparison with an intelligent based technique, SVM technique was selected. The main idea of a 
support vector machine is to construct a hyperplane as the decision surface in such a way that the margin 
of separation between two classes of data is maximized. SVM can provide a good generalization 
performance for classification problems [18]. Three individual SVM classifiers as PD, Thermal and 
Discharge classifier were constructed. Each classifier was trained to detect one special fault, but data from 
all types of faults were used for training.  

Despite the other methods, each classifier has two performances. The first is the accuracy to detect the 
type of fault with the related SVM, and the second performance is the accuracy to reject the other type of 
faults with the classifier. Since these classifiers are independent, there is a probability of a conflict with 
the results of the classifiers. For the mentioned conflict, we assumed the result as a wrong diagnosis. The 
input data for the SVM were normalized gas concentrations. Quadratic kernel function and quadratic 
programming were used to map the training data into kernel space and to find the separating hyperplane 
respectively. 

Matlab toolbox was used for training the SVM classifiers with the same applied training data for FLF 
and DLF methods. The diagnostic accuracies of all classifiers for training data were 100%, but for the test 
data performance of the PD, the classifier reduced to 77.78 for detecting the PD faults and 83.33% for 
total cases (to detect the PD faults and reject the data for other types of fault). Also, the performances of 
the other two classifiers reduced for the test data as shown in Table 5. 

 
a) DLF results 
 

Presented criteria in Tables 2-4 and Fig. 1 were exactly applied (crisp boundaries). Different T1, T2 
and T3 thermal faults were assumed as THF, also D1,D2 were assumed as DF. So each DGA technique 
has three individual crisp outputs which represent probability of faults. In the case of no-decision 
condition, where input values do not fall in the specified regions, the respective technique is not involved 
in the combination process.  

Diagnostic performances of the four mentioned conventional DGA techniques and the proposed 
systems are given in Table 5 based on the collected data. Duval's performance for training data is the most 
accurate technique with about 92% accuracy. Other techniques accuracies are 55% for Rogers, 74% for 
Doernenburg, 100% for SVM and 77% for IEC. Combination of these techniques, using gating network 
method and decision level fusion, increased the accuracy to 94% for training data. These results 
demonstrate appropriate fusion because in an improper fusion, the performance of the overall model 
would reduce compared to individuals. 
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Accuracy of the proposed DLF model was 89% for test data, while calculated accuracies for Duval, 
IEC, Rogers, Doernenburg and SVM were 86, 69, 61, 71 and 85%, respectively. Accuracy reductions for 
Duval, SVM and IEC techniques are more noticeable.   

 
b) FLF settings and results 

 
1. Settings and limitations: The proposed flexible neuro-fuzzy system uses one rule and eight 
antecedents for each fault detection network as shown in Fig. 4. In this system, Fw  describes the 
significance of particular antecedents in all rules. 

Referring to the Table, 51 RR − can vary in [0,∞ ) theoretically, but the variation domain for 86 RR −  is 
[ ]1,0 . So iε  is set as follows: 
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To achieve soft boundaries and parameter reduction, the absolute value of j

ia  is set as: 
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the sign of j

ia  should be defined according to Tables 2-4 and Fig.1. For instance, 1R  is small in the PD 
fault and so in the respective membership function, sign( 1

1a ) is defined as -1 and so on. The outcome is: 
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It should be noticed that the sigmoid function can cover just "smaller than" and "larger than" 

descriptions for ratios in the fuzzy domain. Some expressions such as "between a and b" need Gaussian 
membership function. For the sake of simplicity, we neglected these terms. The remaining parameters for 
adjusting in the learning process are { }wc,  as shown in Fig. 4. 

 
2.  FLF results: The proposed feature (ratio) level fusion method (FLF) was applied using a PC Pentium-
4 3 GHz with 2 GB RAM and MATLAB software. Backpropagation algorithm was applied for the 
training process and mean squared error as performance index. Calculated Fw  matrix after the training 
was: 
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Each column has eight weights for relative fault as shown in (16). As mentioned before, a larger 

amplitude of j
iFw shows the more significant role of the i-th ratios in the j-th fault detection. 
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Table 5. Diagnostic accuracy (%) of DGA techniques and the proposed systems 
 

 PD Thermal Discharge Total 
Training Data 

Rogers 6.25 58.82 63.51 54.84 
Doernenburg 31.25 76.47 82.43 74.19 

IEC 25.00 82.35 86.49 77.42 
Duval 56.25 91.18 100 91.94 
DLF 56.25 100 100 94.35 
FLF 56.25 100 100 94.35 
SVM 100 100 100 100 

Test Data 
Rogers 22.22 86.11 40.74 61.11 

Doernenburg 55.56 94.44 44.44 70.83 
IEC 22.22 94.44 51.85 69.44 

Duval 33.33 94.44 92.59 86.11 
DLF 44.44 97.22 92.59 88.89 
FLF 55.56 100 92.59 91.67 

SVM* 77.78(83.33) 91.67(88.89) 77.78(88.89) 84.72(87.03) 
                   * In this method two diagnostic accuracies are calculated, the first is the accuracy to detect the right 
fault and the other is the accuracy to detect the right fault and reject the data for other types of faults. 

 
According to (16), the most important ratio is R6. It has considerable weights for all three faults. The 

next important ratio is R2 with two important weights for detecting THF and DF. In the next stage there 
are R1, R5, R7 and R8 with just one significant weight and the remaining ratios are negligible in fault 
diagnosis. 

Table 5 shows the obtained results of the FLF method. The proposed method demonstrates 
satisfactory performance for detecting THF and DF. The resultant accuracy is superior to the mentioned 
conventional techniques, DLF and SVM method. Performance of the DGA techniques in PDF detection is 
not desirable, and consequently their combination results in unsatisfactory performance. Nevertheless, the 
proposed systems performances in PDF detection are at least equal to or better than the individual 
techniques, except for the SVM method as shown in Table 5.  

New studies have shown that just PDs of the corona-type are detectable by DGA techniques [4]. 
These types of PDs occur in the gas phase of voids or gas bubbles and are very different from PDs of the 
sparking type occurring in the oil phase. To investigate the performance of the proposed methods, the 
collected PD cases were divided into two mentioned types. The performances of the proposed systems and 
conventional DGA techniques for detecting corona-type PDs are illustrated in Table 6. This confirms the 
appropriate ability of the proposed systems for detecting PDs of the corona type. 

 
Table 6.  Successful diagnostics of various DGA techniques and the proposed 

 systems for detecting corona-type PDs 
 

 Training 
data 

Test 
data 

Rogers 1/9 0/5
Doernenburg 4/9 2/5

IEC 4/9 2/5
Duval 9/9 3/5
DLF 9/9 3/5
FLF 9/9 5/5
SVM 9/9 3/5

 
To combine the knowledge and advantages of the conventional DGA techniques, two combination 

methods were proposed and evaluated. In the first step a combination methodology in decision level was 
introduced. This method combines the diagnoses of conventional DGA methods with a simple gating 
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network. The ability of such combination can be improved as shown in Tables 5, 6. The portion of each 
diagnostic technique in the output is calculated through the gating network. Although the diagnostic 
accuracy can be improved in a proper combination, its performance is basically dependent on the 
performances of combined DGA techniques. This means that the combination method has a wrong 
diagnosis when all techniques fail to identify the type of fault. The second proposed method (FLF) 
combines all introduced ratios in the conventional DGA techniques as features in a neuro-fuzzy system. 
Due to the size of the data, some rules and parameters were eliminated or used as fixed weights. 
Nevertheless, this method showed the most accurate performance as shown in Table 5.  

Assuming the IEC as a reference method, the proposed FLF method showed considerable 
improvement in the diagnostic accuracy compared to several of the published investigations for test data. 
The diagnostic accuracy for the proposed FLF method was 91.67% and 69.44% for IEC, and consequently 
22.23% improvement in the diagnostic accuracy compared to IEC, while this improvement was 14%, 
10%, 10.8% and 6% in [9], [10], [7] and [23], respectively.         

 
5. CONCLUSION 

 
Several combination methods, machine learning and rules mining techniques were introduced in electrical 
and computer systems [24-25]. To implement these methods in fault diagnostic systems, new fusion 
approaches were proposed for the conventional DGA techniques and related features. DGA techniques 
with several ratios and criteria have long been used for power transformer fault diagnosis. They have 
relative advantages and disadvantages. Many artificial techniques were applied to obtain a more accurate 
result. Nevertheless, there are limited investigations that have used DGA knowledge and the learning 
ability of artificial intelligent systems simultaneously. In this investigation, two combination systems were 
applied in the decision level and feature level for conventional DGA techniques. Gas concentrations of 
196 faulty cases were collected for training and validating the methods. Three types of faults including 
partial discharge, thermal faults and discharge fault were selected as the main faults. The results showed: 

• Combination in the feature level, using the flexible neuro-fuzzy system, gives the most reliable 
results. It also determines the weight of each ratio for individual fault detection networks. 

• Combination in the decision level gives more reliable performance than individual techniques and 
is less accurate than feature level fusion. More parameters for adjusting in the learning process and 
the basic limitation of each DGA technique are the possible reasons.  

• Both combination approaches showed dominant performances compared to conventional DGA 
techniques, while Duval's technique had the best performance in the studied DGA techniques.               

• By using FLF, it has been demonstrated that R2, R6 have important capability for detecting main 
faults. In other words, concentrations of methane, ethylene and acetylene have a key role in fault 
diagnosis. This explains the superiority of Duval's technique because it uses these three gases as 
inputs. 

• The ability of the DLF method in fault identification is considerably dependent on the 
performances of the conventional methods. So the undefined conditions for some criteria in the 
conventional ratio techniques will decrease the performances of these methods. Also, the 
overlapped region in Duval's technique decreases the performance of the DLF method, while the 
FLF method basically solves the problem through using the fuzzy boundaries. 
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