[2] Ha, N. S., & Lu, G., (2020). Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics. Thin-Walled Structures, 157, 106995. https://doi.org/10.1016/j.tws.2020.106995
[3] Behrvan, A., SeyyedKashi, H., & Sheikhi Azqandi, M. (2023). Optimal design and manufacturing of a cylindrical damper using time evolutionary optimization method. Modares Mechanical Engineering, 23(1), 45-55. https://doi.org/10.52547/mme.23.1.45
[4] Liu, W., Lin, Z., Wang, N., & Deng, X. (2016). Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact. Thin-Walled Structures, 100, 25–37. https://doi.org/10.1016/j.tws.2015.11.016
[5] Rong, Y., Liu, J., Luo, W., & He, W. (2018). Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels. Composites Part B Engineering, 152, 324–335. https://doi.org/10.1016/j.compositesb.2018.08.130
[6] Sun, G., Chen, D., Huo, X., Zheng, G., & Li, Q. (2018). Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels. Composite Structures, 184, 110–124. https://doi.org/10.1016/j.compstruct.2017.09.025
[7] Liu, J., Zheng, B., Zhang, K., Yang, B., & Yu, X. (2019). Ballistic performance and energy absorption characteristics of thin nickel-based alloy plates at elevated temperatures. International Journal of Impact Engineering, 126, 160–171. https://doi.org/10.1016/j.ijimpeng.2018.12.012
[8] Yahaya, M. A., Ruan, D., Lu, G., Dargusch, & M. S. (2015). Response of aluminums honeycomb sandwich panels subjected to foam projectile impact–an experimental study. International Journal of Impact Engineering, 75, 100–109. https://doi.org/10.1016/j.ijimpeng.2014.07.019
[9] Azarakhsh, S., Qamrian, A., Rizvani, & M. J. (2022). Investigation of different geometric parameters effect on axial crushing of thin-walled conical tubes. Tabriz Mechanical Engineering, 52(2), 212-203. https://doi.org/10.22034/jmeut.2022.37017.2596
[10] Jafarian, N., & Rezvani, M. J. (2019). Crushing behavior of multi-component conical tubes as energy absorber: a comparative analysis between end-capped and non-capped conical tubes. Engineering Structure, 178, 128–135. https://doi.org/10.1016/j.engstruct.2018.09.092
[11] Souzangarzadeh, H., Rezvani, M. J., & Jahan, A. (2017). Selection of optimum design for conical segmented aluminum tubes as energy absorbers: Application of MULTIMOORA method. Applied Mathematical Modelling, 51, 546-560. https://doi.org/10.1016/j.apm.2017.07.005
[12] Azarakhsh, S., & Ghamarian, A. (2017). Collapse behavior of thin-walled conical tube clamped at both ends subjected to axial and oblique loads. Thin-Walled Structures, 112, 1–11. https://doi.org/10.1016/j.tws.2016.11.020
[13] Nadaf Eskouei, A., Khodarahmi, H., & Sohrabi, M. (2015). Experimental and numerical study of conical thin shells collapse under dynamic axial loadings. Modares Mechanical Engineering, 15(7), 392-402.
[14] Nadaf Eskouei, A., Khodarahmi, H., & Pakian Booshehri, M. (2015). Numerical and experimental study of a diamond collapse of a thin wall tube energy-absorb with caps under dynamic axial loadings. Modares Mechanical Engineering, 15(2), 169-178.
[15] Shariati, M., Davrpaneh, M., Chavshan, H., & Allahbakhsh, H. (2014). Numerical and experimental investigations on buckling and control amount of energy absorption of stainless steel 304L shells with various shapes under axial loading. Modares Mechanical Engineering, 14(3), 60-68.
[19] Tarigopula, V., Langseth, M., Hopperstad, O. S., & Clusen, A. H. (2006). Axial crushing of thin-walled high-strength steel sections. International Journal of Impact Engineering, 32(5), 847–882. https://doi.org/10.1016/j.ijimpeng.2005.07.010
[21] Alavinia, A., & Liaghat, G. H. (2004). Dynamic crushing of thin-walled columns under impact of projectiles. In 12th Annual International Conference of Mechanical Engineering, Tarbiat Modarres University, Tehran, Iran.
[22] Yob, M. N., Ismail, K. A., Rojan, M. A., Othman, M. Z., & Ahmad Zaidi, A. M. (2016). Quasi static axial compression of thin-walled aluminum tubes: Analysis of flow stress in the analytical models. Modern Applied Science, 10(1), 34-46. https://doi.org/10.5539/mas.v10n1p34
[23] Mohamed Sheriff, N., Gupta, N. K., Velmurugan, R. & Shanmugapriyan, N. (2008). Optimization of thin conical frusta for impact energy absorption. Thin-Walled Structures, 46(6), 653-666. https://doi.org/10.1016/j.tws.2007.12.001
[24] Pirmohammad, S., & Esmaeili Marzdashti, S. (2017). Studying on the collapse behavior of multi-cell conical structures and their optimization using artificial neural network. Scientific Research Journal of Mechanics of Structures and Fluids, 7(2), 111-127. https://doi.org/10.22044/jsfm.2017.5577.2363
[26] Alexander, J. M. (1960). An approximate analysis of collapse of thin-walled cylindrical shells under axial loading. Mechanical and Applied Mathematics, 13(1), 10-15. https://doi.org/10.1093/qjmam/13.1.10
[30] Elmarakbi, A., Long, Y. X., & MacIntyre, J. (2013). Crash analysis and energy absorption characteristics of S-shaped longitudinal members. Thin-Walled Structures. 68, 65–74. https://doi.org/10.1016/j.tws.2013.02.008
[31] Mokhtarnezhad, F., Salehghaffari, S., & Tajdari, M. (2009). Improving the crashworthiness characteristics of cylindrical tubes subjected to axial compression by cutting wide grooves from their outer surface. International Journal of Crashworthiness, 14(6), 601-611. https://doi.org/10.1080/13588260902896466
[32] Wang, Sh., Weigang, A., Lin, T., & Han, X. (2022). Topometry optimization of energy absorbing structure through targeting force-displacement method considering tailor rolled blank process. International Journal of Aerospace Engineering, (1), 7776866, https://doi.org/10.1155/2022/7776866
[33] Azarakhsh, S., Rezvani, M. J., Maghsoudpour, A., & Jahan, A. (2024). Inversion performance and multi-objective optimization of multi-component conical energy absorber with a spherical cap. International Journal of Mechanics and Materials in Design, 20, 877–893. https://doi.org/10.1007/s10999-023-09694-1
[34] Ayhan, A. O., Genel, K., & Eksi, S. (2011). Simulation of nonlinear bending behavior and geometric sensitivities for tubular beams with fixed supports. Thin-Walled Structures, 51, 1–9. https://doi.org/10.1016/j.tws.2011.10.016
[35] Sheikhi Azqandi, M., & Ghoddosian, A. (2012). Optimal design of structural support positions using ICA and MFEM. Modares Mechanical Engineering, 12(3), 50-59 (In Persian).
[36] Sheikhi Azqandi, M., Delavar, M, & Arjmand, M. (2016). Time evolutionary optimization: A new meta-heuristic optimization algorithm, In Proceedings of the 4th International Congress on Civil Engineering, Architecture and Urban Development, Shahid Beheshti University, Tehran, Iran, (In Persian).
[37] Bijari, Sh., & Sheikhi Azqandi, M. (2022). Optimal design of reinforced concrete one-way ribbed slabs using improved time evolutionary optimization. International Journal of Optimization in Civil Engineering, 12(2), 201-214.
[38] Bijari, Sh., & Sheikhi Azqandi, M. (2023). CO 2 emissions optimization of reinforced concrete ribbed slab by hybrid metaheuristic optimization algorithm (IDEACO). Advances in Computational Design, 8(4), 295-307. https://doi.org/10.12989/acd.2023.8.4.295
[39] Safaeifar, H., & Sheikhi Azqandi, M. (2021) Optimal design of the impact damper in free vibrations of SDOF system using ICACO. International Journal of Optimization in Civil Engineering, 11(3), 461-479.
[40] Hassanzadeh, M., & Sheikhi Azqandi, M. (2023). Optimum shape design of axisymmetric extrusion die by using hybrid meta-heuristic optimization (ICACO). Journal of Solid and Fluid Mechanics, 13(4), 107-117. https://doi.org/10.22044/jsfm.2023.13213.3749
[41] Sheikhi Azqandi, M. (2021). A novel hybrid genetic modified colliding bodies optimization for designing of composite laminates. Mechanic Advanced Composite Structures, 8(1), 203-212. https://doi.org/10.22075/macs.2020.20281.1254
[44] Kaveh, A., & Bijari, Sh. (2019). Profile and wave front optimization by metaheuristic algorithms for efficient finite element analysis. Scientia Iranica, 26(4), 2032-2046. https://doi.org/10.24200/sci.2018.20163
[45] Kaveh, A. (2021). Advances in metaheuristic algorithm for optimal design of structures (3rd ed.). Springer.
[46] Kaveh, A., & Bijari, Sh. (2018). Simultaneous analysis, design and optimization of trusses via force method structural engineering and mechanics. Structural Engineering and Mechanics, 65(3), 233-241. https://doi.org/10.12989/sem.2018.65.3.233
[47] Kaveh, A., Hoseini Vaez, S. R., & Hosseini, P. (2019). Enhanced vibrating particles system algorithm for damage identification of truss structures. Scientia Iranica, 26(1), 246-256. https://doi.org/10.24200/sci.2017.4265
|