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ABSTRACT 
 

Ovarian cancer (OC) is one of the most common malignancies of the genitourinary system 

in women that has a high mortality rate worldwide. Drug resistance and tumor relapse are the 

main causes of high mortality rate in OC patients. Therefore, investigation of the molecular 

mechanisms involved in OC progression can be valuable to introduce effective therapeutic 

targets for these patients. Epithelial-mesenchymal transition (EMT) as a key regulator of tumor 

relapse and drug resistance can be regulated by different signaling pathways such as WNT and 

NOTCH. VOPP1 is an activator of NF-κB pathway during tumor progression. Considering the 

importance of cross talks between different signaling pathways during tumor progression, we 

assessed the role of VOPP1 in OC progression through the modulation of WNT and NOTCH 

pathways. The expression levels of components of WNT and NOTCH signaling pathways, as 

well as the EMT process, were evaluated in VOPP1-induced A2780 cells compared to control 

cells. Role of VOPP1 in OC invasiveness was also assessed through migration and drug 

resistance assays. VOPP1 inhibited EMT process and NOTCH and WNT pathways in A2780 

cells. VOPP1 also significantly reduced cell migration (p=0.04) and paclitaxel (PTX) resistance 

in A2780 cells (p<0.0001). VOPP1 reduced ovarian tumor cell migration and PTX resistance 

via regulation of NOTCH and WNT mediated EMT process. Therefore, it can be suggested as a 

novel therapeutic target in OC patients following further animal studies and clinical trials.  
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INTRODUCTION 
 

Ovarian cancer (OC) is a serious global health challenge, affecting 324,603 individuals and 

causing approximately 200,000 deaths annually [1]. Ovarian cancer is a heterogeneous disease, 

comprising various tumor types with distinct clinical characteristics and prognoses. They are 

classified based on their tissue of origin into epithelial cells, stromal endocrine cells, and 

totipotent germ cells [2]. The standard treatment regimen for advanced OC patients involves 

platinum-based chemotherapy combined with a taxane as adjuvant therapy [3]. However, up to 

70% of patients with advanced-stage OC experience disease recurrence and metastasis despite 
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these treatments. Since, retreatment with platinum agents is also ineffective for platinum-

resistant patients, alternative therapeutic options are necessary for these cases [4, 5]. Therefore, 

Novel approaches, including targeted therapies and immunotherapy, are emerging as potent 

options to improve outcomes in these patients. 

Epithelial-to-mesenchymal transition (EMT) is a biological process during which epithelial 

cells lose E-cadherin and acquire mesenchymal markers, including N-cadherin and vimentin 

that results in tumor metastasis [6, 7]. EMT-inducing transcription factors including Snail, Slug, 

ZEB1, ZEB2, and TWIST1 not only repress the epithelial markers, but also up regulate 

mesenchymal markers and Matrix Metalloproteinases, which contribute to the disruption of 

epithelial cell adhesions and the promotion of EMT [8, 9]. EMT can be regulated by various 

signaling pathways such as NF-κB, Wnt/β-catenin, and Notch [10, 11]. Hypoxia and growth 

factors such as HGF also contribute to EMT by activation of PI3K/AKT and Src [12-14]. 

According to the vital role of EMT in tumor recurrence, metastasis, and drug-resistance [15-17], 

researches have been focusing on revealing the mechanisms underlying EMT and developing 

strategies to block or reverse this oncogenic process.  

NF-κB pathway is involved in immune responses, apoptosis, cell proliferation, and EMT 

process [18]. The regulation of EMT-related genes by NF-κB promotes cellular migration and 

tumor metastasis [19, 20]. Twist is a critical transcription factor for promoting metastasis via 

regulating the EMT pathway that can be modulated by NF-κB [21-23]. Wnt, Notch, and NF-kB 

network has pivotal roles in tumor microenvironment and metastasis [24, 25]. VOPP1, also 

known as EGFR-coamplified and overexpressed protein, is a critical regulator of apoptosis and 

growth in cancer cells that primarily acts through the NF-κB pathway [26, 27]. VOPP1 has a 

dual role as either an oncogene or tumor suppressor, depending on the cellular context. VOPP1 

has been associated with increased tumor cell survival in gastric cancer [28]. Conversely, 

VOPP1 suppressed cell growth and invasion in cervical cancer [29]. These findings suggest that 

VOPP1 may contribute to tumor progression by modulation of signaling pathways, emphasizing 

its dual functionality and importance in cancer biology. Considering the role of NF-κB, WNT, 

and NOTCH network in tumor microenvironment and the lack of reports on the role of VOPP1 

in ovarian cancer, we investigated its role in regulation of EMT process and drug resistance via 

WNT and NOTCH pathways. 

 

 

MATERIALS AND METHODS 
 

Cell culture and transfection: A2780 cell line was cultured in RPMI 1640 medium 

supplemented with 10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin. Transfection 

of the A2780 cells was performed using a VOPP1 expression vector (p3XFLAG-CMV-7.1-

VOPP1) and a specialized nanoparticle delivery system (Fusofect, Iran). Since, p3XFLAG-

CMV-7.1 had not any visual marker; we used pCDH-513b plasmid as the positive control to 

check the efficiency of transfection. Transfection efficiency was assessed 48 hours post-

transfection using optical evaluation (Optica, Italy). Additionally, real-time PCR analysis 

confirmed the successful up regulation of VOPP1 expression in transfected cells (12 fold 

changes). 

 

RNA extraction, cDNA synthesis, and real-time PCR: RNA was extracted from both 

transfected and control A2780 cells using the Total RNA Extraction Kit (Parstous, Iran). cDNA 

synthesis was performed using Easy cDNA Ultra-TM Synthesis Kit (Parstous, Iran), and real-

time PCR was conducted using the SYBR Green method (Parstous, Iran) in duplicate reactions 

(Light Cycler, Germany). The expression levels of VOPP1, EMT markers, Notch, Wnt, and 

ABC transporter components were assessed in transfected cells compared to non-transfected 

controls. All of the primer sequences were designed by AlleleID®, and then were checked by 

primer blast database (Table 1) [30-32]. GAPDH served as internal normalizers for the mRNA 
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expression analysis. Gene expression was analyzed using the -ΔΔCT method, with changes in 

fluorescence intensity of >|2-fold| considered as deregulation [33, 34]. 

 
Table 1: Primer sequences used for comparative real-time qRT-PCR 

Genes Forward Reverse 

VOPP1 GGCTGTGGTACTTCTGGTTCCTT GTGTAGGACACATTGAAGGCTGG 

WNT1 GTCCTCCTAAGTCCCTTCCTATTC CCCAACCTCATTTCCACATCATC 

β-catenin CAACTAAACAGGAAGGGATGGAAGG CAGATGACGAAGAGCACAGATGG 

FZD-1 CAAGAGAGGAGCCGAGAAAGTATG CCAGCAGCCAAAGCAGCAG 

GSK3-B AGTGGTGAGAAGAAAGATGAGGTC GTTTAATATCCCGATGGCAGATTCC 

LEF-1 CAGCGGAGCGGAGATTACAG GATTTCAGACTCGTTCACCAAGG 

TCF-7 GCTGCCATCAACCAGATCCT CCTCCTGTGGTGGATTCTTGG 

DVL GGTCTCCTGGCTGGTCCTG CCTGTCTCGTTGTCCATCCC 

LRP6 AACCTTCAAGAATACAGACAGCAC TCTTCACATTCAGTAAACCCATCG 

TWIST1 GGAGTCCGCAGTCTTACGAG GTCATTGATGGCAACAATATCCACT 

VIMENTIN GGCTCGTCACCTTCGTGAAT GAGAAATCCTGCTCTCCTCGC 

N-CADHERIN     ATGGTGTATGCCGTGAGAAG TGTGCTTACTGAATTGTCTTGG 

FIBRONECTIN AGGAAGCCGAGGTTTTAACTG AGGACGCTCATAAGTGTCACC 

SNAIL CTAGGCCCTGGCTGCTACAA ACATTCGGGAGAAGGTCCGA 

SLUG GCCAAACTACAGCGAACTGG TGGAATGGAGCAGCGGTAG 

E-CADHERIN ATTCTGATTCTGCTGCTCTTG AGTCCTGGTCCTCTTCTCC 

OCCLUDIN AAGCAAGTGAAGGGATCTGC GGGGTTATGGTCCAAAGTCA 

ZEB-2 GGGACAGATCAGCACCAAAT CGCAGGTGTTCTTTCAGATG 

I-CAM TGTGACCAGCCCAAGTTGTT AGTCCAGTACACGGTGAGGA 

MMP-2 GCAGGGCGGCGGTCAC CGAAGGCAGTGGAGAGGAAGG 

MMP-3 GCTGTATGAAGGAGAGGCTGATATAATG GAGAAATAAATTGGTCCCTGTTGTATCC 

MMP-7 TAAAGGCATTCAGAAACTATATGGAAAGAG GGAGTGGAGGAACAGTGCTTATC 

MMP-9 GACGCCGCTCACCTTCACTC GGAACCACGACGCCCTTGC 

MMP-10 AAGAGATGCTGTTGATTC ATTGGTGCCTGATGC 

HES1 GGCTAAGGTGTTTGGAGGCT GCTGTTGCTGGTGTAGACGG 

HES5 AAGCACAGCAAAGCCTTC GCACCACGAGTAGCCTTC 

HEY1 ACGGCAGGAGGGAAAGGTTAC CTGGGAAGCGTAGTTGTTGAGATG 

HEY2 ATGAGCATAGGATTCCGAGAGTG GGCAGGAGGCACTTCTGAAG 

MAML1 TCTCGCGGAACAGGAGAA GCAGCAGAGGACCCTGTG 

DLL1 ATAGCAACTGAGGTGTAAAATGG CTCGGTCTGAACTCGGTTTC 

NOTCH1 CAGAGGCGTGGCAGACTAT CGGCACTTGTACTCCGTCAG 

NOTCH2 CCTTGCCTGAACGATGGTC TCTCTGCCCTGTGAATCCTG 

NOTCH3 AGGGACGTCAGTGTGAACTC GTCCACATCCTGCTGGCATC 

ABCC4 GAAATTGGACTTCACGATTTAAGG TTCCACAGTTCCTCATCCGT 

ABCG2 TGAGGGTTTGGAACTGTGG GATTCTGACGCACACCTGG 

GAPDH GGAAGGTGAAGGTCGGAGTCA GTCATTGATGGCAACAATATCCACT 

 

 

Migration assay and Drug resistance assay: A2780 cells were seeded in 12-well plates 

and allowed to reach 90–100% confluency. A scratch was created in the monolayer, and wound 

closure was assessed using an inverted microscope (Optica, Italy) at 24- and 48-hours post-

scratch. Images were captured, and the percentage of wound closure was calculated using 

ImageJ software. Migration assays were performed in duplicate reactions to quantify the extent 

of cell migration. Statistical significance of migration differences between transfected and 

control A2780 cells was evaluated using the ANOVA test. The statistical analyses were 

conducted using the SPSS 27.0.1 software (Chicago, IL). The response of A2780 cells to 

Paclitaxel (PTX) (IC50=0.65 µM) following VOPP1 ectopic expression was also assessed using 

the MTT assay. We compared cell viability between transfected and control A2780 cells by 

measuring the optical density (OD) of viable cells at an absorbance of 570 nm. All of the MTT 

tests were conducted in triplicate.  
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RESULTS  
 

We assessed the role of VOPP1 in regulation of EMT process. There were E-cadherin up 

regulation (2.56 fold changes), while Vimentin, N-cadherin, and Snail down regulations (-1.64, 

-2.64, and -1.76 fold changes, respectively) following the VOPP1 ectopic expression in A2780 

cells. Matrix Metalloproteinases (MMP2, MMP7, and MMP9) were also significantly down 

regulated in VOPP1-transfected cells (-2.90, -2.17, and -1.86 fold changes, respectively). These 

findings suggest that VOPP1 may act as a suppressor of EMT by down regulating transcription 

factors, mesenchymal markers, and MMPs, while enhancing E-cadherin expression (Fig. 1A). 

Tumor recurrence remains a major obstacle in cancer therapy due to drug resistance [35, 36]. 

Since, ABC transporters play a pivotal role in mediating drug efflux; we investigated the 

potential relationship between VOPP1 and the expression of ABCC4 and ABCG2. VOPP1 down 

regulated the ABCC4 (-2.61 fold changes) in A2780 cells (Fig. 1B). that results in reduced PTX 

efflux and reduced resistance in A2780 cells.  

 

 

 
Figure 1: Expression level of critical genes involved in EMT process in VOPP1 transfected compared to 

the non-transfected A2780 cells (A). Expression level of ABC transporters in VOPP1 transfected 

compared to the non-transfected A2780 cells (B). 

 

We evaluated the potential relationship between VOPP1 expression and NOTCH pathway 

through the analysis of several key components of this pathway. VOPP1 down regulated 

NOTCH1, NOTCH2, and NOTCH3 (-1.55, -2.40, and -1.13 fold changes, respectively) in 

A2780 cells. We also analyzed the expression of HEY1 and HEY2, two major downstream target 

genes of the NOTCH pathway. Interestingly, VOPP1 down regulated HEY1 (-5.92 fold change) 

and HEY2 (-3.83 fold change) in transfected cells. These results suggested that VOPP1 might 

negatively regulate the NOTCH pathway in A2780 cells (Fig. 2A). We also investigated the 

potential link between VOPP1 expression and the WNT pathway by analyzing the expression of 

several key WNT components. Notably, there was a significant up regulation of APC (2.43 fold 

change) and a marked down regulation of β-catenin (-6.19 fold change) in VOPP1-transfected 

A2780 cells. Moreover, LEF1 and TCF7 were significantly down regulated in VOPP1-

transfected cells (-2.27 and -5.61 fold changes, respectively) (Fig. 2B). 
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Figure 2: Expression level of NOTCH signaling components in VOPP1 transfected compared to the non-

transfected A2780 cells (A). Expression level of WNT signaling components in VOPP1 transfected 

compared to the non-transfected A2780 cells (B). 

 

The effect of VOPP1 on Paclitaxel (PTX) resistance and cell migration was evaluated in 

A2780 cells. VOPP1 significantly decreased PTX resistance after 48 hours in A2780 cells 

(p<0.0001) (Fig. 3). VOPP1 also significantly reduced A2780 cell migration at both 24 and 48 

hours compared to control cells (p=0.04) (Fig. 4). These results indicated that VOPP1 reduced 

chemo resistance and impaired cell migration in A2780 cells.  

 

 
Figure 3: Drug resistance assay for the PTX in VOPP1 transfected cells in comparison with control 

A2780 cells. 

 

 

DISCUSSION 
 

Crosstalk between signaling pathways has been closely associated with several hallmarks of 

cancer, including drug resistance, EMT process, and immunosuppression [24, 25, 37]. NF-κB 

signaling is widely recognized as an oncogenic pathway in tumor cells [38-41]. The interaction 

between NF-κB signaling and the EMT process have been extensively studied in gynecological 

malignancies. For example, inhibition of NF-κB signaling down regulated Twist and suppressed 

EMT process and cell invasion in OC [42]. PI3K/Akt axis activated NF-κB signaling that 

enhanced EMT process and ovarian tumor cell invasion [43].  
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Figure 4: Migration assay in VOPP1 transfected in comparison with non-transfected A2780 cells. 

 

 

It has also been demonstrated that SOS1 can activate NF-κB mediated EMT process in an 

Akt-independent manner in ovarian cancer [44]. VOPP1 is a critical regulator of cell survival 

through activation of the NF-κB pathway [45, 46]. VOPP1 has dual roles as a tumor suppressor 

or oncogene. Reduced expression of VOPP1 has been shown to enhance resistance toward BET 

inhibitors in non-small cell lung cancer (NSCLC) cells [47]. Inhibition of HOTAIR reduced 5-

FU resistance in colorectal cancer (CRC) via miR-218/VOPP1 axis [48]. VOPP1 facilitates the 

localization of WWOX protein within lysosomes, preventing its interaction with p73α, thereby 

suppressing apoptosis and promoting tumor progression [49]. VOPP1 also exerts its regulatory 

functions by modulating the lncRNA-miR-mRNA axes in tumor cells [28, 50]. Thus, in this 

study we investigated the role of VOPP1 in ovarian tumor progression. Regarding the key role 

of WNT and NOTCH pathways in EMT process and drug response of tumor cells, we assessed 

for a probable interaction between the VOPP1 and these signaling pathways in ovarian tumor 

cells.   

NF-κB signaling has been shown to suppress the Wnt/β-catenin pathway indirectly, by 

regulating the expression of NF-κB target genes, including LZTS2 and SMURF, or directly, by 

interfering with the assembly of the β-catenin/TCF/p300 transcriptional complex [51]. We also 

observed that VOPP1 up regulated APC while down regulated β-catenin in ovarian tumor cells. 

This suggests that VOPP1 may regulate the stability of β-catenin by modulating the destruction 

complex. In addition, LEF1 and TCF7 were significantly suppressed in VOPP1-transfected 

cells. This indicates that VOPP1 as a part of NF-κB pathway can modulate WNT pathway via 

the downregulation of β-catenin and TCF/LEF complex in ovarian tumor cells.  

Notch and NF-kB are coactivated in several cancers including pancreatic, cervical and 

breast cancer [52, 53]. However, there is not any report about the probable interaction between 

NF-kB and NOTCH pathways during OC progression. Therefore, in the present study we 

assessed the role of VOPP1 in OC progression via interaction with NOTCH pathway. VOPP1 

inhibited the NOTCH pathway in ovarian tumor cells. EMT process was demonstrated to be 

regulated by activation of Wnt/β-catenin pathway in OC [54-56]. Notch-induced EMT was 

shown to increase cell migration and sphere formation of ovarian cancer cells [57-59]. 

Therefore, WNT and Notch are pivotal regulators of EMT process in ovarian cancer and we 

hypothesized that VOPP1 can suppress the EMT process through regulation of WNT and Notch 

pathways. VOPP1 significantly reduced EMT and cell migration in ovarian tumor cells. We also 

observed a marked down regulation of MMP2, MMP7, and MMP9 as key factors in cell 
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migration in VOPP1-transfected cells. Therefore, VOPP1 can be a critical regulator EMT 

process in OC cells through inhibition of WNT and Notch pathways. Chemo resistance can be 

regulated by a variety of molecular and cellular mechanisms, such as the ATP-binding cassette 

(ABC) transporters and EMT process [14, 60, 61]. ABCG2 up regulation was shown to develop 

cisplatin and paclitaxel resistances in ovarian tumor cells [62-64]. Our results revealed a 

significant down regulation of ABCC4 expression in VOPP1-transfected cells. VOPP1 reduced 

PTX resistance in ovarian tumor cells by regulation of ABCC4.  

Our study highlighted the pivotal role of VOPP1 as a negative regulator of WNT/β-catenin 

and NOTCH pathways in ovarian tumor cells. VOPP1 suppressed the EMT process, PTX 

resistance, and OC cell migration by inhibition of WNT and NOTCH pathways. Therefore, 

VOPP1 can be considered as a potential target for overcoming drug resistance and inhibiting 

tumor metastasis in OC patients following further animal studies and clinical trials.  
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