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Abstract– This paper proposes an intelligent control technique for fuel injection control of 
Compressed Natural Gas (CNG) engines. Recurrent Neuro-Fuzzy Networks are used to estimate 
and control air to fuel ratio (AFR) of CNG engines. To reasonably handle such a complicated 
control problem, a precise experimental test has been done on a real CNG fuelled vehicle and the 
process input output data have been collected by running the vehicle in transient conditions. To 
determine the proper amount of gas to be injected, a controller has been designed based on 
nonlinear inverse dynamics of AFR. The results show that the predicted results are in line with the 
measured fuel injection commands produced by the real electronic control unit (ECU). This 
evaluated and validated the efficiency of the controller. The control strategy has the advantage that 
control actions can be calculated analytically, avoiding the costly and time-consuming calibration 
efforts required in conventional fuel injection control strategies.           
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1. INTRODUCTION 
 

In recent years, there has been a continuing effort to reduce fuel consumption and emissions of car engines 
due to the serious environmental effects and the lack of common fossil fuels [1, 2]. A key solution to face 
these problems is to control the fuel to be injected to the engine. Indeed, an accurate amount of fuel to be 
injected in the appropriate air/fuel mixture strictly depends on the fuel properties and the applied control 
strategy. The conventional car fuel injection controllers are based on static 3D maps and are designed in 
part with classical P and PI controllers to control the air to fuel ratio [3, 4]. Since this strategy needs high 
calibration efforts with quite costly and time-consuming experiments, spaces are opened for new 
contributions to improve the control performance with less calibration effort [5, 6]. For this purpose, 
particular interests have been dedicated to engine modeling and control [7-10]. Identification techniques 
[11] and adaptive control methodologies have been proposed in order to identify and estimate the states 
and tune the parameters with the aid of real-time measurements (e.g. Observers, Kalman filters) [12-15]. 
Robust control (especially H∞ control) [16-18] and Sliding mode control [19] methodologies have also 
attracted attention for this problem. Another promising solution for approaching this problem is given by 
intelligent techniques such as Neural Networks and Fuzzy Logic Systems [20]. In [21-23], authors have 
investigated the Recurrent Neural Network models for AFR estimation and control in SI engines. They 
have reproduced the target patterns with satisfactory accuracy. But the major problem of this procedure is 
the trial and error practice to find the appropriate number of hidden layers and the proper number of nodes 
in each layer. A radial basis function (RBF) neural network based approach for the fuel injection control 
problem and a linear model predictive control (MPC) scheme for maintaining the AFR near the 
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stoichiometric value are found in [24, 25]. Nevertheless, an engine works in a wide operating region and a 
linear model is only valid for a small region around a specific operating point. Fuzzy Logic Systems are 
also used in [26-29] to achieve the regulation of the fuel injection system of SI engines. Although the 
results show considerable improvements in fuel injection regulation, the parameters of the fuzzy control 
paradigm are a collection of rules and fuzzy-set membership functions that are intuitively comprehensible 
by the operator. This approach is much harder when the number of inputs, membership functions and rules 
increase. 

The fuel properties also have a major effect on combustion and emissions [30-33]. From the 
environmental viewpoint, CNG engines guarantee cleaner combustion than conventional gasoline and 
diesel engines due to the much smaller amount of nitrogen oxides (NOx) and carbon dioxide (CO2) 
emissions. In [34], authors have investigated the various aspects of CNG engines in more detail. In this 
study, to face the issues associated with the fuel injection control of CNG engines, an intelligent modeling 
of AFR is proposed and based on this model a fuel injection controller is designed. The results show that 
the response of controller is quite similar to the measured fuel injection commands produced by the real 
ECU, but with less calibration effort. This indicates the efficiency of the controller. 
This paper is structured as follows. Section 2 describes potentials of the intelligent technique for AFR 
estimation and control. Section 3 and 4 explain the RNFN design method for AFR estimation and control. 
In Section 5, the details of the experimental test are given. The modeling and control results are shown in 
Section 6. Finally, Section 7 concludes this paper. 
 

2. POTENTIALS OF RECURRENT NEURO-FUZZY NETWORKS 
FOR AFR ESTIMATION AND CONTROL 

 
Fuzzy Logic Systems have many good features such as high mapping capability, handling nonlinear 
dynamics, flexibility and reliability. Nevertheless, they also have many design parameters that may take a 
very long time to design, tune and debug. Besides, the number of fuzzy if-then rules is proportional to 
both the number of membership functions in the fuzzy sets and the number of input variables; it may also 
be difficult to determine the rules when the resulting number of rules is extremely high. The learning 
capability of Neural Networks, especially the multi-layer perceptrons (MLPs) [35] has also attracted 
attention for developing various prediction models, due to its flexibility and universal approximating 
capability [36-37]. Recently, interest in using Recurrent Neural Networks (RNNs) has become a popular 
approach for the identification and control of temporal problems. The RNNs are MLP Networks with 
feedback connections among the neurons to introduce a dynamic effect in their computational system [38]. 
Even though MLP and RNN networks with back propagation learning seem to be very convenient to 
design, networks such as black-box models may not be easy to debug [39]. To provide better results in 
identifying and controlling non-linear dynamical systems and to inherit most common characteristics of 
both FLSs and RNNs, the Recurrent Neuro-Fuzzy Networks (RNFN) are preferred [40-42]. The RNFN is 
a Neuro-Fuzzy Network [43-45] with feedback connection between the neurons located in the output and 
input layers of the Network. It has the following special features. RNFN is comprised of If–Then 
statements that are easier to understand while its structure is not of the black-box nature of neural 
networks, thus it can be more easily debugged [39]. It is fundamentally based on Neuro-Fuzzy Networks 
that have been mathematically introduced in the literature and have unlimited approximation power for 
matching any nonlinear function arbitrarily well [46]. It also learns the rules from real collected samples 
which ease the design process. RNFN has fewer parameters to be determined than NN. Therefore, it can 
provide faster training without loss of generalization power [45, 46]. 
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This research is distinctive in terms of using a RNFN structure as an intelligent approach for both 
modeling and control of AFR in CNG engines in order to limit the AFR excursions from stoichiometry at 
different operational regions. Besides, the design is based on real data collected from a real car and the 
results are compared with the real outputs of the ECU. 
 

3. RNFN FOR AFR ESTIMATION 
 

To build a model for nonlinear dynamics of AFR, consider the following NARX model: 
 

y(t)= F [y(t-1), y(t-2), … , y(t-n), u(t), u(t-1),… , u(t-m), s(t), s(t-1), … , s(t-m)]                (1) 
 
where y, u and s are output, input command and input variables, respectively. Indices n and m are the lag 
spaces. Generally, the determination of mapping function F is not a trivial task. To overcome this problem 
a RNFN structure as shown in Fig. 1 can be used. 
 

 
Fig. 1. RNFN Structure (each circles indicate a fixed node, squares are 

adaptive nodes and “D” block denote a lag space) 
 

In this structure,  ’s are the linguistic variables consisting of output, input command and input 
variables (as are discussed in Section 5); where i is the number of samples and p is the number of 
linguistic variables. To produce a concise representation of the process behaviour, the measured input-
output data which span most of the engine operating regions are clustered into several fuzzy operating 
regions. Within each region, a local linear model is used to represent the process behaviour and the global 
model output is obtained through the defuzzification related to K fuzzy clustered regions; each variable 
has k fuzzy sets inpmfk (k= 1,2,…,K ). Fuzzy sets are used to define process operating regions such that 
the fuzzy dynamic model of a nonlinear process can be described in the following way: 

 
Rule k : IF ( is in1mfk) and ( is in2mfk) and … and ( is inpmfk) THEN 

kAkpAkAkA baaa
ipiik

xxxy  ...
21 21  

 where  's are outputs within the fuzzy clustered regions specified by the fuzzy rules and  's and  's are 
design parameters. To set up the membership functions and to determine the parameters, process input 
output data are used to train the RNFN network. Through training, membership functions of fuzzy 
clustered regions are refined and local models are learned.  

In Fig. 1, each circle indicates a fixed node, whereas a square indicates an adaptive node and “D” 
block denotes a lag space. Similar functions are allocated to nodes in the same layer. Output of nodes in 
layer l is denoted as   where l is the layer number and h is neuron number of the next layer. The function 
of each layer is described as follows: 
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Layer 1: The outputs of this layer are the fuzzy membership grade of the inputs. In this application, 14 
inputs are chosen to estimate the AFR nonlinear dynamics and 3 membership functions related to 3 fuzzy 
operating regions are assigned to each input. Hence, 42 outputs are given by: 
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where hp  , hq  and hr  are the parameters of the membership function, governing the bell shaped functions 
accordingly. 
 
Layer 2: Each node computes the firing strengths of the associated rules. The output of nodes in this layer 
can be presented as: 
 

   3,2,1),( )...()(
143921 3

2 
 hxxxwO

ihihih AAAAAAhh   (4) 
 
Layer 3: In the third layer, the nodes are also fixed nodes. They play a normalization role to the firing 
strengths from the previous layer. The outputs of this layer can be represented as: 
 

     321
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Layer 4: The output of each adaptive node in this layer is simply the product of the normalized firing 
level and a first order polynomial of a Takagi-Sugeno model. Thus, the outputs of this layer are given by: 
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Layer 5: Finally, in layer 5, the circle node S sums all incoming signals. Hence, the overall output of the 
model is given by: 
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(7) 

 
The RNFN has two adaptive layers, the first layer with modifiable parameters hp , hq  and hr  and the 

fourth layer with modifiable parameters  141,..., kk aa  and kb .The task of the learning algorithm is to tune 
all these modifiable parameters to make the network output match the training data.  Substituting the fuzzy 
if-then rules into (7), it becomes: 
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(8) 

 
After rearrangement, the output can be expressed as: 
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(9)  

 
which is linear in the parameters 141,..., kk aa  and kb . The parameters associated with the membership 
functions change through the learning process. The computation and adjustment of these parameters are 
facilitated by a gradient vector. This gradient vector provides a measure of how well the fuzzy inference 
system models the input output data for a given set of parameters. When the gradient vector is obtained, 
any of the several optimization routines can be applied in order to adjust the parameters to reduce some 
error measure. This error measure is usually defined by the sum of the squared difference between actual 
and desired outputs. Here, the premises parameters hp , hq  and hr  are updated by gradient descent in the 
backward pass while the consequent parameters 141,..., kk aa  and kb are identified by the least-squares 
method to set up the following fuzzy if-then rules: 
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4. RNFN FOR AFR CONTROL 
 
Based on the latter RNFN estimator, an inversed model-based predictive controller can be developed. 
Assume that the NARX model of the AFR estimator is a one step ahead predictor given by (10): 
 

y(t+1)= G [ y(t), y(t-1), … , y(t-n), u(t), u(t-1), … ,u(t-m), s(t), s(t-1), … , s(t-m)]        (10) 
 
This assumption allows having a predictive controller by inverting the control and output variables, as 
(11): 
 

u(t)= H [ y(t+1), y(t), y(t-1), … , y(t-n), u(t-1),… , u(t-m), s(t), s(t-1), … , s(t-m)]        (11) 
 
Replacing the y(t+1) value by the desired value r(t+1) results in the following NARX model for the 
controller: 
 

u(t)= H [ r(t+1), y(t), y(t-1), … , y(t-n), u(t-1),… , u(t-m), s(t), s(t-1), … , s(t-m)]        (12) 
 

Now a RNFN controller structure can be employed to determine the parameters (Fig. 2). The RNFN 
training task is performed almost in the same way as the latter RNFN, with the only difference being that 
the control and output variables are replaced. The controller consists of several local linear model-based 
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controllers. Local controllers are constructed based on the corresponding local linear models and their 
outputs are combined to form a global control action. 
 

 

Fig. 2. RNFN-Based AFR Controller schematic representation 
 (“D” block denotes the lag space) 

 
5. EXPERIMENTAL TEST 

The experiments have been carried out on a real vehicle (Soren with EF7-TC engine) at the Engine 
Research Center of Irankhodro Company (IPCO). For measuring the engine variables and simultaneous 
ECU data acquisition, the high speed data interface ETK and ES590 Interface tools have been used (Fig. 
3). The process input output data have been collected by running the vehicle on the test bench in transient 
conditions. To simulate the real riding situation in the urban areas, the wind force and the road friction are 
simulated physically at the test bench (Fig. 4).  
 

 

 

 
Fig. 3. High speed ECU data acquisition 

equipment based on ETAS 
 products [47] 

Fig. 4. The under study vehicle, embedded 
equipment, wind force and road friction 

physical simulator systems 
 
Regardless of cold start conditions, the experimental test is designed based on normal performance of 
vehicle movement in an urban area. For this test, the engine speed (Fig. 5) is considered between 700 to 
3500 RPM. The vehicle speed is a function of several factors such as the engine speed, the loaded tire 
radius and the transmission gear ratio is between 0 to 70 Km/h (Fig. 6). It can be seen from Fig. 7 that the 
throttle plate angle varies in the limit range between 0 to approximately 20 degrees. These changes cause 
the manifold air dynamic excitation and consequently manifold pressure to vary from 200 to 1200 mBar 
(Fig. 8). The fuel injection duration calculated by ECU for these conditions is shown in Fig. 9. As a result, 
the air to fuel ratio varies as in Fig. 10. It should be noted that the optimal air to fuel ratio of 
14.7/1(stoichiometric value) is often called Lambda=1 or λ=1 condition. The control strategy must 
maintain the AFR around λ=1. 
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6. RESULTS 

 
The goal of employing the RNFN estimator structure in this approach is to model the AFR dynamics for a 
wide range of engine operating scenarios. Since this work uses the rearranged NARX model for the AFR 
controller, a RNFN-based controller can be a powerful aid in designing an inverse model based controller. 
The scope of such control scheme is to keep the AFR constraint conditions by providing the proper fuel 
injection commands. The RNFN estimation and control strategy utilizes both process knowledge and 
process input output data. Process knowledge is used to set up the experimental test and to define a NARX 
model for AFR estimation or control while the process input output data are used to train the network. 
Depending on this strategy and based on (1), the most effective variables on AFR dynamics are selected to 
define an appropriate NARX for AFR estimation: 
 

AFR(t)= F [ AFR(t-1), AFR(t-2), … , AFR(t-n), Pman(t), Pman (t-1), … , Pman (t-m), rpm(t), 

rpm (t-1), … , rpm (t-m), ath(t), ath (t-1), … , ath (t-m),tinj(t), tinj (t-1), … , tinj (t-m)] 

    (13) 

 
 
 
The variables Pman , rpm, ath, tinj  are manifold pressure, engine speed, throttle plate angle and the fuel 
injection time duration, respectively. After the correlation tests and selecting n = 2 and m = 2 for lag 
spaces, the RNFN estimator structure is defined with 14 inputs and one output. 
 

ipAPx= [AFR(t-1), AFR(t-2), … , AFR(t-n), Pman(t), Pman (t-1), … ,Pman (t-m),rpm(t),rpm (t-1), …, 

rpm (t-m), ath(t), ath (t-1),… , ath (t-m),tinj(t), tinj (t-1), … , tinj (t-m)]                          (14)                    

y(t)    = [AFR(t)]  
 
Based upon (12), another NARX model for the AFR controller could be considered as shown below: 
 

tinj (t)= H [ AFR(t+1), AFR(t), … , AFR(t-n),Pman(t), Pman (t-1), … , Pman (t-m),rpm(t), 

rpm (t-1),…,rpm (t-m), ath(t), ath (t-1),… , ath (t-m), tinj (t-1), … , tinj (t-m)] 

       (15) 
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where AFR(t+1) is the one-step ahead prediction of AFR which is regulated to λ=1. With selecting n=1 
and m = 2, the RNFN controller has 14 inputs and one output: 
 

ipACx    = [1, AFR(t), … , AFR(t-n), Pman(t), Pman (t-1), … , Pman (t-m), rpm(t),rpm (t-1), … , 

rpm (t-m), ath(t),ath (t-1),… , ath (t-m),tinj (t-1), … , tinj (t-m)]; 

u(t)   = [tinj (t)] 

 (16) 

 
Process input output data obtained from the experimental test are then used to train the RNFNs. Based 

on Takagi-Sugeno modeling approach [42,48] each RNFN input is assigned to several fuzzy sets with the 
corresponding membership functions. Through logical combinations of the fuzzy inputs, the input space is 
clustered into several fuzzy regions. A local linear model is used within each region and the global model 
output is obtained through the defuzzification which is essentially the interpolation of local model outputs. 
Through training, membership functions of fuzzy operating regions are refined and local models are 
learned. 

To build the RNFN estimator or controller, the real experimental data is partitioned into a training 
data set and a testing data set. In this work, 21994 data pairs ( ipAPx

, y(t)) in which ipAPx
’s are the 

estimator inputs, have been partitioned into 16000 pairs for training and 5994 pairs for testing the RNFN 
estimator. While another arrangement of the same 21994 data in the form of ( ipACx

, u(t)) pairs in which 
ipACx

’s are the controller inputs,  have been divided to 16000 pairs for training and 5994 pairs for testing 
the RNFN controller. The training strategy is on the basis of back propagation algorithm and the network 
output is fed back to the network inputs through time delay units. During the training, both training error 
and testing error decrease. The appropriate point to stop training and to choose the membership function 
parameters is that point at which the test error is at its minimum. This procedure has been used to train 
both RNFN estimator and RNFN controller. The accuracy of the RNFN estimator is demonstrated by the 
small discrepancies between measured and predicted AFR, as shown in Figs. 11-14. Validating and 
effectiveness of the trained RNFN estimator is shown in Figures 15-18. As can be seen from these figures, 
the RNFN captures the AFR dynamics in the whole operating region very well. 
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Fig. 14. Trajectories of measured and predicted AFR 
(Validating Data Set)- Zoom (Time window (5,15)) 
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Fig. 17. Trajectories of measured and predicted 
Injection Time Duration (Validating Data Set) 

Fig. 18. Trajectories of measured and predicted 
Injection Time Duration (Validating Data Set) 

– Zoom (Time window (15,20)) 
 

7. CONCLUSION 
 

Recurrent Neuro-Fuzzy Networks are proposed for building a nonlinear model/controller for AFR 
estimation/control of CNG-fueled engines. This type of nonlinear model/controller for the AFR is 
composed of several local linear models/controllers which are obtained by fuzzy clustering of engine 
operating region. The global model/controller output is obtained by combining local model/controller 
outputs based upon their membership functions. This RNFN estimation/control strategy utilizes both 
process knowledge and experimental process input output data. The experiments have been carried out on 
a real vehicle (Soren with EF7-TC engine) at the Engine Research Center of Irankhodro Company (IPCO). 
As the results show, such RNFN estimator/controller can model the AFR nonlinear dynamics/inverse 
dynamics with satisfactory accuracy. The advantages of this procedure are both the reduction in time 
consuming calibration efforts and the benefits of utilizing intelligent methods for AFR modeling and 
control. 
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