
IJST, Transactions of Electrical Engineering, Vol. 36, No. E1, pp 19-36
Printed in The Islamic Republic of Iran, 2012
© Shiraz University

IMPROVING HUMAN-COMPUTER INTERACTION IN
PERSONALIZED TV RECOMMENDER*

T. POŽRL,** M. KUNAVER, M. POGAČNIK, A. KOŠIR AND J. F. TASIČ
Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia

Email: tomaz.pozrl@ldos.fe.uni-lj.si

Abstract– In today's world of numerous sources of multimedia content, recommender systems
help users find relevant content items. In our research the reasoning behind the recommendations
generated by such systems was explored to check whether presenting users with explanations of
recommended content increases their trust in the system. A content-based recommender for TV
content has been developed which focuses on items attribute values. The system predicts users'
ratings by classifying the vector of similarities between the user model and the items attributes.
Users' trust is increased by identifying attribute values that are the most relevant for them. Users'
feedback to the identified attribute values was used to improve the performance of the
recommender algorithm. Tests in our experimental platform showed that the developed algorithms
produce good results. The accuracy of the system was around 75% in the basic version and it
further increased in the enhanced, while the identification of relevant attribute values achieved
86% precision.

Keywords– User modeling, recommender system, content-based filtering, human-computer interaction, user
satisfaction, recommendation explanation

1. INTRODUCTION

The benefits of recommender systems (RS) were long ago accepted by service providers who initiated
early implementations of recommender algorithms into their systems and started advanced services such
as personalized content recommendations. Recommender systems introduce artificial intelligence in such
systems as they aim to help users when the amount of available content exceeds reasonable numbers and
when users are no longer willing to manually browse listings of content. Recommender systems have been
employed for recommending web news, books, music, TV programs, web based services etc. [1-4].

Many issues have already been addressed by the research community, for example the method(s) used
to find interesting content, acquiring the relevant data needed by RS to recommend content (data about
users, content descriptions, user feedback etc.), generating a list of items for recommendation,
constructing user interface for the presentation of recommended items, achieving data privacy in RS,
ensuring protection against the attacks on the RS etc. [5, 6]. In our research we focused on another
important issue of the RS, explaining the recommendations [7]. It has been proved [8] that users'
satisfaction with the RS improves with better interaction. Usually, users of an RS are only presented with
a list of items that the system assumes are suitable for them, but they get no information how the system
managed to figure out what they like. By explaining the reasons behind content recommendations the
interaction between users and a system is improved as users get an insight into an RS’s reasoning logic.

In developing the mechanisms for generating explanations of recommended items we focused on RS
that recommend content in TV content systems. Such systems have long been widely used across the

Received by the editors August 1, 2011; Accepted April 15, 2012.
Corresponding author

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

20

world but have gained additional attention with an emergence of Internet Protocol television (IPTV). The
delivery of TV content and services using Internet Protocol enables advanced services, higher interactivity
and also makes more content available to users. To enable personalized content recommendations in TV
content systems we employed content-based recommendation technique (CBR). CBR was chosen as it
considers content descriptions for rating predictions, which seemed a good starting point for developing a
mechanism for explaining recommendations. Users often base their decision to watch a movie on whether
it is a popular genre, if their favorite actor is involved in the movie etc., and CBR enables us to find such
attribute values in an item's description. The idea behind the development of our CBR system was to focus
on finding attribute values in the description of an item that a user has a very high preference towards.
These are the attribute values that we believe are the most relevant for a user and have the greatest
influence on his/her decision whether to watch a movie and should therefore be detected by our system.

To test the developed approaches we have linked up with SiOL [9], the biggest internet protocol TV
(IPTV) service provider in Slovenia. The users of SiOL IPTV can search through TV listings using
electronic program guide (EPG) system, they can record programs with a personal video recorder system
and they can also order additional content from the digital store using video on demand (VOD) service.
We have developed an online application that simulated SiOL EPG system, but could easily be adapted
for video on demand service or for the personal recorder system. Our aim was to first test the developed
recommender algorithms in a smaller closed environment before integrating it into a live SiOL productive
system.

The structure of this paper is as follows: the rest of section presents the problems that we addressed in
this paper and it also includes related work in the field. Section 2 describes our recommender algorithms
and modules, the testing environment, dataset and evaluation techniques, test results are presented in
section 3 and section 4 concludes the paper with a look to the future work.

a) Related Work

A great deal of research has been done in the area of content recommender systems and many
approaches have been developed. In the domain of TV and video content recommendations many
approaches exist. Some rely on identification of similarities among users (CF) [10, 11], some approaches
work with only one user and his/her rated items at a time (CBR) [4, 12], and many systems also combine
different approaches into a hybrid recommender (HR) [13-14]. In our research we have focused on CBR
technique.

Recommender systems for TV and video content also differ in terms of the consumers
recommendations. Most systems filter and select content for individual consumers of content [15-16],
some make recommendations for groups of users (TV audience) [17], while recently [18] some effort has
also been made to generate recommendations for professional users, TV directors and editors in order to
help them during live TV production. Our proposed approach is aimed at individual consumers.

Many mathematical tools are used for personalized content selection. Tools come mostly from the
field of machine learning area and include Bayesian classifier [13], decision trees, decision rules,
regression, support vector machines [19] etc. For the purpose of SiOL recommender system we have
decided to test a selection of the available machine learning algorithms for classification to find out which
works best for our dataset and implement it in our system.

b) Problem statement

The following issues were addressed during the development of our hybrid recommender system.
Interaction of users with the recommender system is usually limited. The system presents them with a list
of recommended items and users then select some items from the list for viewing if they find them

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

21

interesting. We wanted to improve this interaction and increase users' satisfaction with the system by
explaining why the system recommended the items to them.

Users usually do not get any insight into the algorithm of the recommender system. They are only
presented with the outcome of the system and might feel uncomfortable because the system discovers their
preferences. We wished to increase users' trust in the recommender system by presenting them with the
reasoning behind the recommendations. These reasons should reflect the users’ preferences and relevant
data for their consumption of TV content. The process of generation of explanations must be able to
identify the data that had the bigger influence on the recommendation of an item. In general, the data
relevant for recommendations depend on the type of the recommender system and on the data used by it.
In our research we focused on building a content-based recommender system as we believe users often
base their decision to watch a movie, documentary and other TV content items on the characteristics of
these items. Content attribute values that influence TV content consumption include users' favorite actors
and directors, specific genres etc. We wanted to identify such attribute values and present them to users.
Our recommender algorithm should work with each of the attribute values in items descriptions and
discover the most relevant ones.

Content-based recommender systems determine users' preferences by analyzing the ratings that users
give to consumed items. This is somehow problematic, because the system only assumes that if a user
likes an item he also likes all the metadata (actor(s), director(s), genre etc.) in its description. Users'
feedback to the presented attribute values in the explanations of the recommended items are, however,
much more quality information about their opinion on these attribute values. We wanted to check whether
using this feedback can improve the performance of our CBR system.

2. MATERIALS AND METHODS

In this section recommender modules in our CBR system, which we developed to enable personalized
content recommendations in IPTV applications as well as to improve human-computer interaction in such
applications by generating explanations of recommendations are described.

First, a basic CBR system was built which generates a content-based user model based on ratings and
a metadata description of items the user has previously rated and then uses this model to calculate the
similarity of new items. Similarity of items is first calculated for each attribute value in the description of
the item and these similarities are combined with a similarity of the attribute. A vector of similarities of
attributes is then classified with classification methods into one of the rating values which is also the CBR
system's predicted ratings. The basic CBR system was upgraded by adding a module for identifying
relevant attribute values for recommendations and for generating explanations of recommended items. The
upgrade module was integrated in the second stage of the CBR system. In this stage the users' preferences
towards attribute values are determined by calculating the similarities of attribute values with the model of
the user. The identification algorithm analyzes the similarities and selects attribute values with the
similarity above a predefined threshold as the most relevant for the user. These attribute values are to
appear in the explanation of recommendation if the items are recommended. In the last phase of our
research we used users' feedback to attribute values presented in the explanations of recommended items
to try to improve the performance of basic CBR system. In the upgraded version of our CBR system users'
ratings of attribute values were considered in the attribute values similarity calculation.

a) Content-based recommender

A content-based recommender system was built to process content descriptions and use them for
recommendations. CBR was based on the work presented in [19] but the method for calculation of

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

22

similarity between items and a user model was redefined and more classification methods for rating
prediction were examined. Our CBR focuses on finding such attribute values in the description of an item
that a user has a very high preference towards. We defined a special similarity function that enables us to
detect such attribute values. If we detect attribute values with high preferences, we assign a high similarity
value between the attribute value and the model of the user.

Our content-based recommender involves three stages:

1. Generate content-based user model UMcbr from the items h the user u has already rated.
2. For each new item h  H calculate attribute similarity values η(u,Ai) for attributes in item metadata

md(h) using user profile UMcbr.
3. Based on attribute similarity values η(u,Ai), classify the item h using classification function δ and

predict user rating.
These stages are presented in Fig. 1, which will help us to describe all three stages in more detail.

Fig. 1. A scheme of our content-based recommender system

Stage 1 of content-based recommender
In the first stage a content-based user model UMcbr(u) is generated from the items that the user has rated
previously; UMcbr(u) is based on items' metadata md(h) and contains entries (Ai,aj

i,l). A small extract from
an example of content-based user model can be seen in Fig. 2.

UMcbr(u) contains all the different attributes values aj
i of the items that the user has rated previously,

for example 'Drama', 'Will Smith' etc. as seen in the example in Fig. 2. An attribute name Ai is also
included in the model to avoid ambiguity (for example, when a person appears in different rolls, actor,
director etc.). For each attribute value rating statistics l is calculated. l contains the number of ratings that
this attribute value received via the ratings of items it was described with. If a user gives a rating of 'good'
to a film 'Saving Private Ryan', this rating is "transferred" to all attribute values that this film has in its
metadata, for example, its director 'Steven Spielberg' etc. l is a collection of number of ratings for each of
the rating values that a user can give to an item (rating values used in our experimental environment are
described in more detail in section 2c. The entry '0#2#6#10#12#3' for director 'Steven Spielberg' in the
user model in Fig. 2 means that the user rated films that 'Steven Spielberg' directed as follows: two times
with the rating 'good', 6 times with the rating 'average', 10 times with the rating 'bad', 12 times with the
rating 'terrible' and there were also 3 films of Steven Spielberg that this user did not know.

Stage 1

Stage 2

Stage 3

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

23

Fig. 2. An example of a content-based user model in our system

Stage 2 of content-based recommender
To be able to predict the user's rating for an item during the prediction phase, we first estimate how similar
a specific item attribute Ai is in comparison to the user's preferences accumulated in his/her user model
UMcbr(u). This involves calculation of attribute similarity values η(u,Ai) for all attributes Ai of new items.
This stage differs for attributes that only have one value and those with many values. A film only has one
production year and usually only one country of production, but many actors are involved in the
production and possibly also more than one director. To calculate η(u,Ai) we first calculate similarity
values of all values of Ai (aj

i is, for example, j-th value of Ai) and then combine these similarity values. If
aj

i is the only value of Ai, the similarity value of the attribute Ai equals similarity value of aj
i.

We calculate the similarity value η(u,Ai) for i-th attribute of the item in three phases:

i. Main similarity value calculation.
ii. Correction weight calculation (if necessary).

iii. Overall similarity value calculation.

Main similarity value calculation: We first calculate a main similarity value for all attribute values of the
attribute Ai using ratings that each attribute value aj

i received during the previous user's interaction with
the system. For each attribute value aj

i we check the user model UMcbr(u) and calculate the main similarity
value if we find rating statistics for this attribute value.

The main similarity value is based on the distribution of ratings and is calculated using the Eq. (1). It
involves counting the number of positive ratings Npos(u, aj

i) and the number of all ratings N(u, aj
i) that the

attribute value aj
i received. On a five-level rating scale (for this calculation we excluded the 'unknown'

option on the rating scale, see section 2c) we marked a rating as positive if it was one of the top two rating
values ('good' or 'excellent') and negative if it was one of the other three rating values.

3)5.0
),(
),(

(8),( i
j

i
jposi

jmain auN
auN

au (1)

The function presented in the Eq. (1) enables us to detect attribute values for which users expressed
their high preference towards. Functions of a higher power than 3 would cause fewer attribute values to be
determined as important and consequently fewer items would be recommended. Functions of a lower
power (linear similarity function), on the other hand, would also emphasize attribute values with only
approximately half of the ratings positive, which would make the recommender less adjusted to the users'
taste.
Correction weight calculation: A specific attribute value often receives only a couple of ratings, either
because the user has just started using the system or because an attribute can have many different values
(like actors) and the specific value is not very often present in the items' metadata. These attribute values
cannot have the same impact on the item recommendation as the attribute values with a lot of ratings. To

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

24

achieve this, the main similarity value for such attribute values is adjusted by introducing a correction
weight wcorr. We calculate wcorr using the Eq. (2).
























otherwise

N
auN

NauNif

auw i
j

i
j

i
jcorr

,
),(

),(:,1

),(3

lim

lim

 (2)

We have defined this function experimentally after testing several functions, from linear function to

functions of a higher order. If the number of ratings for such attribute values is lower than a preset limit
Nlim (in our test environment we set this limit at 5), we calculate the correction weight on a 0 to 1 scale, in
other cases the weight is set to 1. Similarly to the Eq. (1) the function presented in the Eq. (2) enables us to
emphasize attribute values that received a high enough number of ratings. Similarities of attribute values
that received low number of ratings are lowered substantially to decrease their impact on the item
recommendation.

Overall similarity value calculation: In this phase we calculate the overall similarity value η(u,aj

i) for
each attribute value aj

i by multiplying the main similarity value ηmain(u,aj
i) and the weight wcorr(u,aj

i) - see
the Eq. (3).

),(),(),(i

jcorr
i
jmain

i
j auwauau   (3)

Finally, the attribute value similarity η(u, Ai) is calculated for each of the attributes in the item

description using the eq. 4, where m is a number of values of a specific attribute. This phase differs for
attributes that have just one value (categories, genres etc.) and for multi value attributes (actors etc.). For
single value attributes there is just one similarity value and no additional calculation is needed, while for
multi value attributes we calculate the final similarity value as an average of similarity values for
particular attribute values.

 


m

j negSim
i
j

i
j wau

m
au

1
),(1),( (4)

We have used the weight wnegSim to slightly reduce similarity values for attribute values with negative

similarity values. For attribute values with the positive similarity value wnegSim equals 1, while for those
with negative similarity value it equals 5. We have done this to emphasize attribute values that are
preferred by the user and reduce the influence of the attribute values that the user does not prefer.

In the end of this phase we construct a set of similarity values η(u, Ai) (one for each of the attributes
Ai) as a similarity vector x.

Stage 3 of content-based recommender
Once we calculate the similarity values for all attributes Ai, we classify the item or, in other words, we
predict the user's rating for this item. Classification methods classify items based on a classification model
and have to be trained first. Input data for classification training are similarity vectors x for the items h that
the user has previously rated and the ratings r given by the user to these items. The built classification
model is then used to perform classification using function δcbr(x) for classifying new items h into one of
the rating values. The outcome of this stage is a predicted rating rcbr^(u,h).

We have used Weka [20], a well-known machine learning environment, which implements many of
the widely acknowledged methods for items classification. From the classification methods implemented
in Weka we chose eight methods for our tests and selected the method that achieves the highest prediction

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

25

precision (the results are presented in section 2a). The methods included in our tests were chosen based on
the characteristics of the dataset. The list included methods that are commonly used in recommender
systems (naive Bayes method, nearest neighbors approach, decision trees and support vector machines), as
well as some methods that promised good performance from our preliminary research (linear regression,
'M5Rules' decision rules approach, instance-based 'Kstar' method and 'HyperPipes' method.

Classification methods work with either numerical or nominal classes. We made our system adaptive
and capable of working with both types of methods. Rating values used in our testing environment were
nominal and to be able to use them in classification methods that work with numerical class attributes we
mapped rating values to numerical values (more details about the conversion are described in section 2c).
The outcome of classification methods (CBR predicted rating) is also either nominal or numerical. For the
purpose of evaluation of the CBR system, all the outcomes of the CR system were converted to a binary
predicted rating (more details are presented in section 2d). For the purpose of usage in the HR system,
similarly the nominal predicted ratings were converted to numerical, but the numerical predicted ratings
were directly applicable in the HR system.

b) Explaining recommendations

Users' experience with the recommender system improves if they understand what it is doing [21].
Some users feel uncomfortable if the system only presents them with a list of recommended items,
because they do not understand how a computer decided that they will like the presented items. Our
module for generation of explanations of recommendations identifies attribute values that are relevant for
users. In addition to improving the users' experience the module also provides additional mechanisms to
improve the performance of the system. Users can give feedback to the explanations provided by the
system and express their preference towards the presented attribute values. This explicit user feedback is
then used to try to improve the performance of the recommender system.

Two important facts were taken into account during the identification of relevant attribute values. The
first fact is that all attribute values of a certain item are potentially applicable for explanations. The second
fact is that the explanations should include only those attribute values that have a high probability of being
relevant to a user. In stage 2 of our content-based recommender system we calculate similarities of all
attribute values in item description. A high similarity value of a certain attribute value suggests that this
attribute value is relevant to this user. We therefore believe that the generation of the recommendation
explanations can be based on the similarities of attribute values to the user model.

Algorithm for generating explanations: Input data for the module for generating explanations are
similarities between attribute values and the user model that are calculated during stage 2 of our content-
based recommender system. In this case, there is no difference between single value and multi value
attributes, as all attributes are only analyzed at the level of a particular attribute value. We process each of
the items h that might be appropriate for recommendation to user u separately. We calculate the similarity
of each of the item's attribute values aj

i in comparison to the user model UMcbr(u). This calculation results
in a list of similarity values for each of the attribute values. The size of this list is not known in advance, as
it depends on the number of attribute values that the item h is described with. Movie items might be
described with 10 or more actors, for example, but live sport events descriptions may only include a title
and a genre.

The module for generation of the recommendation explanations analyzes the list of similarity values
of each of the items h. Similarity value η(u,aj

i) take values from -1 to 1, where -1 means that the attribute
value aj

i is very dissimilar to user model UMcbr(u) and value 1 means that aj
i is very similar to UMcbr(u).

Obviously, we only focus on attribute values similar to UMcbr(u) and we define a threshold ηt
expl for

relevant attribute values similarity values. We identify relevant attribute values using Eq. (5).

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

26

 t
l

i
j

i
j aifrelevanta exp)(:,   (5)

An attribute value is considered as relevant for the recommendation if the attribute value similarity to
the user model is equal or greater than the threshold ηt

expl. We select such attribute values for the
presentation to the user as an explanation if a particular item gets recommended. Our aim was to
determine the optimal value of ηt

expl. We wanted to achieve high accuracy of the identification of relevant
attribute values while ensuring that explanation is generated for the majority of the recommended items. If
we set ηt

expl too high, fewer attribute values would be identified as relevant and some of the recommended
items would not get an explanation. If we set ηt

expl too low, more attribute values would get through the
identification process including some that are not relevant to users. To determine the optimal value of ηt

expl
we also considered a presumption that users base their decision to watch a TV program on a limited
number of reasons. For example, user watches a movie if his/her favorite actor is involved or if it is of a
genre that the user likes. Therefore, we took a rather conservative approach to selecting attribute values as
relevant.

Using feedback to explanations to improve the performance of the CBR recommender: Attribute
values that are identified as relevant for users and presented to them in the explanation of the
recommended items can be used to improve the performance of the CBR recommender system. Users can
respond to the presented attribute values and the collected feedback presents a valuable source of users'
preferences. Usually, users' preferences are learnt by analyzing their ratings of items. In this case users
express their opinion about the whole item and we have to assume what their preferences are towards the
metadata of the item (attribute values in the item's description). If a user likes, for example a movie, we
can only assume that he/she also likes the actors in the movie, the genre etc. By rating the attribute values
included in the explanations users directly express their opinion about specific attribute values, an actor, a
director etc. This gives us much more quality information about users' preferences, so we decided to use it
to improve the performance of the CBR recommender.

In the upgraded version of our CBR system, users' ratings of attribute values were also considered. If
the item being processed by the CBR was described with one or more attribute values that appeared in the
explanations of the recommendations and a user rated it/them, the system corrects the similarity of these
attribute values to the model of the user calculated during stage 2 of the CBR system. The algorithm goes
through all attributes Ai of the item currently being processed as well as for each of the attributes and, for
each of the values of the attribute aj

i, the similarity of the attribute value is first calculated using Eq. (3) as
in the original version of the CBR. The system then checks whether user's rating r(u, aj

i) for the attribute
value exists. If it does, the algorithm uses this rating to recalculate the similarity of the attribute value to
the model of the user. The calculation of the corrected similarity is performed using Eq. (6).

r
i
j

i
j

i
j waurwauau),(),(),(*   (6)

In this equation a weighted sum is used to combine the originally calculated similarity of the attribute

value η(u, aj
i) and the user's rating of the attribute value r(u, aj

i) into a corrected similarity value η*(u, aj
i).

As some attribute values occur in many different items (for example, actors, categories, genres etc.), there
is a strong possibility that users will rate such attribute values more than once. In this case, rating r(u, aj

i)
used in Eq. (6) is an average rating for such attribute value. If the rating for some attribute value does not
exist (for example, the attribute value did not occur in the explanations of recommendation for a particular
user or if it did occur, but user did not rate it) then the corrected similarity is not calculated and η(u, aj

i) is
used as a similarity of the attribute value in the next stage of the CBR system.

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

27

We think that in the Eq. (6) r(u, aj
i) should be given much higher influence than η(u, aj

i) as it is a
direct opinion of the user about the attribute value, whereas η(u, aj

i) is calculated from the user's ratings of
content items. wr should therefore be set higher than wη to improve the performance of the CBR system.
We tried to find the optimal values of wη and wr to achieve the highest precision of our system and the
results are presented in section 3b.

c) Dataset and testing environment

The recommender algorithms presented in this article were developed to enhance the services of the
(SiOL) company. As SiOL did not allow us to implement the methods directly into its system, we decided
to build a web application which simulated a SiOL EPG and was based on real EPG data from the SiOL
system. The application also included a mechanism for collecting users' feedback. Our testing
environment did not work as a real recommender system but rather as a tool for collecting users' feedback.
Users rated all items in the dataset and all attributes values in the descriptions of items and the obtained
ratings allowed us to evaluate the accuracy of the developed methods.

The SiOL company provided us with a subset of the daily generated EPG for over 100 TV channels
broadcasted in Slovenia in the first half of 2007. Out of 62 attributes that SiOL uses in its EPG metadata
scheme category, genre, year of production, country of production, actors, directors, presenters and guests
were used. SiOL uses a two-level categorization of TV items. The first level is called a category and
consists of 11 different categories, which are general types of TV items. All categories have subcategories
called genres. A genre describes the content of a TV item in more detail, for example, for the category
'Film' (films) there are genres such as 'Akcija' (action), 'Drama' (drama) or 'Vojni film' (war film). All the
items in the SiOL EPG system are denoted with both the category and the genre information, which
eliminates problems with insufficient content categorization [19].

25 users were involved in the collection of the rating data. Their involvement was invitation-based
and was done so as to include users from different age groups, both male and female and of a different
taste for TV content (as self-expressed). 18 users from the 25 involved were male and 7 were female. The
users’ age varied from 15 to 59 with the average just under 31. Users interacted with the system via a web
interface which included a module for presentation of descriptions of items and a mechanism to collect
users' response to presented items. First, users registered and optionally entered their basic data (age, sex
etc.) Then, at each of the next logins, which simulated the use of a TV device, users were presented with
the descriptions of 10 items from our dataset and asked to rate them. Users logged in into the system one
or more times each day and they continued to do so until they rated all of the items from the dataset. In the
second phase a similar procedure was used to collect users' ratings for the attribute values that appeared in
items description.

The users rated the items and the attribute values using a five-level scale of ratings: 'excellent', 'good',
'average', 'bad' and 'terrible'. Additionally, the option 'unknown' was offered to users to allow them to tell
us that they do not know the presented item or attribute value. These ratings were not included in the
evaluation. For the purpose of some of the methods used in our system, the top two ratings on the scale
('excellent' and 'good') were denoted as positive, while other ratings were denoted as negative. The rating
scale used in our testing environment was Likert-type, rating values were ordered and also symmetric
around the 'average' value which allowed users to adequately express their opinion.

As some of the methods included in our system only work with numerical values, the nominal ratings
collected from users were converted to numerical rating values. We assigned the value 1 to the rating
'excellent', the value 0.5 to the rating 'good', the value 0 to the rating 'average', the value -0.5 to the rating
'bad' and the value -1 to the rating 'terrible'. This conversion was used in stage 3 of the CBR system where
some classification methods are used that only work with numerical rating classes, and also in the upgrade

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

28

of the content-based filtering algorithm, where attribute values ratings were used to correct the similarity
values of attribute values in items descriptions.

During the testing period 3582 ratings of 200 TV programs were collected. The users rated 143.28
items on average and each item was rated 17.91 times. We also collected 2356 ratings of 174 attribute
values. On average users rated 94.24 attribute values and each attribute value was rated 13.54 times.

To calculate some additional statistics of the collected feedback we converted the above mentioned
nominal rating values to numeric values in the same way as described above. For ratings of items, an
overall average rating value, calculated using ratings of all items in the set, equaled 0.334. We also
calculated average ratings of a user, calculated for each user first and then averaged overall users, which
equaled 0.313. Similar calculation was also done for items. We calculated an average rating value for each
item in the set and averaged these averages. The result in this case was 0.260.

For ratings of attribute values that appear in the explanations, an overall average rating value,
calculated using all attribute values ratings, equaled 0.599. An average rating value of a user calculated for
each user first and then averaged overall users, equaled 0.557. An average rating value of an attribute
value calculated for each attribute value first and then averaged overall attribute values equaled 0.504.
Although our testing environment did not work as a real recommender system, Fig. 3 shows a basic
example of what a user interface for presenting recommended items, recommendation explanations and
collecting users’ feedback could look like.

Fig. 3. An example of the recommender system user interface

In this example shown, the recommender system found one suitable item for the user, the movie

“Titanic”. There are eight attributes in the item metadata: title, category, genre(s), country of production,
year of production, director, actor(s) and description. Attribute genre has two values (drama, romance),
attribute actor(s) has six values and other attributes have just one value. In this example, the recommender
system with its module for generating the explanations for the recommendations considered 14 attribute
values as possibly relevant for the user. As it is shown in Fig. 3 the module found two of these attribute
values to be relevant for the user and presented them to him/her as the explanation for the
recommendation. The user has an option to rate the recommended item as well as both attribute values
found to be relevant for him/her.

d) Evaluation techniques

The main focus of our recommender system was to predict ratings that a user would give to the
potentially interesting items. The last step in the process of content recommendation would be to select

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

29

some items (usually the ones with the highest predicted ratings) and present them to the user. For the
purpose of evaluation of our system we did not deal with this issue, we just checked how good our system
is at estimating which items are suitable for the user. As the outcomes of our recommender modules varied
from nominal predicted ratings to discrete and continuous numerical predicted ratings, we converted them
to a binary predicted rating: the item was either found to be suitable for a user and a candidate for the
recommendation or it was unsuitable. In the case of nominal predicted ratings (CBR system with
classification methods with nominal classes) the items with the top two rating values on a 5-rating scale
(as described in section 2c) as predicted ratings were selected as suitable. In the case of numerical
predicted ratings (CBR with classification methods with numerical classes), where numerical predicted
ratings were on a -1 to 1 scale, items with predicted ratings of 0.5 or above were selected as suitable for a
user.

Many measures have been proposed in the information retrieval field [22], but we have decided to use
the standard measures, precision (P), recall (R) and f-measure (F) [23] to evaluate the performance of our
CBR system. In our case precision is the most important measure, because we believe it is more important
for recommender system to precisely generate 'positive' predictions, which will be presented to the user
(which is measured by precision), than for recommender system to recommend a lot of the items that it
actually should (which is measured by recall). We think that it is better to generate fewer
recommendations but be accurate at it. This can also be derived from the work presented in [24]. High
precision value is therefore preferable in our system.

A 3-fold validation was used as the set of items we used is relatively small (200 items) and the
number of attribute values describing these items is therefore also small. Dataset was split into three parts.
Two thirds of items (training set) were used to generate user models and the remaining items (test set)
were used to calculate similarity vectors. This was repeated 3 times to ensure that every item is included in
the test set and that it gets a similarity vector. The set of similarity vectors was classified using
classification methods where 3-fold cross-validation was used again.

Recommendation explanations were evaluated by calculating the precision of the identification of
relevant attribute values - Pexpl. Attribute values identified as relevant and also rated positively by the user
were considered as correctly identified.

3. RESULTS AND DISCUSSION

In this section the results of evaluation of our CBR system and its upgrades are presented. In subsection 3a
we present the evaluation results of our basic CBR system and in subsection 3b we present the results of
the evaluation of module for generating explanations of recommendations. More focus was dedicated to
the identification of attribute values that are relevant for explanations of recommendations and to using
feedback to such attribute values to improve the performance of the system.

a) Content-based recommender

During the testing of the basic CBR system the focus was on finding the best method for
classification of similarity vectors and content-based prediction rcbr^(u,h) generation. At the same time, the
efficiency of the developed similarity function (Eq. (1)) was tested. We put vectors of attribute similarities
into Weka environment and tested its methods for classification. Classification methods estimated users'
ratings for items and produced ratings predictions rcbr^(u,h).

Eight classification methods were tested and results (calculated values of precision (P), recall (R) and
f-measure (F)) are presented in Table 1. ‘NaiveBayes’ method did not perform well, as it did not achieve
precision 0.7. From the methods from the group 'functions', ' linear regression' achieved the highest

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

30

precision (0.737), but the recall for this method was very low (0.128). Support vector machines method
('SMO' implementation in Weka) did not perform as well as linear regression. 'Lazy' methods proved to be
quite successful in our tests, especially 'Kstar' method, whose precision was 0.753 and recall was almost
0.3. K-nearest neighbors method 'IBk', on the other hand, was less successful. The decision rules method
'M5Rules' achieved high precision (almost 0.74) but, similar to linear regression, the recall was low. The
decision trees method 'J48' performed similar to 'M5Rules'.

Table 1. CBR system performance for selected classification methods

Classification method P R F

NaiveBayes 0.676 0.232 0.346

LinearRegression 0.736 0.128 0.219

SMO 0.691 0.148 0.244

IBk 0.699 0.277 0.396

Kstar 0.753 0.299 0.428

M5Rules 0.739 0.146 0.244

J48 0.742 0.275 0.401

HyperPipes 0.867 0.079 0.145

In Table 1 'HyperPipes' method stands out with the very high precision value (almost 0.87), but the
recall value for this method is very low, just around 0.08. This means that even though this method is very
precise, it is possible that it would not recommend any of the items to users. Therefore, 'HyperPipes' was
not chosen as the best method. Our selection for the best method for classification of similarity vectors and
rcbr^(u,h) calculation was 'Kstar' method. This method achieved the highest precision value (next to
'HyperPipes') among all tested methods (0.753), and the recall value was also satisfying (0.299). 'Kstar' is
an instance-based classifier, which means that the class of the test instance is based upon the class of those
training instances similar to it. It differs from other instance-based learners in that it uses an entropy-based
distance function (for more details see [25]). We believe that this fact gives the ‘Kstar’ method an
advantage over other methods in providing more accurate recommendation results.

b) Explanations of recommendations

Generating the explanations: During the evaluation of module for generating explanations we tried to
determine the optimal value of threshold ηt

expl that is used to select the attribute values in content item
descriptions and which directly influences which attribute values are selected for the presentation in
recommendation explanations. ηt

expl, which takes values on a range from -1 to 1, must not be set too high
(close to 1), as that would mean that none of the attribute values would be identified as relevant. At the
same time ηt

expl must not be set too low, as the number of attribute values identified as relevant would be
too big. Because similarity takes values between -1 and 1, ηt

expl has to be a positive value, as this means
that the user is indeed fond of this attribute value. By pushing the threshold towards the maximum value
of 1, the number of identified relevant attribute values decreases. We need to be rather conservative while
identifying relevant attribute values if we really want to improve the users' trust and satisfaction with the
system. To achieve successful identification of relevant attribute values, only a few of the most relevant
attribute values must be selected for the explanation.

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

31

Fig. 4. Portion of recommended items with explanation

To determine the optimal value of ηt

expl the whole range of possible values of ηt
expl, from -1.00 to 1.00

with a 0.01 step was tested. First we checked how many of the recommended items actually got any
explanation for the recommendation. This means that at least one attribute value is identified as relevant
for the recommendation. Results of this part of the evaluation are presented in Fig. 4, where rrItWExpl
represents a portion of the recommended items with at least one attribute value identified as relevant. At
ηt

expl value of 0.0 nearly 97% of the recommended items got an explanation for the recommendation. At
ηt

expl value of 0.41 the portion of recommended items with an explanation fell below 50% and the portion
decreased even more by pushing ηt

expl higher. From this part of the evaluation it can be concluded that ηt
expl

value of 0.0 might be optimal for the generation of recommendation.

Fig. 5. Precision of the identification of relevant attribute values

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

32

Even though the first part of the evaluation showed that our algorithm was able to generate
explanations for most of the recommended items, it told us nothing about the accuracy of the
identification. When ηt

expl is set very low, some attribute values will almost certainly get through the
identification procedure, but they might not be relevant to users. Therefore, the precision of the
identification of relevant attribute values (the portion of correctly identified relevant attribute values) were
also calculated. Results of this part of the evaluation are presented in Fig. 5, where Pexpl represents a
precision of the identification. In this phase of the evaluation, ratings of the attribute values that our
algorithm identified as relevant were checked. Notice that the users did not rate all the attribute values
presented to them, because some were not known to them. Only attribute values which users responded to
were considered in this part of the evaluation. Results show that our algorithm for identification of
relevant attribute values worked well at all the threshold values ηt

expl. Even at the ηt
expl value of 0.0, more

than 77% of attribute values identified as relevant were really relevant. The precision got even higher
when we set ηt

expl value higher and at the ηt
expl set to 0.8, the precision rose up to over 96%. This leads us

to conclude that our algorithm is very accurate. This part of the evaluation showed that out of the tested
ηt

expl values 0.8 is optimal.
If we compare the results of precision calculation and the portion of the recommended items that got

explanation, the determined optimal ηt
expl values do not match. Although ηt

expl value 0.8 ensured very high
success rate, only 19% of the recommended items recieved an explanation for recommendation. To
determine the optimal ηt

expl value we considered another parameter - an average number of attribute values
identified as relevant per each recommended item. From Fig. 4 we notice that the number of attribute
values identified as relevant drastically decreased as ηt

expl got higher. This happened because at higher ηt
expl

values, fewer attribute values got through the identification procedure. Figure 6 shows the results of the
third part of the evaluation where NidAvRelRecIt represents an average number of attribute values identified as
relevant for each recommended item that also received recommendation explanation.

Fig. 6. Average number of attribute values identified as relevant per each recommended item

In Fig. 6 the number of the recommended items with recommendation explanations were compared to

the number of the identified relevant attribute values. At high ηt
expl values we managed to identify at least

one attribute value as relevant for each of the recommended items as the average is slightly above 1. This
average rose to 1.34 at ηt

expl value 0.6 and to 1.7 at ηt
expl value of 0.4. At ηt

expl value of 0.2 the average

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

33

number of attribute values identified as relevant per each of the recommended items rose up to more than
2.5 and at the 0.0 value of the threshold to more than 3.5. We believe that only one or two attribute values
are normally relevant for users. Therefore the average number of attribute values identified as relevant at
ηt

expl value of 0.0 seems to be too high. As far as the average number of attribute values identified as
relevant is concerned, the optimal value of ηt

expl is in the range from 0.2 to 0.4, where the average is
between 1.7 and 1.8.

By comparing the results of all three parts of the evaluation, we conclude that ηt
expl value of 0.3 is

optimal for the best performance of the identification of relevant attribute values. Although it generates
explanations for only approximately half of the recommended items, we think it is better that the
identification is accurate and that it finds an appropriate number of attribute values. The threshold set at
0.3 ensures high precision of the identification (86%) and slightly less than two relevant attribute values
per item on average. Evaluation of the algorithm for the generation of recommendations explanations
showed that it produces good results and that it finds relevant attribute values for recommendations. Users'
feedback to attribute values that the system identified as relevant was positive, which encourages us to
believe that our suppositions when building this module were correct. Nevertheless, a more thorough
survey will need to be performed to check whether the users' satisfaction with the recommender system
usage has really improved with the addition of recommendations explanations.

Using feedback to explanations to improve the performance of the CBR recommender: In this part of
the evaluation we checked whether using users' feedback to the attribute values presented in the
explanations of the recommendations can improve the performance of the CBR recommender. We used
these ratings to correct the calculation of a similarity of an attribute value with a model of a user. New
similarity value of an attribute value is calculated with Eq. (6) where weighted sum is used to weigh the
original similarity value and the rating of the similarity values obtained by the user.

We had two goals when performing this part of the evaluation. Mainly, our aim was to check if CBR
performance (precision) improves by using attribute values ratings, and secondly, we wanted to find the
best setup (optimal weighing) in the weighted sum in Eq. (6) for highest CBR precision. We tested several
combinations of weights wη and wr. The sum of weights is always 1 and we tested values from 0.00 to 1.00
with a 0.01 step.

Fig. 7 shows the precision (P) values for all tested values of weights and Table 2 shows precision
values for selected weights values. In Fig. 7 wη values are on the x axis, while wr values are shown in the
figure, as they are dependent on wη (the sum of weights is always 1).

Table 2. Correction of attribute values similarity-weights test for selected values

wη wr P

1.0 0.0 0.709

0.9 0.1 0.712

0.8 0.2 0.725

0.7 0.3 0.725

0.6 0.4 0.734

0.5 0.5 0.737

0.4 0.6 0.742

0.3 0.7 0.744

0.2 0.8 0.742

0.1 0.9 0742

0.0 1.0 0.730

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

34

Results show that the precision of CBR recommender is lowest when no correction of similarity
values is performed. In this case wη is set to 1 and wr to 0 and the precision is slightly over 0.7. With wη,
decreasing the correction starts and the precision of the recommender increases. The highest precision is
achieved when wη is set to 0.3 and wr to 0.7. In this case the precision of the system is 0.744. If we
continue with decreasing wη the precision also decreases and stops at 0.730 when the original similarity
values are no longer considered.

Fig. 7. Correction of attribute value similarity - weights test

Results also show that the differences in precision of the system with different values of weights are

not very high. To explain this observation, the ratings given by users to attribute values directly (while
responding to attribute values in explanations of recommendations) and the ratings given by user to items
and which were only indirectly assigned to attribute values in items' descriptions were compared. Users
rated attribute values with an average rating of -0.47 if rating it directly, while an average rating of
attribute values received through ratings of items was -0.68 (ratings are on a -1 to 1 scale, as explained in
section 02c). This shows that users rated attribute values higher when giving ratings directly to the
attribute values, in comparison to ratings of items where we only assume that these ratings are also valid
for attribute values. This is encouraging information as it proves that users liked the attribute values that
we identified as relevant and are, therefore, generally, appropriate for explaining the recommended items.
Higher average rating of directly rated attribute value also means that the performance of CBR
recommender should improve when we use the direct ratings of attribute values. This proved to be the
case, as the precision has increased by 0.04 when the correction was done. The improvement is, however,
small. The precision of our system is quite high even without the correction of similarities (around 70% of
correct rating estimations) and, on the other hand, the difference of ratings is relatively small (around 20%
of one rating level on the rating scale on average) so higher performance improvements are not to be
expected.

Despite small performance improvements, the results of this part of the evaluation confirm our
assumptions. The ratings given by users to attribute values are more credible than ratings given by users to
items as the first are directly expressed opinions. The performance of the system therefore increases if we
use the direct ratings of attribute values during the calculation of similarities of attribute values. Our tests

Improving human-computer interaction in…

June 2012 IJST, Transactions of Electrical Engineering, Volume 36, Number E1

35

have shown that the correction of similarities achieves best results (highest recommender precision) if the
original similarity values are weighed with a 0.3 weight, while the attribute value rating should be
weighed with a 0.7 weight.

4. CONCLUSION

A content-based recommender system was built that enables personalized content retrieval in IPTV
applications and was enhanced with the module for generating recommendations. This CBR system
focused on finding the attribute values in the description of an item that a user had expressed a very high
preference towards. A special similarity function was defined that detects these attribute values and
ensures that they have a high influence on the predicted rating. Several classification methods were tested
for the classification of similarity vectors and the CBR rating prediction and 'Kstar' (24) was found to be
the most accurate.

Users' satisfaction with the system was improved by generating explanations for the recommended
items. Explanations provided the users an insight into our content-based recommender algorithm and
included the attribute values that should be the most relevant for the user when he/she decides to consume
an item, for example, actors in the movie, directors, genre etc. The evaluation showed that the algorithm
for identification of relevant attribute values achieves a high precision of identification, while ensuring
explanations for the majority of the recommended items.

The basic CBR recommender achieved good results during the evaluation, but was further improved
using feedback that users gave to attribute values presented in explanations of the recommended items.
Although the increase in precision of the recommender system was small, we managed to prove that
directly expressed opinion about the attribute values is indeed a more credible source of user information
than the ratings that users give to items are and that it can be used to improve the performance of the
recommender system.

Our future work will include a more thorough survey on improved users' satisfaction due to
recommendations explanations and the implementation of the developed algorithms in a real life
application. Besides a potentially much bigger set of users and content items to work with, it will also be
necessary to address the issue of a suitable presentation of recommended items and a presentation of
recommendations explanations to users.

Acknowledgement: This work would not have been possible without the grant of Slovenian Research
Agency No. R-784 and the cooperation with SiOL Company.

REFERENCES

1. Amazon. (n.d.). Retrieved March 30, 2011, from http://www.amazon.com
2. Last.fm. (n.d.). Retrieved March 30, 2011, from http://www.last.fm
3. Netflix. (n.d.). Retrieved March 30, 2011, from http://www.netflix.com
4. Zimmerman, J., Kurapati, K., Buczak, A., Schaffer, D., Martino, J. & Gutta, S. (2004). TV personalization

system: design of a TV show recommender engine and interface. Kluwer Academic Publishers.
5. Berkovsky, S., Kuflik, T. & Ricci, F. (2006). Enhancing privacy while preserving the accuracy of collaborative

filtering. Proceedings of the 2006 ECAI Workshop on Recommender Systems, (pp. 49-53).
6. O'Mahony, M., Hurley, N. & Silvester, G. (2006). Attacking recommender systems. Proceedings of the ECAI

2006 Workshop on Recommender Systems, (pp. 24-28).
7. Herlocker, J., Konstan, J., Terveen, L. & Riedl, J. (2000). Explaining collaborative filtering recommendations.

Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241-250, ACM.

T. Požrl et al.

IJST, Transactions of Electrical Engineering, Volume 36, Number E1 June 2012

36

8. Bellifelime, F., Bianchi, F., Charlton, P., Kamyab, K. & Arafa, Y. (2003). AVEB phase 1 demonstrator.
deliverable no. A0317/ITC/WP1/DSI003b1, project report AC 317 FACTS.

9. SiOL. (n.d.). Retrieved March 30, 2011, from http://www.siol.net
10. Breese, J., Heckerman, D. & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative

filtering. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison: Morgan
Kaufmann Publishers.

11. Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-based collaborative filtering recommendation
algorithms. Proceedings of the 10th International Conference on World Wide Web, (pp. 285-295).

12. Bezzera, B., Carvalho, F., Ramalho, G. & Zucker, J. D. (2002). Speeding up recommender systems with meta-
prototypes. Lect. Notes Comput. Sci., Adv. Artif. Intell., 227-236.

13. Uchyigit, U. & Clark, K. (2002). An agent based electronic program guide. Proceedings of the Workshop on
Personalization in Future TV.

14. Salter, S. & Antonopoulos, N. (2006). Cinemascreen recommender agent: combining collaborative and content-
based filtering. Intell. Syst., Vol. 21, pp. 35-41.

15. PTVPlus. (n.d.). Retrieved March 30, 2011, from http://www.ptvplus.com
16. DirecTV. (n.d.). Retrieved March 30, 2011, from http://www.directv.com
17. Masthoff, J. (2004). Group modeling: selecting a sequence of television items to suit a group of viewers. User

Model. User-Adapted Interact., Vol. 14, No. 1, pp. 37-85.
18. LIVE. (n.d.). Retrieved March 30, 2011, from http://www.siol.net
19. Pogacnik, M., Tasic, J. & Kosir, A. (2004). Optimization of multi-attribute user modeling approach. Int. J.

Electron. Commun., Vol. 58, pp. 402-412.
20. Witten, I. & Frank, E. (2005). Practical machine learning tools and techniques (2 ed.). San Francisco: Morgan

Kaufmann.
21. Cramer, H., Evers, V., Ramlal, S., van Someren, M., Rutledge, L., Stash, N., et al. (2008). The effects of

transparency on trust in and acceptance of a content-based art recommender. User Model. User-Adapted
Interact., Vol. 5, pp. 455-496.

22. Zolghadri-Jahromi, M. & Valizadeh, M. R. (2006) A proposed query-sensitive similarity measure for
information retrieval. Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 30, No. B2,
pp. 171-180.

23. Herlocker, J., Konstan, J., Terveen, L. & Rield, J. (2004). Evaluating collaborative recommender systems. ACM
Trans. Inf. System, Vol. 22, No. 1, pp. 5-53.

24. Miller, G. (1956). The magical seven, plus or minus two: some limits in our capacity for processing information.
APA Psychol. Rev., Vol. 63, pp. 81-97.

25. Cleary, J. & Trigg, L. (1995). An instance-based learner using an entropic distance measure. Proceedings of the
12th International Conference on Machine Learning, pp. 108-114.

