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This study addresses the evaluation of Value-at-Risk (VaR) 

using a Bayesian approach, specifically employing the heavy-

tailed Weibull (HTW) distribution. The VaR is a crucial financial 
metric for business and investment decision-making. While 

various methods exist for estimating VaR, this research focuses 

on statistical techniques utilizing heavy-tail distributions. The 
paper extends the heavy-tailed Weibull model, which is 

particularly relevant for financial applications and provides 

reliable predictions for heavy-tailed data.  The statistical 
properties of the HTW distribution are developed and Bayesian 

estimates under multiple symmetric and asymmetric loss 

functions are obtained  .The Bayes estimate is evaluated from the 
posterior distribution that minimizes the corresponding posterior 

risk. Due to the complexity of the posterior distribution, the 

Metropolis-Hastings algorithm (MHA) is implemented to draw 
posterior samples. The Markov Chain Monte Carlo sample 

convergence is evaluated through diagnostic plots. The insurance 

loss data is used to display the application of the presented 
methodology in a real-world situation. The outcomes showed 

that Bayesian estimates can be used to evaluate the Value-at-

Risk measure well. Financial institutions and risk managers can 
consider implementing Bayesian methods with heavy-tailed 

distributions, particularly the heavy-tailed Weibull model, for 

more accurate VaR estimation. This approach is especially 
valuable for portfolios with extreme events or fat-tailed return 

distributions. 
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1. Introduction  

Heavy-tailed distributions gained wider application in the statistical 

literature since researchers began to utilize various variants of the Extreme 

Value Theorem (EVT), namely, the Block Maxima method. The EVT, a 

specialized domain within statistical theory, provides a rigorous framework for 

characterizing and forecasting extreme events, defined as observations 

exceeding previously recorded magnitudes. In the context of risk theory, EVT is 

of paramount importance due to its capacity to facilitate the analysis of risk 

measures associated with observations that deviate substantially from the central 

tendency, particularly those situated within the distributional tail.  

A critical risk measure in this regard is Value-at-Risk (VaR). Formally, 

given a prespecified confidence level
(0,1)T 

, VaR represents the T -quantile 

of the aggregate profit and loss distribution. This means that with probability T, 

the losses will not exceed the VaR value. To put it another way, there's only a 

(1-T) probability that losses will be greater than the VaR amount. To express 

this mathematically, if we denote our random loss variable as X, then, 

( )( )P X VaR T T =
, or equivalently,

1( ) ( ),VaR T F T−=
 where 

1F −

is the inverse 

CDF (quantile function) of the loss distribution. The value at risk has become a 

widely adopted risk measure in financial institutions and regulatory frameworks, 

primarily due to its ability to summarize market risk exposure into a single, 

easily interpretable number. VaR estimates the potential loss in value of an asset 

or portfolio over a defined time horizon for a given confidence level. The first 

study to estimate potential loss and calculate risk was done in 1888 by Francis 

Edgeworth. He improved statistical theory and estimated future probabilities 

using past empirical events. Further, Bali (2007) studied the generalized extreme 

value approach to financial risk measurement. Trzpiot & Majewska (2010) 

estimated the VaR using extreme value and robust approaches. Socgnia & 

Wilcox (2014) performed an empirical investigation of various subclasses of the 

generalized hyperbolic distribution, namely the hyperbolic, variance gamma, 

normal inverse Gaussian, and skewed-t distributions, utilizing daily log-returns 

from the Johannesburg Stock Exchange as their data source. Chinhamu et al. 

(2015) studied VaR  criterion in evaluating the gold market.  Peng et al. (2020) 

improved VaR prediction using model uncertainty. Müller & Brutti Righi (2024) 

compared different methods in VaR  estimation. Chronopoulos (2024) predicted 
VaR using deep neural network quantile regression. Additionally, the application 

of heavy-tailed distributions in risk management for estimation tasks is well-

established. Martin et al. (2022) considered peaks-over-threshold method for 

generalized Pareto distribution in risk evaluation. Luger (2012) derived the finite 

sample bootstrap in GARCH models with heavy innovations. Spierdijk (2016) 

considered confidence intervals for VaR  by using heavy tails and skewness 

properties. Panahi (2019) evaluated the VaR  estimation under the kappa 

distribution.  The Weibull distribution holds a significant position as a 



  Panahi et al., Iranian Journal of Economic Studies, 13(1) 2024, 109-132 111 

parametric probability distribution in reliability and financial analysis, with 

applications including reliability engineering and decision-making. Research has 

progressively extended the Weibull distribution’s capabilities through 

modifications and generalizations. For instance, Lai et al. (2003) introduced a 

three-parameter modified version, while Bebbington et al. (2007) and Sarhan & 

Apaloo (2013) further expanded the distribution with two- and four-parameter 

extensions, respectively, to accommodate various hazard rate shapes, including 

bathtub and monotone forms. Famoye et al (2005) discussed the beta Weibull 

distribution with several hazard rate functions. Moradi et al. (2022) estimated 

the exponentiated Weibull parameters under censored data. Benkhelifa (2021a, 

2021b) proposed the Weibull Birnbaum-Saunders model and beta reduced 

modified Weibull distribution respectively. Ghazal & Radwan (2022) proposed 

the reduced modified Weibull distribution with its application to medical and 

engineering data  . 

Although, several distributions have been introduced for the modeling of 

applied data, however, there are situations where these distributions are not 

suitable for modeling different data. For this, we propose to use the heavy-tailed 

distribution for evaluating the Value-at-Risk (VaR) criterion. The heavy-tailed 

distributions are essential in econometric modeling and forecasting of financial 

time series. By incorporating heavy-tailed distributions into portfolio 

optimization models, investors can construct portfolios that are more robust to 

market shocks and better aligned with their risk preferences. Alzaatreh et al. 

(2013) proposed the T-X family approach to obtain heavy-tailed distribution 

using the following cumulative distribution function (CDF):  
( ( ; ))

*

0

( ) ( )

H F x

F x u t dt= 


                                                                             (1) 

Here, ( ( ; ))H F x   meets certain conditions; see Alzaatreh et al. (2013). So, the 

probability density function of 
*( )F x  can be written as: 

( )*( ) ( ( ; )) ( ( ; )) ;   .f x H F x u H F x x R
x

 
=  

 
                                                   

(2) 
Recently, Zhao et al. (2020) proposed the Type I heavy-tailed Weibull 

distribution. They obtained the maximum likelihood estimates of parameters and 

analyzed three real data sets to show the fit of the model to the reliability 

engineering, bio-medical and financial data.  Based on the T-X family pioneered 

by Alzaatreh et al. (2013), we propose the HTW distribution and provide some 

mathematical properties. Also, we use this distribution because financial data 

often doesn't follow normal patterns, especially during extreme events that 

standard distributions underestimate. Its additional parameter specifically 

models tail thickness, providing a more realistic representation of financial risks 

while maintaining mathematical tractability. This makes HTW particularly 

valuable for VaR estimation, helping financial institutions avoid 
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underestimating potential losses during extreme events. From a statistical 

perspective, the HTW distribution offers several advantages. It provides a good 

balance between mathematical tractability and realistic modeling of extreme 

events. The Bayesian approach further enhances this by incorporating prior 

knowledge and providing full posterior distributions rather than just point 

estimates, resulting in more robust risk management strategies that better align 

with regulatory requirements. Also, extending the application of EVT to a 

Bayesian framework offers several benefits, mirroring the advantages 

highlighted earlier with the HTW distribution. Incorporating prior beliefs about 

the tail behavior can improve the accuracy and stability of VaR estimates, 

especially when dealing with limited data. Furthermore, the Bayesian approach 

provides a natural mechanism for quantifying the uncertainty associated with the 

parameters and, consequently, with the VaR estimates. This uncertainty 

quantification is crucial for risk managers, as it allows them to assess the 

potential range of losses and make more informed decisions about capital 

allocation and risk mitigation strategies.  

The motivations of this study include presented method can be applied 

across various fields such as engineering, management, insurance and more. The 

simplicity of the proposed method combined with its remarkable flexibility in 

modeling real-world data, makes it an attractive alternative to the VaR 

evaluation. 

To the best of our knowledge, there is no study reported in literature that 

proposed estimation of the HTW parameters and evaluation of the VaR  

measure. So, we focus on proposing a novel version of Weibull model for 

gaining the VaR estimation. We illustrate the Bayes methodology with an 

application to financial data. Bayes estimation under several symmetric and 

asymmetric loss functions is presented. Since the posterior distribution becomes 

complex, we propose the use of Metropolis-Hastings (MH) method to draw the 

posterior samples and summarize the characteristics of the posterior samples. 

Posterior predictive density is derived for future observations. 

In Section 2, we propose the HTW model and gain its mathematical 

properties. Sections 3 and 4 deal with the parameter estimates using the MLE 

and Bayesian approaches. Bayesian Section presents the formulation of the 

Bayesian model for the given problem under various novel loss functions. The 

insurance loss data is analyzed in Section 5. Finally, section 6 deals with the 

conclusion of the paper. 

 

2. The HTW Distribution 

The field of statistics offers a vast array of continuous distributions. In 

traditional financial modeling, the assumption of normally distributed returns 

has been a cornerstone for decades. This assumption simplifies risk assessment 

and portfolio optimization. However, empirical evidence consistently reveals 

that financial asset returns often exhibit characteristics that deviate significantly 

from normality. Specifically, these returns tend to have fatter tails, indicating a 
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higher probability of extreme events than predicted by the normal distribution. 

This phenomenon necessitates the adoption of heavy-tailed distributions, such as 

the Student’s t-distribution, generalized hyperbolic distribution, and stable 

distributions, to more accurately capture the true risk profile of financial assets. 

These distributions are characterized by their ability to model the increased 

likelihood of large, infrequent fluctuations, which are crucial for effective risk 

management and investment strategies. By incorporating these distributions, 

financial models can better reflect the realities of market dynamics, leading to 

more robust and reliable predictions. By employing heavy-tailed distributions, 

Value at risk measure can provide a more conservative and realistic assessment 

of risk. This is especially critical for institutions that must comply with 

regulatory capital requirements, as underestimating risk can lead to inadequate 

capital reserves and potential financial instability. Furthermore, heavy-tailed 

distributions allow for the incorporation of tail dependencies, which capture the 

tendency of extreme events to occur simultaneously across different assets, 

further enhancing the accuracy of risk assessments. 

Moreover, the introduction of new heavy-tailed distributions can have a 

significant impact on better modeling of financial data. One of these 

distributions is the heavy-tailed Weibull (HTW) distribution, which is used in 

this article to model financial data. The HTW distribution with parameters   

and 


, is given by the following probability density function (PDF) and 

cumulative distribution function (CDF): 

( )
( )( )

2 1

1
, , ;     0, , 0

1

x

x

x e
f x x

e

− −

+
−

=  

+ −





 




   

 

,                                     (3) 

and 

( )
( )

, , 1 ;     0, , 0
1

.
x

x

e
F x x

e

−

−

 
 = −  
 + − 







   
 

                                  (4) 

Moreover, the hazard function and the survival function of HTW are: 

( )
( )

2 1

, ,
1 x

x
H x

e

−

−
=

+ −



 

 
,                                                                           (5) 

and 

( )
( )

, ,
1

x

x

e
S x

e

−

−

 
 =
 + − 







 
 

.                                                                      (6) 

To gain the heavy-tailed property of the HTW model, we consider the 

following Theorem. 

Theorem: A distribution ( ; , )F x   for a random variable X is considerate 

to be heavy tail if and only if 
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.
1 ( ; , )

lim ;  ( ; ) 
( ; )x

is the sur x
F x

S x vival of  e ponential distribution
S x→

−
= 

 



           

(7) 

Proof: Based on Equation (2), we have 

( ) ( )( 1 (
l

1
im

) )x

x x x

x x x

e e e

e e e

− −

− − −→ + − + −
=

 

 

 





    
.                                             (8) 

Thus, for (0,1) and any value of  and  , we can write, 

lim x x

x
e

→

− + = 
 

 and ( )lim )( 1 x

x
e−

→
+ − =

     .                                          

(9) 

So, for (0,1) , we have, 

( )(
lim

)1

x

xx

xe e

e→

−

 −
= 

+ −





 

 
.                                                                             (10) 

Thus, we can conclude that HTW distribution has heavy-tailed property. 

 

3. Properties of HTW Model 

In this section, we considered some mathematical properties of HTW 

distribution such as: 

 
3.1. Quantile Function (QuF) 

The QuF of the random variabla X which has HTW model is given as, 

( ) ( )

1/

1/

      

ln ;   0,1
1 (1 )

QF p p
p







 −

  
= −   

− + −   

                                            (11) 

Proof: For 0 1p  , the QuF is the inverse of cumulative distribution of 

X, that is: 

( )
2

1
1

x

x

e
p

e




 

−

−

 
 − =
  + −
 

,                                                                            (12) 

Therefore, 

( )

1/ 1
(1 )

1
p

e




 
− =

+ −
,                                                                               (13) 

( )1/(1 ) 1p e  −− = + − ,                                                                               (14) 

( )1/(1 ) 1 xp
e


 



−− − −
= ,                                                                                (15) 

Hence, 
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( )
1/

1/(1 ) 1
ln

p
x


 



−  − − −
  = 

    

.                                                                   (16) 

which completes the proof. 

 
3.2.  Measures for HTW model  

Suppose the continuous random variable X has HTW model 
( , )X HTW  

. The rth-moment of HTW model is defined by: 

 

, , 0

( , , ) ( , , );     1,2,...,r

i j k

i j k r r 


=

 = =u Z N                                                      (17) 

where,
1

( , , ) ( 1)i j ki i
i j k

j k i

+ ++   
= −   
   


Z and 

2 (( / ) 1)( , , ) (( / ) 1) (1 )j rr r + − +=  + +     N . 

The mean and variance for the HTW model are given by: 

2 (1/ 1)
1

, , 0

1
( 1) (1/ 1) (1 )i j k j

i j k

i i

j k i


+ + + − +

=

+   
 = −  + +   

   
 

  u ,                      (18) 

2 (2/ 1)
2

, , 0

1
( 1) (2 / 1) (1 )i j k j

i j k

i i

j k i


+ + + − +

=

+   
 = −  + +   

   
 

  u ,                     (19)  

2
2 1( ) ( )Var X  −=u u .                                                                                            (20) 

The index of dispersion for X is: 

1

( )Var X
CV =

u
.                                                                                                  (21) 

 

3.3. Moment generating function (MoGF) 

The MoGF of the HTW model can be given as: 

( )
( )( )

0

2 1

1

0 0

((1/ ) 1)

, , ,

( )

                                           ( , , ) (( / ) 1)( ) .

, ,

1

!

tx tx
X

h

i j h

x

k

x e
M f x d

e

t e e

t
i j

x

k h

d

k
h

x

 


+

− −

−

=

+
−

=

=  + +

=

+ −
 







 
















Z

                                  (22) 

 

 
3.4. Stress- Strength Reliability 

Studies have indicated that certain parts or equipment endure because of 

their durability. These gadgets can withstand a given amount of stress, but when 
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more force is placed on them, they malfunction because they are unable to 

handle it. The stress strength model defines a component’s life as follows: if 

stress surpasses strength, the component will fail. Let the model consists of 

strength variable such that ( , )HTWX   and independent stress variable 

( , ).TWY H    Then, the stress-strength reliability model can be written as: 

 

0

0

( ) ( ) ( )

                       ( ) ( ) ,

Y

Y Y

Reliability P X Y P X Y Y y f y dy

f y F x dy


 





=  =  =

= =
+





                                        (23) 

which is a continuous function (Figure 1).  

 

 
 

 

 

 

 

 

 

 

 

Figure 1: The 3D plot of reliability model. 
Source: Research Findings 

 

Figure 1 demonstrates how reliability decreases as these parameters 

change. The highest reliability (values close to 1.0) occurs when  is high and 

 is low (back corner of the plot). The reliability then decreases following a 

non-linear pattern as these parameters shift. This visualization likely represents a 

reliability model where: 

▪ Higher values on the z-axis (closer to 1.0) indicate better reliability. 

▪ The saddle-like shape shows there are optimal combinations of  and 

 . The key insight is to understand which combinations of  and 
provide acceptable reliability thresholds for whatever system or 

component is being modeled. 

 

 

 

3.5. Value-at-Risk Evaluation 

Value at Risk (VaR) has emerged as a prevalent risk metric within financial 

institutions and regulatory structures, primarily attributable to its capacity to 

condense market risk exposure into a singular, easily understandable figure. The 
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calculation of VaR typically involves employing statistical techniques, such as 

historical simulation, Monte Carlo simulation, or parametric methods. Each of 

these approaches possesses its own strengths and weaknesses. Historical 

simulation utilizes past market data to forecast potential future losses, assuming 

that historical patterns will persist. Monte Carlo simulation, on the other hand, 

involves generating numerous random scenarios to simulate potential market 

movements. Parametric methods rely on distributional assumptions about the 

underlying risk factors, such as normality, which may not always hold true in 

practice, particularly during periods of market stress. Therefore, choosing the 

appropriate method for estimating value at risk is important. 

Let X represents random variable that were detected from 
( , )HTW  

, the 

Value-at-Risk (VaR ) criterion can be evaluated by finding the inverse of CDF 

for our proposed HTW model. Thus, the VaR  can be written as: 

( )

ˆ1/

1

ˆ1/

      

ˆ
( ) , , ln

ˆ1 (
.

1 )
TVa F

T
R TX −

−

  
 = = −  

  − + −  






 


                                 (24) 

 

4. Likelihood Function 

A well-liked technique for parameter estimation in statistical models is 

called maximum likelihood estimation (MLE). It is a method for finding a 

statistical model’s unknown parameters using sample data. The MLE stands as a 

cornerstone of statistical inference, offering a powerful and versatile framework 

for estimating parameters of probability distributions based on observed data. 

Unlike simpler methods like the method of moments, MLE leverages the full 

distributional assumptions to derive estimators with desirable properties, making 

it a preferred choice in many statistical applications. In this section, we discuss 

estimation of parameters of the HTW parameters using the likelihood approach. 

The likelihood function (LikF) for the set of parameter ( , )=   is given by: 

 

( )
( )( )

( )( )1

2 1

1

1

1
2 1

1 1

1
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n x
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i i

x e
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e
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x e e=

−−
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−=
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−−

= =

=

+

+ −

=  −




 













 





 

  





                          (25) 

In practice, it is often more convenient to work with the log-likelihood 

function, which is the natural logarithm of the likelihood function. The 

logarithm transformation preserves the location of the maximum but converts 

products into sums, simplifying calculations. Moreover, the log-likelihood often 

exhibits more desirable properties for optimization, such as convexity, which 

aids in finding the global maximum. So, the log-LikF is: 
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( )
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In order to obtain the MLEs of the parameters, we maximize the log-LikF 

(6) with respect to the proposed parameters. MLEs are the solution of the 

nonlinear equation system: 
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( )1 1 1
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and  
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( )1 1 1
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x

i
x

i i i

L n e
x e

dat

e

a −
−

−
= = =

 −
= − − − − ++ =

 + −
  






   


 

  
          

                                                                                                                         (28) 

These equations do not provide analytical expressions of the MLEs. 

Therefore, we maximize the log-likelihood function numerically using a suitable 

iterative method (e.g. Newton-Raphson method). We suggest the readers to use 

optim() function of R-software to compute MLEs numerically. This function 

offers various optimization methods, including Newton-Raphson and Nelder-

Mead methods. The Nelder-Mead method is a popular optimization algorithm 

introduced by Nelder (1965), which is a direct search method and does not 

require to derive the objective function. The R function is as follows. 

▪ optim(set of initial values, ( ),ln dataL−   , data) 

There is no definitive rule for selecting initial values in numerical 

optimization, as noted in the literature. But the right choice must be made. 

Because choosing poor initial values can lead to convergence or local optimality 

problems. 

 
5. Bayesian Estimation 

In contrast to classical theory, the parameter in the Bayesian approach is 

regarded as random variable whose distribution is known to the investigator. 

This is a reasonable assumption because no population’s parameters remain 

constant over the course of a study (Asadi et al. (2018), Mahdavi & Ehsani 

(2022), Vardani et al. (2024) and Panahi (2025)). Bayesian methods, a 

cornerstone of modern statistical inference, offer a fundamentally different 

approach compared to classical, frequentist statistics. Instead of treating 

parameters as fixed but unknown quantities, Bayesian methods treat them as 

random variables, possessing a probability distribution that reflects our 
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uncertainty or prior beliefs about their values. This probabilistic perspective 

allows for a more nuanced and flexible framework for data analysis, inference, 

and decision-making. At the heart of Bayesian methods lies Bayes’ theorem, a 

mathematical equation that updates our prior beliefs in light of new evidence. 

One of the key advantages of Bayesian methods is their ability to incorporate 

prior knowledge into the analysis. This is particularly valuable when dealing 

with limited data or when there is substantial prior information about the 

parameters of interest. The prior distribution can reflect expert opinions, 

previous studies, or even vague notions about the plausible range of parameter 

values. By combining prior knowledge with the data, Bayesian methods can 

provide more robust and reliable inferences, especially in situations where the 

data alone is insufficient. 

One of the main challenges in Bayesian methods is the specification of the 

prior distribution. The choice of prior can have a significant impact on the 

posterior distribution, especially when the data is limited. It is important to 

carefully consider the prior distribution and to conduct sensitivity analysis to 

assess how the results change under different prior assumptions. Non-

informative priors, which aim to minimize the influence of the prior, can be 

used, but they may not always be appropriate or well-defined. It is important to 

mention here that no conjugate prior is related to the random variables. So, we 

use the gamma prior distribution as an informative prior leveraging its 

flexibility. On the basis of joint prior density (
1 2 1 21 1( , ) e− − − −         ) along 

with the likelihood function (6), the joint posterior function under can be written 

as:  
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Hence, the conditional posterior (ConP) densities of   and 


 can be 

obtained, up to proportionality, as: 
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and 
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We considered different asymmetric and symmetric loss functions. These 

loss functions and the associated Bayesian estimators of them are presented in 

Table 1. Loss function measures the difference between the actual value and the 

predicted value in statistics. These functions can be symmetric or asymmetric. A 

loss function is symmetric if the penalty for overestimating and underestimating 

the true value is the same. In other words, whether the predicted value is higher 

or lower than the actual value, the loss remains equal, for example, squared error 

loss.  This function squares the difference, meaning larger errors are penalized 

more heavily. In some cases, the cost of overestimation and underestimation is 

not equal. Asymmetric loss functions are used when one type of error is costlier 

than the other. Other loss functions are in the case of asymmetric loss functions. 

In financial models, like stock market predictions, overestimating losses or gains 

may have different financial consequences. Choosing the right loss function 

depends on the problem and the relative importance of different types of errors. 

 

Table 1. loss functions and the associated Bayesian estimators for ( , ).=    

Loss Functions Bayesian estimators 

2
1

ˆ( ) ( )L   = −:  (SELo)Squared error loss ( )E data 
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( )L

 




−
= )WSEr(:Weighted squared error ( )

1
1( )E data

−
−

 

K-loss function(KLFu) 
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L

 




 
 = −
 
 

 1

( )

( )

E data

E data



 −
 

Precautionary loss function(PLFu):

2

4 ( ) 1
ˆ

L





 
= − 
 

 

1

2

( )

( )

E data

E data





−

−
 

Linex loss function (LLFu): 

( )
5

ˆ( ) ( ) 1; ( )L e   = −  −  = − 

See, Figure 2. 

1
log ( )E data



− −
 

e 

Source: Research Findings 
 

Since the Bayesian estimators do not possess analytical solutions, a Markov 

Chain Monte Carlo (MCMC) method, namely the Metropolis-Hastings (MH) 

algorithm, is implemented to derive an approximate solution. 

Figure 2 shows plots of the Linex (Linear-Exponential) loss function for 

different values of the shape parameter φ. This loss function is asymmetric, 

which is its primary feature. Unlike symmetric loss functions (like squared 

error), Linex penalizes errors in one direction more heavily than errors in the 

opposite direction. For negative φ values, the function penalizes negative errors 

(Δ < 0) more heavily than positive errors. For positive φ values, the function 

penalizes positive errors (Δ > 0) more heavily than negative errors. As |φ| 

increases (comparing the black, orange, and green lines), the asymmetry 
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becomes more pronounced, showing greater penalization in the respective 

directions. 

 

 

 

 

 

 

 

 

 
Figure 2. Plot for Linex loss function for: positive values (left) and negative 

values (right) of  . 
Source: Research Findings 

 

5.1. The MH Algorithm 

In the area of statistical computing, MCMC is a vital approach. A number 

of parameters can be estimated using this effective technique, which can be used 

to sample from a particular probability distribution. One well-known MCMC 

methodology is MH technique. The following is a description of the MH 

technique. 

1:Step Set the starting value to the MLEs, represent by ̂  and ̂ . 

2 :Step 
Set  1k = . 

3:Step 
At the 

thk iteration, generate a proposal point 
*̂ from 

1( , ( ))iN Variance−  . 
4 :Step 

Obtain the acceptance probability as: 

( )1 * 1
1

ˆ ˆ ˆ ˆ) min 1, ( ) / ( ) . (Acceptanc t date Probabili a datay =     k- k k-,
 

5:Step 
Generate a random variable 1U

 from standard uniform distribution. 

6 :Step 
If 

1
1 ( ˆ ˆ ) Acceptance ProbaU bility  k- k,

, accept the proposal, else 

set 
1ˆ ˆ= k- k

. 

7 :Step 
Generate 

*̂
from the Normal distribution

1( , ( ))iN Variance−  . 
8:Step 

Evaluate the acceptance probability as: 

( )1 * 1
2 2

ˆ ˆ ˆ ˆ) min 1, ( ) / ( ) . (Acceptance Probability data data=     k- k k-,
 

9 :Step 
Generate 2 (0,1)U Uniform
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10 :Step 
If 

1
2 ( ˆ ˆ ) Acceptance ProbaU bility  k- k,

, set 
*ˆ ˆ=  k

, otherwise 
1ˆ ˆ =k- k

 
11:Step 

Repeat Steps 2-10; for N  time. 
12 :Step 

 The Bayes estimates of the parameters under 1 2 3( ),  ( ),  ( )L L L  
, 

4 ( )L 
and 5 ( )L 

can be written as: 

)

1
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N
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M
N M
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==
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M
N M
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==
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( )

1

ˆ ( , )
1 1

log ;   LLFu

M

e
N M

= +

= −
  

= 
  −     



K
N

-

K

.                                          (36) 

Where, M  is the burn-in-period of Markov chain. 

 
6. Insurance Loss Data Analysis 

This section provides an example of the suggested VaR and estimation 

approaches utilizing real-insurance loss data set. The data set is taken from Riad 

et al. (2022). To gain the fit of the HTW distribution to data set, we apply the 

log-likelihood (LL) criterion, Kolmogorov-Smirnov (KS) criterion, Anderson-

Darling (AD) criterion and Cramer-von Mises (CVM) criterion. The proposed 

distribution has been compared with five other distributions.  

 

▪ HTW distribution:  

▪ 27.1960,   0.10856,   0.88899,   0.13269HTW HTW HTW HTWAD CVLL KS M == = = . 

▪ Weibull distribution: 
▪ 25.5290,   0.12484,   1.19055,   0.18564.W W W WLL AD CVMKS == = =  

▪ Burr distribution:  

▪ 27.5486,   0.11061,   0.865653,   0.137021B B B BAL D CVL K MS = == = . 

▪ Pareto distribution: 
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▪  -309.4259,   0.608971,   28.009168,    6.245090P P P PL AS D CVML K= = = = . 

▪ Exponentiated Pareto: 

▪  -297.0731,    0.382,   13.582,   2.6939EP EP EP EPAD CVL ML KS == = = . 

▪ Exponential distribution: 

▪ -305.6592,   0.490299,   17.18987,   3.64775E E E EL S AD CVL MK == = = . 

It is observed that the HTW distribution better fits than any of these 

distributions. The maximum likelihood estimates of the proposed model 

parameters are plotted in Figure 3. This visualization is showing how the 

likelihood function value changes as the parameters  and  vary. In maximum 

likelihood estimation, we are typically looking for the parameter combination 

that minimizes the negative of this function. We also present the goodness-of-fit 

graphically by presented the empirical CDF and the fitted CDF plot, PP plot and 

also density plot, which clearly demonstrate that the HTW distribution 

adequately fits the data set (see, Figures 4, 5 and 6). Based on the following 

considerations, the performance of the VaR has been estimated.  

 

➢ Step 1: Estimation of model parameters by maximum likelihood 

method (Figure 5) as initial values in the MH algorithm.  

➢ Step 2:  Obtain the Bayesian estimates of   and  using different loss 

function, notably, SELo, WSEr , KLFu and PLFu.  

➢ Step 3:  Determine the convergence property of the MCMC using the 

trace plots. 

➢ Step 4:  Evaluate the VaR  measure using  
ˆ1/

ˆ1/

      

ˆ
( ) ln

ˆ1 (1 )
TVa

T

R X
−

  
  = −
  

− + −   








                                                                     (37) 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Plot for ML estimates of parameters 

Source: Research Findings 
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The libraries that we used for the modeling process are: 

• Function “fitdist” for “fitdistrplus” package: it is used to fit a 

probability distribution to a given dataset. 

• Function “gofstat” for “fitdistrplus” package: we use this library in 

application part for calculating the goodness-of-fit tests with its 

associated p-value. 

• Function “MCMC” for “coda” package: In the context of Bayesian 

analysis with Markov Chain Monte Carlo (MCMC) methods, we use 

this function to convert the sequence of samples from the posterior 

distribution of a parameter into an MCMC object. 

 

 

 

 

 

 

 

 

 
 

Source: Research Findings 

 

 

 

 

 

 

 

 

 
Figure 5. The PP plots . 
Source: Research Findings 

 

 

 

 

 

 

 
Figure 6. The density and fitted plot for different distributions. 

Source: Research Findings 

Figure 4: Empirical CDF and the fitted CDF plots . 

.  
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The Bayesian estimates are obtained under the non-informative prior 

assumption. Since we do not know the true value of the parameters and we use 

iterative estimation as the initial value, we used a large number of iterations to 

obtain a stable chain, and to eliminate the influence of the initial values, we used 

the first 5000 iterations as the burn-in period. For the MCMC method, we 

sample from the posterior distributions of the parameters using the MH 

algorithm with 25000.N =  The results of the parameters estimation and risk 

evaluation are reported in Tables 2 and 3 respectively. To check the 

convergence of the MCMC samples in Bayes estimation of parameters, the trace 

plots of the MCMC samples are presented in Figures 7 and 8. It is worth noting 

that the plots are shown for two loss functions. The rest of the cases are similar. 

The blue line shows how the parameter value fluctuates across iterations. The 

values fluctuate around the center line, suggesting the chain has likely 

converged. The histogram plots are also presented. It is clear that the MCMC 

method converges extremely effectively.  

Therefore, we can conclude that the VaR measure can be obtained 

satisfactorily based on the HTW model and using the proposed methods.  

 
Table 2.  Different estimates using different LFu. 

Source: Research Findings 
 

LFu.estimations using different  VaRThe  .Table 3 

Source: Research Findings 
 

7. Conclusion 

This paper proposes a heavy-tailed distribution, known as HTW model. In 

the context of analysis of financial data, it is a significant and novel contribution 

Parameters 
 

ˆ
SELo 

ˆ
WSEr ˆ

KLFu 

 

ˆ
PLFu 

 

ˆ
LLFu 

 

̂ 

 

 
5.706 

5.811 6.331 
 

5.309 

 

5.694 

̂ 
 

1.259 

 

1.112 

 

1.078 

 

1.020 

 

1.785 
      

VaR 
 

ˆ
SELo 

ˆ
WSEr ˆ

KLFu 

 

ˆ
PLFu 

 

ˆ
LLFu 

0.85T = 1.0350 1.0818 1.0844 1.1213 0.7303 

0.95T = 1.0805 1.1218 1.1202 1.1636 0.9892 

0.99T = 1.1412 1.1771 1.1697 1.2234 1.1233 
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to the field of risk modeling. This new distribution has several distributional and 

mathematical properties. It was focused on obtaining the Bayes estimates of the 

parameters of the HTW distribution based on different loss functions. In the 

Bayesian framework, the Bayes estimates of the unknown parameters were 

computed using the MH algorithm. Bayes estimates are obtained with a variety 

of symmetric and asymmetric loss functions. A thorough exploration is 

presented on the implementation of the MH algorithm for generating samples 

from the posterior distribution. The Bayesian estimates are applied to VaR  

evaluation. Our analysis using insurance loss data confirms that the HTW 

distribution can effectively model real-world financial phenomena characterized 

by extreme events. Also, we have compared the goodness of fit of this data with 

other distributions used in financial issues, and it is found that the HTW model 

provides better inferences for this data compared to all suggested models. Also, 

Bayesian estimates based on different loss functions have led to satisfactory risk 

estimation. The improved accuracy in tail risk estimation enables more informed 

capital allocation decisions and potentially reduces the likelihood of insolvency 

during market stress periods. 

There are two interesting works for the future work. The first is to apply the 

HTW model to obtain tail value at risk ( TVaR ) and tail variance premium ( TVP

). Secondly, other estimators such as least square procedure and moment method 

can be adopted to estimate the model parameters and then to evaluate the VaR

criteria. 

 

 

 

 

 

 
(a) Plots for    

 

 

 

 

 

 

 

 
 

(b) Plots for    

Figure 7.The histogram and trace plots based on SELo. 
Source: Research Findings 
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(a) Plots for    

 

 

 

 

 

 

 
 

(b) Plots for    

Figure 8 . The histogram and trace plots based on PLFu. 
Source: Research Findings 
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Appendix 

The R programming code for the Linex loss function plot and MCMC steps 

have been provided below: 

linex_loss <- function(delta, phi) {return((exp(phi * delta) - phi * delta - 1))} 
delta <- seq(-2, 2, length.out = 200) 

phi_pos <- c(0.5, 1.5, 2.5) 

phi_neg <- -phi_pos 
par(mfrow = c(1,2)) 
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f1 <- function(alpha, beta, x) {n <- length(x)} 
if(alpha <= 0 || beta <= 0) return(0) 

alpha_part1 <- alpha^(n+r1-1)    

    alpha_part2 <- prod(x^(alpha-1))   
    alpha_part3 <- exp(-alpha * tu1)    

    alpha_part4 <- exp(- alpha * (tu1-sum(log(x))))   
    beta_part2 <- prod((beta + (1-beta)*exp(-x^alpha))^(-beta-1)) 

    J <- alpha_part1 * alpha_part2 * alpha_part3 * beta_part2 

 if(is.nan(J) || is.na(J) || is.infinite(J)) return(0) 

    return(J) 

  }, silent=TRUE) 
  return(0) 

f2 <- function(alpha, beta, x) { 

  n <- length(x) 
  if(alpha = 0 || beta <= 0) return(0) 
  try({ 

    beta_part1 <- beta^(2*n+r2-1) 
    beta_part2 <- exp(-beta*tu2) 

    beta_part3 <- prod((beta + (1-beta)*exp(-x^alpha))^(-beta-1))       
   J <- beta_part1 * beta_part2 * beta_part3 

    if(is.nan(J) || is.na(J) || is.infinite(J)) return(0) 

    return(J) 
  }, silent=TRUE) 

 return(0) 
} 

Metropolis <- function(sigma) { 

  M1 <- 5000    
  beta1 <- alpha1 <- rep(NA, M1) 

  alpha1[1] <- 1    

  beta1[1] <- 1 
  u <- runif(M1) 

  k_alpha <- k_beta <- 0 

   

  for(l in 2:M1) { 

    alphat <- alpha1[l-1] 
    betat <- beta1[l-1] 

    y_alpha <- rnorm(1, alphat, sigma) 

    ratio_alpha - 0 
    if(y_alpha > 0) { 

      num <- f1(y_alpha, betat, x) * dnorm(alphat, y_alpha, sigma) 
      denom <- f1(alphat, betat, x) * dnorm(y_alpha, alphat, sigma) 

      if(denom > 0) ratio_alpha <- num/denom 

      if(is.nan(ratio_alpha) || is.na(ratio_alpha) || is.infinite(ratio_alpha)) 
ratio_alpha <- 0 
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    } 
     if(y_alpha > 0 && !is.na(ratio_alpha) && u[l] <= ratio_alpha) 

      alpha1[l] <- y_alpha 

    else { 
      alpha1[l] <- alphat 

      k_alpha <- k_alpha + 1 
    } 

    y_beta <- rnorm(1, betat, sigma) 

    ratio_beta <- 0 

    if(y_beta > 0) { 

      num <- f2(alpha1[l], y_beta, x) * dnorm(betat, y_beta, sigma) 
      denom <- f2(alpha1[l], betat, x) * dnorm(y_beta, betat, sigma) 

        if(denom > 0) ratio_beta <- num/denom 

      if(is.nan(ratio_beta) || is.na(ratio_beta) || is.infinite(ratio_beta)) ratio_beta 
<- 0 

    } 

    if(y_beta > 0 && !is.na(ratio_beta) && u[l] <= ratio_beta) 
      beta1[l] <- y_beta 

    else { 
      beta1[l] <- betat 

      k_beta <- k_beta + 1 
   k_alpha <- k_alpha / M1 
  k_beta <- k_beta / M1 
  return(list(alpha1=alpha1, beta1=beta1, k_alpha=k_alpha, k_beta=k_beta)) 
} 
# Run with different sigma values to find best sigma 

MH <- function(s) { 
  M1=2000; burn=500; sigma=s 

  beta1 <- alpha1 <- rep(NA, (M1+burn)) 

  alpha1[1] <- 1    
  beta1[1] <- 5 

  u <- runif(M1+burn) 

  k_alpha <- k_beta <- 0 

   

  for(l in 2:(M1+burn)) { 
    alphat <- alpha1[l-1] 

    betat <- beta1[l-1] 

    y_alpha <- rnorm(1, alphat, sigma) 
    if(y_alpha > 0) { 

      num <- f1(y_alpha, betat, x) * dnorm(alphat, y_alpha, sigma) 
      denom <- f1(alphat, betat, x) * dnorm(y_alpha, alphat, sigma) 
      if(denom > 0) ratio_alpha <- num/denom 

      if(is.nan(ratio_alpha) || is.na(ratio_alpha) || is.infinite(ratio_alpha)) 
ratio_alpha <- 0 
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    } 
    if(y_alpha > 0 && !is.na(ratio_alpha) && u[l] <= ratio_alpha) 

      alpha1[l] <- y_alpha 

    else { 
      alpha1[l] <- alphat 

      k_alpha <- k_alpha + 1 
    } 
    y_beta <- rnorm(1, btat, sigma) 

     ratio_beta <- 0 

    if(y_beta > 0) { 

      num <- f2(alpha1[l], y_beta, x) * dnorm(betat, y_beta, sigma) 
      denom <- f2(alpha1[l], betat, x) * dnorm(y_beta, betat, sigma) 

       if(denom > 0) ratio_beta <- num/denom 

      if(is.nan(ratio_beta) || is.na(ratio_beta) || is.infinite(ratio_beta)) ratio_beta 
<- 0 

    } 

     if(y_beta > 0 && !is.na(ratio_beta) && u[l] <= ratio_beta) 
      beta1[l] <- y_beta 

    else { 
      beta1[l] <- betat 

      k_beta <- k_beta + 1 

   alpha1 <- alpha1[(burn+1):(burn+M1)] 
  beta1 <- beta1[(burn+1):(burn+M1)] 

    alpha_geometric <- sqrt(mean(alpha1)/mean(1/alpha1)) 
  beta_geometric <- sqrt(mean(beta1)/mean(1/beta1)) 
  alpha_ratio <- mean(1/alpha1)/mean(1/(alpha1^2)) 

  beta_ratio <- mean(1/beta1)/mean(1/(beta1^2)) 
   alpha_linex <- (-1/h) * log(mean(exp(-h*alpha1))) 

  beta_linex <- (-1/h) * log(mean(exp(-h*beta1))) 

    names_estimators <- c( "l3", "l4", "l5") 
   results <- data.frame(Estimator = names_estimators, 

 Alpha = alpha_estimators, 

    Beta = beta_estimators 

  ) 

  rejection_rates <- c(k_alpha/(M1+burn), k_beta/(M1+burn)) 
  return(list(estimators = results)) 

 

 
 

 

 

 


