Alzaatreh, A., Lee, C., & Famoye F. (2013). A new method for generating families of continuous distributions. Metron, 71(1), 63–79.
Asadi, A., Zare, H., Ebrahimi, M. & Piraiee, K. (2018). Sentiment Shock and Stock Price Bubbles in a Dynamic Stochastic General Equilibrium Model Framework: The Case of Iran. Iranian Journal of Economic Studies, 7(2), 115-150.
Bali, T.G., (2007). A Generalized Extreme Value Approach to Financial Risk Measurement, Journal of Money, Credit and Banking, Blackwell Publishing, 39(7), 1613-1649.
Benkhelifa, L., (2021a). The Weibull Birnbaum-Saunders Distribution And Its Applications. Statistics, Optimization & Information Computing, 9(1), 61-81.
Benkhelifa, L. (2021b). The Beta Reduced Modified Weibull Distribution with Applications to Reliability Data. Journal of Reliability and Statistical Studies, 14, 323–352.
Bebbington, M., Lai, C.D. & Zitikis, A. (2007). A flexible Weibull extension. Reliability Engineering and System Safety, 92:719-726.
Chronopoulos, I., Raftapostolos , A., & Kapetanios, G. (2024). Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression, Journal of Financial Econometrics, 22(3), 636–669.
Chinhamu, K., Huang, C.K., Huang, C.S., & Chikobvu, D., (2015). Extreme risk, value-at-risk and expected shortfall in the gold market, International Business & Economics Research Journal, 14 (1),107–122.
Riad, F, Hussam, E, Gemeay, A, Aldallal,R, &Afify, A. (2022). Classical and Bayesian inference of the weighted-exponential distribution with an application to insurance data, Mathematical Biosciences and Engineering, 19(7), 6551-6581.
Lai, C.D., Xie, M., & Murthy, D.N.P., (2003). A modified Weibull distribution. IEEE Transactions on Reliability, 52(1):33-37.
Luger, R., (2012). Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations, Computational Statistics & Data Analysis, 56(11), 3198-3211.
Famoye, F., Lee, C. & Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2):121-136.
Ghazal, M.G.M., & Radwan, H.M.M. (2022). A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data, 19, 13193-13213.
Mahdavi, P. Ehsani, M.A. (2022). Dynamic Causal Effects in Econometrics with a Focus on the Nonparametric Method: A Review Paper, Iranian Journal of Economic Studies, 11(2), 427-449.
Martın, J., Parra, M.I., Pizarro, M.M., & Sanjuan, E.L. (2022). Baseline methods for the parameter estimation of the generalized Pareto distribution, Entropy, 24 (2), 178.
Müller, F.M., & Brutti Righi, M. (2024). Comparison of Value at Risk (VaR), Multivariate Forecast Models, 63, 75–110.
Moradi, N., Panahi, H., & Habibirad, A. (2022). Estimation for the Three-Parameter Exponentiated Weibull Distribution under Progressive Censored Data, Journal of the Iranian Statistical Society, 21 (1), 153-177.
Nelder, J. (1965). A simplex algorithm for function minimization. Computational Journal, 7, 308–313.
Panahi, H. (2019). Value at Risk Estimation using the Kappa Distribution with Application to Insurance Data, International Journal of Finance & Managerial Accounting, 4 (14), 91-100.
Panahi, H. (2025). Statistical inferences of reliability and order-restricted nano-droplet rebound by comparative Kumaraswamy populations based on balanced joint progressive censoring. Physica Scripta, 100(2), 025024.
Peng, S., Yang, S., & Yao, J. (2020). Improving Value-at-Risk prediction under model uncertainty, Journal of Financial Econometrics, 7, 34-42.
Socgnia, V.K., & Wilcox, D. (2014). A Comparison of Generalized Hyperbolic Distribution Models for Equity Returns, Journal of applied Mathematics, 4, 55-72.
Sarhan A.M., & Apaloo, J. (2013). Exponentiated modified Weibull extension distribution. Reliability Engineering and System Safety, 112:137-144.
Spierdijk, S. (2016). Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness, Computational Statistics & Data Analysis, 100, 545-559.
Trzpiot, G., & Majewska, J. (2010). Estimation of value at risk: Extreme value and robust approaches. Operations Research and Decisions, 20 (1), 131–143.
Vardani, M. H., Panahi, H., & Behzadi, M. H. (2024). Statistical inference for marshall-olkin bivariate Kumaraswamy distribution under adaptive progressive hybrid censored dependent competing risks data. Physica Scripta, 99(8), 085272.
Zhao, W., Khosa, S.K., Ahmad, Z., Aslam, M., & Afify, A.Z. (2020). Type-I heavy tailed family with applications in medicine, engineering and insurance. PLoS ONE, 15(8): e0237462.