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This study presents an analytical framework to investigate the role of constitutive modeling 

in evaluating the instability of semi-solid deformation. Two constitutive models’ distinct 

conceptual foundations are considered. The first model characterizes mushy-state 

deformation as an interpolation between the behaviors of porous and cohesionless granular 

materials. The second model adopts the Norton-Hoff viscosity law to describe the rheology 

of semi-solid alloys. The evolution of small perturbations is examined in relation to key 

constitutive parameters. Both models predict that increased rate sensitivity mitigates the 

likelihood of shear localization, whereas higher strain rates tend to promote it. However, the 

models diverge in their predictions regarding the effect of cohesion. The viscosity-based 

model exhibits stronger agreement with recent X-ray tomography studies and experimental 

data from tests on 7075 aluminum alloy, indicating its superior capability in capturing semi-

solid rheological behavior. Furthermore, this model predicts the existence of a critical strain 

rate, above which semi-solid deformation becomes unstable for a given cohesion degree. In 

contrast, the Zavaliangos model suggests that the tendency for localization increases with 

cohesion, an outcome that contradicts experimental findings. This discrepancy is 

substantiated through parameterization and quantitative analysis. 
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Nomenclature 𝝈𝒉 The hydrostatic part of the stress tensor 

𝜺̇𝒆 Deviatoric part of the plastic strain rate 𝒑𝑳 The liquid pressure 

𝝈𝒆 Von-Mises stress (𝝈𝒆)𝒗𝒊𝒔𝒄𝒐𝒖𝒔 Effective stress 

𝜩 The viscoplastic potential 𝜺̇𝒆𝒇𝒇 Effective strain rate 

𝒏 Power law index 𝜼(𝒄, 𝜺̇𝒆𝒇𝒇) 
The viscosity as a function of the cohesion degree and the 
effective strain rate 

𝑨𝟎, 𝑨𝒄 
Two functions of the solid fraction which defined according 

to the relations proposed by Zavaliangos (1998) 
b Internal forces 

𝝓′ The angle of the critical state line in the Cam-clay model u Displacement 

𝒎 Rate sensitivity parameter 𝑴 The fluid flux 

𝝁 Frictional coefficient 𝝌 Permeability 

c Cohesion degree 𝜻 Dilatational strain 

𝜺̇𝟎, 𝝈𝟎 Material parameters 𝜷 Dilatancy ratio 

 
* Corresponding author  

E-mail address: maghaei@kntu.ac.ir (M. Aghaie-Khafri) 
https://doi.org/10.22099/IJMF.2025.52371.1325  

IJMF 

Iranian 

Journal of 

Materials 

Forming 

Online ISSN: 2383-0042 
    

Published by : Sh iraz University, Sh iraz, Iran 
    

Vol. 12 No. 2 April 2025 

 
Shiraz University 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://ijmf.shirazu.ac.ir/
https://doi.org/10.22099/IJMF.2025.52371.1325
https://doi.org/10.22099/IJMF.2025.52371.1325
mailto:maghaei@kntu.ac.ir
https://doi.org/10.22099/IJMF.2025.52371.1325
https://orcid.org/0000-0002-0561-3637
https://orcid.org/0000-0002-3482-1451


Role of Constitutive Modeling on the Analysis of Shear Localization in Semi-Solid Deformation   5 

 

IJMF, Iranian Journal of Materials Forming, 2025, Volume 12, Number 2 

1. Introduction 

Semi-solid deformation is an advanced manufacturing 

technique that enables the production of near-net-shaped 

parts with enhanced mechanical properties. This process 

improves production efficiency by eliminating the need 

for complex molds and simplifying operations, while 

preserving essential material characteristics such as 

electrical and thermal conductivity. Compared to 

conventional solid-state metal forming, semi-solid 

processing requires lower forming pressures and shorter 

processing cycles, thereby facilitating the production of 

fine-grained alloys with superior mechanical 

performance [1-7].  

The unique characteristics of semi-solid deformation 

arise from the thixotropic behavior of alloys in the 

mushy state, where viscosity decreases under applied 

shear stress. This property is crucial for shaping and 

forming materials during manufacturing [8-10]. 

Thixotropy is influenced by key factors such as 

temperature, microstructure, and shear rate. Higher solid 

fractions enhance viscoelasticity, meaning that 

thixotropic alloys exhibit both flow and elastic behavior 

under stress [11-14]. 

The initial microstructure, particularly the size, 

shape, and distribution of solid particles, has a 

significant impact on thixotropic strength. 

Deagglomeration promotes shear thinning, and the 

resulting flow softening can contribute to shear 

localization [15, 16]. Tzimas and Zavaliangos [17] 

observed that when the liquid content is low, 

compression loading induces high non-uniformity, 

leading to strain instability. They proposed that shear 

localization results from solid bond decohesion and 

dilatancy, referring to the local expansion of the solid 

skeleton.  

Semi-solid deformation involves complex 

interactions between solid and liquid phases, which 

significantly influence material properties and 

processing outcomes. Studies on 7075 aluminum alloys 

have shown that inter-granular deformation compensates 

for liquid shrinkage, enhancing component integrity, 

while intra-granular deformation modifies grain 

morphology and induces sub-grain boundaries [18, 19]. 

Simulations using multi-phase-field lattice, Boltzmann 

models and discrete element methods have revealed 

granular behaviors such as dilatancy and shear 

localization, which depend on grain morphology and 

solid fraction [20-22]. In-situ X-ray tomography 

experiments have further demonstrated that grain 

refinement occurs through liquation-assisted 

transgranular cracking [23]. 

Morita et al. [24] using in-situ observations, studied 

the deformation process of semi-solid steel and found 

that solid grains dynamically rearrange during 

deformation, forming regions with reduced solid 

fractions. Nagira et al. [25] observed that force transfer 

occurs through grain contacts aligned with the shear 

loading direction, with shear strain rates concentrating in 

localized bands. 

Given the complexity of semi-solid deformation, 

various constitutive models have been developed based 

on different assumptions [26]. Some models treat semi-

solid materials as porous media, where liquid-phase flow 

follows Darcy’s law [27-30]. Others incorporate internal 

structural parameters to analytically describe rheology 

[31-34]. Additionally, phenomenological viscoplastic 

models derived from solid-state formulations [35, 36], 

and micromechanics-based homogenization models [37-

39] have been proposed. 

For rate-independent materials, instability is often 

analyzed as a deviation from homogeneous deformation, 

mathematically characterized by the loss of ellipticity in 

the equilibrium velocity equations [40-45]. However, 

Lemonds and Needleman [46] demonstrated that 

ellipticity loss does not apply to rate-dependent 

materials. In such cases, an alternative approach 

involves introducing infinitesimal perturbations to 

model parameters and analyzing their growth over time 

[47-52].  

The intricate nature of semi-solid microstructures 

presents significant challenges in the development of 

accurate constitutive models. Semi-solid materials 

exhibit both solid-like and liquid-like behaviors, 

resulting in complex deformation mechanisms that 

require specialized modeling approaches. Key factors 

influencing constitutive models for semi-solid materials 
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include their multi-phase composition, strain rate 

sensitivity, temperature dependence, particle 

interactions, and rheological complexity. Since 

localization in such granular media is affected by each 

of these factors, the selection of constitutive model plays 

a crucial role in the accuracy of localization analysis. To 

the best of the authors' knowledge, the influence of 

constitutive modeling on localization analysis in semi-

solid deformation has not been previously addressed. 

Given the rate-dependent nature of semi-solid 

deformation, this study employs linear perturbation 

analysis to derive shear localization conditions for two 

different constitutive models. 

 

2. Constitutive Models for Semi-Solids 

This study considers two models developed by 

Zavaliangos [29] and Burgos et al. [32]. Since semi-

solid alloys with granular morphology exhibit low 

segregation under compression, particularly at low 

strains where localization tends to occurs, the 

constitutive relations are formulated under undrained 

conditions, meaning deformation takes place at a 

constant total volume. 

 

2.1. Zavaliangos constitutive model 
Zavaliangos [29] modeled semi-solid deformation as an 

interpolation between two critical states: (i) porous 

material deformation, where grains are interconnected 

through cohesive bonds, and (ii) cohesionless granular 

deformation, where grain contacts are fully wetted by the 

liquid phase. The deformation behavior of semi-solid 

materials is described between these two extremes using 

a hyperelastic-viscoplastic framework. Under undrained 

conditions, the pressure of the liquid-phase is nearly 

equal to the hydrostatic stress within the solid skeleton, 

resulting in a stress state that is purely deviatoric. 

Therefore, only deviatoric stresses are considered, and 

the normality flow rule is expressed as: 

 

𝜀𝑒̇ = √
2

3
𝜀̇𝑝. 𝜀̇𝑝 =

𝜕𝛯

𝜕𝜎𝑒

= 𝜀0̇(
𝜎𝑒

𝜎0

)𝑛𝐴𝑐

(𝑛+1)
2  (1) 

 

Where 𝜀𝑒̇ is the deviatoric part of the plastic strain 

rate, 𝜎𝑒 is the von-Mises stress, 𝛯 is a viscoplastic 

potential, 𝑛 is the power-law index, 𝜀0̇ and 𝜎0 are 

material parameters and 𝐴𝑐 represents a function that 

accounts for the degree of cohesion and the liquid 

fraction: 

 

𝐴𝑐 =
1

(
1 − 𝑐

√𝐴0

+
𝑐

√𝐴1

)2
 

(2) 

 

Where c denotes the degree of cohesion, and 𝐴0 and 

𝐴1 are also functions of the solid/liquid fraction, 

obtained through the following relations: 

 

𝐴0 =
4𝐵1

tan( 𝜙′)2
   (3) 

 

 

𝐵1 =
(3𝛼′)

2
𝑛+1(𝑎𝑐𝑜𝑛𝑡𝑎𝑐𝑡)

1
𝑛+1

(1 − 𝛽′𝑎𝑐𝑜𝑛𝑡𝑎𝑐𝑡)2 (
4𝜋

𝑍(1 − 𝑓𝐿)𝑎𝑐𝑜𝑛𝑡𝑎𝑐𝑡
)

2𝑛
𝑛+1 (4) 

 

 

𝛼′ =
9√𝜋

4
(

2𝑛

2𝑛 + 1
)2(𝑛−1)(

2𝑛 − 1

6𝑛
)𝑛 (5) 

 

 

𝛽′ =
1

𝜋
(

2𝑛

2𝑛 + 1
)2(𝑛−1) (6) 

 

𝑎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ≈ 3(0.4 − 𝑓𝐿)   (7) 

 

𝑍 = 7.3 + 15.5(1 − (
0.6

1 − 𝑓𝐿

)0.33) (8) 

 

𝐴1 =
1

(1 − 𝑓𝐿)10
 (9) 

 

Where 𝜙′ represents the angle of the critical state line 

in the Cam-clay model and arises from the portion of 

solid grains with cohesionless contacts. Based on Eq. 

(2), the Zavaliangos constitutive relation under 

undrained condition can be finally expressed as: 

 

𝜎𝑒 = 𝜎0(
𝜀𝑒̇

𝜀0̇

)𝑚(
1 − 𝑐

√𝐴0

+
𝑐

√𝐴1

)(𝑚+1) (10) 

 

Where 𝑚 = 1 𝑛⁄  represents the rate sensitivity 

parameter. The hydrostatic pressure between grains or 

agglomerates may vary locally as a result of Reynolds 

dilatancy. To account for this, the internal friction arising 
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from grain sliding is also considered into the constitutive 

equation: 

 

𝜎𝑒 − 𝜇(𝜎ℎ − 𝑝𝐿) = 𝜎0(
𝜀𝑒̇

𝜀0̇
)𝑚(

1 − 𝑐

√𝐴0

+
𝑐

√𝐴1

)(𝑚+1) (11) 

 

Where 𝜇 is the frictional coefficient, and 𝜎ℎ − 𝑝𝐿  

represents the effective hydrostatic pressure, in 

accordance with Terzaghi’s effective stress as defined in 

soil mechanics.  

 

2.2. Burgos constitutive equation 

Burgos et al. [32] proposed a constitutive model based 

on the Norton-Hoff law, in which the viscosity varies as 

a function of the cohesion degree (c): 

 

(𝜎𝑒)𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = 2𝜂(𝑐, 𝜀𝑒̇𝑓𝑓)𝜀𝑒̇𝑓𝑓   (12) 

 

Where (𝜎𝑒)𝑣𝑖𝑠𝑐𝑜𝑢𝑠 is the effective stress, 𝜀𝑒̇𝑓𝑓 is the 

effective strain rate, and 𝜂(𝑐, 𝜀𝑒̇𝑓𝑓) is the viscosity 

expressed as a function of the cohesion degree and the 

effective strain rate:  

 

𝜂(𝑐, 𝜀𝑒̇𝑓𝑓) = 𝑘(𝑐)(𝜀𝑒̇𝑓𝑓)𝑚(𝑐)−1  (13) 

 

In the above equation, 𝑘(𝑐) and 𝑚(𝑐) are the 

functions of the cohesion degree: 

 

𝑘(𝑐) = 𝑘1 exp( 𝑘2𝑐)    (14) 

  

𝑚(𝑐) = 𝑚1 + 𝑚2𝑐 + 𝑚3𝑐2    (15) 

 

Where 𝑘1, 𝑘2, 𝑚1, 𝑚2 and 𝑚3 are material constants. 

Considering the local variation of the effective 

hydrostatic pressure, Eq. (12) is finally written as: 

 

(𝜎𝑒)𝑣𝑖𝑠𝑐𝑜𝑢𝑠 − 𝜇(𝜎ℎ − 𝑝𝐿) = 2𝜂(𝑐, 𝜀𝑒̇𝑓𝑓)𝜀𝑒̇𝑓𝑓 (16) 

 

3. Field Equilibrium Equations 

3.1. Conservation of linear momentum 

The principle of the conservation of linear momentum 

can be formulated as follows: 

 

𝑑𝑖𝑣𝜎 + 𝑏 = 𝜌𝑢̈   (17) 

 

Where b and u represent the internal forces and 

displacement, respectively. By neglecting the inertial 

effects and internal forces, Eq. (17) is reduced to: 

 

𝑑𝑖𝑣𝜎 = 0   (18) 

 

3.2. Conservation of mass 

Assume 𝑀 to be the amount of fluid crossing through a 

unit area per unit time, i.e., the fluid flux. According to 

Darcy’s law, 𝑀 is a function of the fluid pressure 

gradient: 

 

𝑀 = −𝜒𝛻𝑝 (19) 

 

Where 𝜒 is the permeability. By introducing 𝜁 as the 

dilatational strain, the conservation of mass for the 

diffusion of fluid can be represented as: 

 

𝑑𝑖𝑣𝑀 + 𝜁̇ = 0  (20) 
 

The normal (dilatational) strain rate,𝜁̇ , is obtained 

from the imposed shear strain rate via the following 

relation: 

 

𝜁̇ = 𝛽𝛾̇  (21) 

 

Where 𝛽 is the dilatancy ratio. Combining Eq. (19) 

with Eq. (20) results in: 

 

𝜁̇ − 𝜒𝛻2𝑝 = 0 (22) 

 

In a supersaturated granular material, the 

rearrangement of grains is associated with the local 

dilatational strain, known as the Reynolds dilatancy. 

 

4. Perturbation Analysis 

For low solid fractions, the flow behavior of alloys in 

semi-solid state is typically investigated using a 

rheometer. In contrast, a hot compression test is 

commonly employed at high solid fractions, where the 

shearing state becomes more complex. For simplicity, 

we consider shearing deformation of an infinite layer 

with the normal in the y-direction, as shown in Fig. 1. 

The plane strain condition is assumed, so the normal 

strain in the x direction is negligible. The properties of 

the layer are uniform in the x and z-directions, with a 

small perturbation introduced in the y direction. The 

balance law states that both shear and normal stresses  
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Fig. 1. An infinite layer subjected to shear under plane strain 

conditions, with the presence of compressive stress. 

 

should remain homogeneous in the y-direction, i.e., 𝜏̃ =

𝜎̃ℎ = 0. In the following, the condition for perturbation 

growth and subsequent localization is determined by 

considering each given constitutive model. 

 

4.1. Perturbation analysis based on Zavaliangos 

constitutive model 

By considering 𝐵(𝑐) = (
1−𝑐

√𝐴0
+

𝑐

√𝐴1
) in Zavaliangos 

model and taking the principle of momentum 

conservation into account, as described in Eq. (17) and 

(18), the perturbation in the linear form of Eq. (11) is as 

follows: 

 
𝜇𝑝̃𝐿

𝜎𝑒
= 𝑚̃ ln 𝜀̇ + 𝑚

𝜀̃𝑒̇
𝜀𝑒̇

+ 𝑚̃ ln 𝐵(𝑐) + (1 + 𝑚)
𝐵′(𝑐)

𝐵(𝑐)
𝑐̃ (23) 

 

Where 𝐵′(𝑐) represents the derivation of 𝐵(𝑐) with 

respect to the cohesion degree (c). A quantity with tilde 

symbol denotes a small perturbation of the quantity. The 

growth or decay of this small perturbation over time 

determines the instability or stability of the system, 

respectively. Local dilatancy leads to a small decrease 

(perturbation) in the pressure of the liquid phase, 𝑝𝐿 . The 

rate sensitivity parameter is considered constant in the 

Zavaliangos model, so 𝑚̃ = 0. Therefore, Eq. (23) 

simplifies to: 

 

𝜇𝑝𝐿

𝜎𝑒

= 𝑚
𝜀̃𝑒̇
𝜀𝑒̇

+ (1 + 𝑚)
𝐵′(𝑐)

𝐵(𝑐)
𝑐̃ (24) 

 

Considering the perturbation of 𝜀𝑒 and 𝑐 as 𝜀𝑒̃ =

𝑎∗ exp( 𝑖𝜉𝑥 + 𝜆𝑡) and 𝑐̃ = −𝑎∗ exp( 𝑖𝜉𝑥 + 𝜆𝑡), 

respectively,  where 𝑎∗ is the wave amplitude referring to 

the initial value at time 𝑡0 (𝑎∗ << 1), 𝜉 is the wave 

number in the y-direction normal to localized band, and 

𝜆 is initial growth rate. Perturbation growth, and 

consequently instability, occurs when 𝜆 > 0, otherwise 

the deformation remains stable. The negative sign for 𝑐̃ 

indicates that the perturbation in the cohesion degree is 

associated with its decrease. Therefore, Eq. (24) 

simplifies to: 

 
𝜇𝑝𝐿

𝜎𝑒
= [𝑚

𝜆

𝜀𝑒̇
− (1 + 𝑚)

𝐵′(𝑐)

𝐵(𝑐)
]𝑎∗ exp( 𝑖𝜉𝑥 + 𝜆𝑡) (25) 

 

The perturbation form of the mass conservation law, 

given by Eq. (22), can be written as: 

 

𝜁̇ − 𝜒𝛻2𝑝𝐿 = 0   (26) 

 

Finally, by considering Eq. (21) for the dilatational 

strain rate, Eq. (26) can be rewritten for 𝜆 as: 

 

𝜆 =
𝜀𝑒̇(1 + 𝑚)𝐵′(𝑐)𝜎𝑒𝜒𝜉2

𝐵(𝑐)[𝜇𝜀𝑒̇𝛽 + 𝜎𝑒𝑚𝜒𝜉2]
 (27) 

                                                                                                                                                

Since 𝐵′(𝑐) > 0, the numerator has a positive value. 

The terms in denominator also have positive values. 

Consequently, it can be concluded that 𝜆 is positive for 

any perturbation. In other words, any perturbation leads 

to instability in the deformation. Indeed, Eq. (27) shows 

that 𝜆(𝜉) acts as a high-pass filter, meaning that modes 

with 𝜉 >> √
𝜇𝛽𝜀̇𝑒

𝜎𝑒𝑚𝜒
 grow at the maximum rate: 

 

𝜆𝑚𝑎𝑥 =
𝜀𝑒̇(1 + 𝑚)𝐵′(𝑐)

𝐵(𝑐)𝑚
 (28) 

 

Analogous to the interpretation of the necking 

phenomenon in tensile loading, failure can be 

categorized for instability. As stated in the 

aforementioned analysis, modes with high 𝜉 grow at the 

maximum rate, indicating that localized failure is 

expected. Based on the definition of 𝐵(𝑐), the following 

relation is finally obtained: 

 

𝜆𝑚𝑎𝑥 = 𝜀𝑒̇

(1 + 𝑚)

𝑚
(

1 − 𝑐

√𝐴0

+  
𝑐

√𝐴1

)

−1

(
1

√𝐴1

− 
1

√𝐴0

) (29) 
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Eq. (29) reveals the retardant effect of the rate 

sensitivity on localization. It also demonstrates that the 

tendency of localization increases with the strain rate. 

However, it indicates that an increase in the cohesion 

degree, which is directly related to the solid fraction, can 

have a retarding effect on localization. This result 

contradicts recent experimental findings obtained via X-

ray tomography. For example, [53] proposed a 

deformation mechanism for semi-solid materials 

analogous to that of geomaterials. The shear-induced 

dilation in such materials leads to have a critical state for 

solid fraction, beyond which pore opening and crack 

propagation occur during deformation. This 

contradiction arises from the assumption in Zavaliangos’ 

mode that the ratio of porous material deformation to 

cohesionless granular deformation increases with 

increasing solid fraction. However, as recent findings 

suggest, the granular features of semi-solid deformation 

such as grain rearrangement, and agglomerates and 

Reynolds dilatancy, dominate at high solid fractions. 

 

4.2. Perturbation analysis based on Burgos constitutive 

model 

Following a similar approach, linearizing the Burgos 

model results in: 

 

𝜇𝑝𝐿

𝜎𝑒

=
𝑘′(𝑐)𝑐̃

𝑘(𝑐)
+ 𝑚

𝛾̇̃

𝛾̇
+ 𝑚′(𝑐)𝑐̃ ln 𝛾̇ (30) 

 

Where 𝑘′(𝑐) and 𝑚′(𝑐) are the derivatives of 𝑘(𝑐) 

and 𝑚(𝑐) with respect to c, respectively. Considering the 

perturbation of 𝛾̃ and 𝑐 as 𝛾̃ = 𝑎∗ exp( 𝑖𝜉𝑥 + 𝜆𝑡) and 

𝑐̃ = −𝑎∗ exp( 𝑖𝜉𝑥 + 𝜆𝑡), Eq. (30) simplifies to: 

 
𝜇𝑝̃𝐿

𝜎𝑒
= [−

𝑘′(𝑐)

𝑘(𝑐)
+ 𝑚

𝜆

𝛾̇
− 𝑚′(𝑐) ln 𝛾̇]𝑎∗ exp( 𝑖𝜉𝑦 + 𝜆𝑡) (31) 

 

Based on Eq. (14), it obtains that 
𝑘′(𝜓)

𝑘(𝜓)
= 𝑘2. Hence, 

by considering the linear perturbation of the mass 

conservation relation, Eq. (22), it results in: 

 

 

𝜆 =
𝜒

𝜎𝑒

𝜇
𝜉2[𝑘2 + 𝑚′(𝑐) ln 𝛾̇]𝛾̇

𝛽𝛾̇ + 𝑚𝜒
𝜏
𝜇

𝜉2
 (32) 

In Eq. (32), the denominator is always positive. 

Therefore, for the perturbation growth rate to be positive, 

the following condition must be satisfied: 

 

𝑘2 + 𝑚′(𝑐) ln 𝛾̇ > 0 (33) 

 

The sign of 𝑚′(𝑐) can be determined by considering 

the following argument. If 𝑐 = 0, the deformation is 

controlled by the liquid flow. Assuming the melt obeys 

Newtonian behavior, it can be concluded that 𝑚 = 1 for 

𝑐 = 0. On the other hand, 𝑐 = 1 represents the condition 

in which the deformation concentrates on solid bonds, so 

𝑚 can be considered as 𝑚𝑠 (the rate sensitivity of 

viscoplastic deformation of solid bonds), which is much 

lower value than unity. This clearly shows that 𝑚(𝑐) 

decreases with increasing c, so 𝑚′(𝑐) < 0.  

It is obvious that the resulting instability criterion 

depends on the material parameters. By taking 𝑚′(𝑐) <

0, the instability condition simplifies to: 

 

ln 𝛾̇ >
𝑘2

|𝑚′(𝑐)|
 (34) 

 

The above relation indicates that for a given cohesion 

degree, there is a critical strain rate below which the 

deformation in the semi-solid state remains stable. This 

result is consistent with the observation that a decrease 

in strain rate reduces the ratio of peak to plateau stress, 

thereby lowering the tendency for shear localization. 

[17]. 

On the other hand, Eq. (32) shows that 𝜆(𝜉) acts as a 

high-pass filter, and modes with 𝜉 >> √
𝜇𝛽𝜀̇𝑒

𝜎𝑒𝑚𝜒
 , similar 

to the results obtained from the Zavaliangos model, grow 

at the maximum rate: 

 

𝜆𝑚𝑎𝑥 =
𝛾̇[𝑘2 + 𝑚′(𝑐) ln 𝛾̇]

𝑚
 

(35) 

 

The above equation clearly reveals the retarding 

effect of rate sensitivity on shear localization. It also 

demonstrates that an increase in the strain rate enhances 

the tendency for shear localization. Furthermore, given 

that 𝑚′(𝑐) < 0, the denominator decreases with 

increasing cohesion degree. This indicates that a higher 

cohesion degree increases the possibility of localization. 
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5. Experimental Verification 

Compression test data for AA7075 aluminum alloy in 

the semi-solid state is used to validate the proposed 

analytical analysis. 

The chemical composition of the AA7075 alloy is 

listed in Table 1. 

The solid/liquid fraction versus temperature curve 

for AA7075 was obtained from the work of Binesh and 

Aghaie-Khafri [54], using the differential scanning 

calorimeter (DSC) method (Fig. 2). 

Extruded AA7075 round bars (30 mm in diameter 

and 35 mm in height) initially compressed using a 

hydraulic press to achieve a 30% height reduction. 

Cylindrical specimens measuring 8 mm in diameter and 

12 mm in height were then machined from the core of 

the compressed bars. These samples were subsequently 

heated to 585 °C, 600 °C, and 615 °C for 10 minutes and 

compressed at a strain rate of 0.3/s to examine 

deformation behavior at varying solid fractions. The 

corresponding solid fractions at 585 °C, 600 °C, and 615 

°C were 0.93, 0.8, and 0.65, respectively. 

 

Table 1. Chemical composition of wrought AA7075 

aluminum alloy (wt.%) 

Al Mn Fe Cr Cu Mg Zn Si 

Bal. 0.28 0.28 0.13 1.58 2.41 5.31 0.14 

 

 
Fig. 2. (a) DSC curve of 7075 Al alloy at a heating rate of 10 

°C/min, and (b) solid and liquid volume fraction versus 

temperature derived from the DSC curve [54]. 

The initial microstructures at these temperatures are 

presented in Fig. 3, where grain growth is clearly 

observed. 

Since the cohesion degree represents the fraction of 

the solid skeleton formed within the semi-solid structure, 

its initial value can be estimated using the relationship 

proposed by Favier and Atkinson [39], which is based on 

the concept of percolation:  
 

𝑐 = 1 −
𝑓𝑝

𝑓𝑠

 (36) 

  

Where 𝑓𝑝 is the percolation threshold represents the 

minimum solid fraction required to form a continuous 

skeleton capable of sustaining shear stress. Using a 

threshold value of 0.4, as reported in [39], the 

corresponding cohesion degrees were calculated and are 

presented in Table 2. The corresponding microstructures 

after compression are shown in Fig. 4. 

The microstructures reveal that the specimens 

compressed at 585 °C and 600 °C exhibit deformation 

characterized by shear localization. In contrast, no 

damage bands are observed in the microstructure of the 

specimen compressed at 615 °C. This observation aligns 

well with the predictions of the Burgos model, which 

suggests that shear localization is suppressed as the 

cohesion degree decreases in semi-solid materials. 
 

Table 2. Cohesion degrees at 585, 600, and 615 °C 

Temperature (°C) Cohesion degree (c) 

585 0.57 

600 0.5 

615 0.38 

 

Fig. 3. The initial microstructures of AA7075 specimens 

compressed at (a) 585 °C, (b) 600 °C, and (c) 615 °C. 
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Fig. 4. Microstructures of the compressed specimens at (a) 

585 °C, (b) 600 °C, and (c) 615 °C. 

 

However, this finding contradicts the analysis based 

on the Zavaliangos model. To further investigate this 

discrepancy, Eq. (29) was parameterized by setting the 

rate sensitivity parameter to 0.2 and the critical state line 

angle 𝜙′ to 28°, as reported in [17]. Using a Python script 

to implement Eqs. (3) through (9), the corresponding 

values of the maximum perturbation growth rate (𝜆𝑚𝑎𝑥) 

were calculated and are presented in Table 3. 

This suggests that increasing the cohesion degree 

reduces the maximum rate of perturbation growth and, 

consequently, lowers the likelihood of shear 

localization, an outcome that contradicts the available 

experimental evidence. 

 

Table 3. Maximum rate of the perturbation growth at 585, 

600 and 615 °C 

Temperature (°C) λmax [1/s] 

585 0.59 

600 1.45 

615 1.81 

 

6. Conclusions 

This study investigates the influence of constitutive 

modeling on shear localization during semi-solid 

deformation, comparing two distinct constitutive 

approaches: the Zavaliangos and Burgos models. The 

following key findings have emerged: 

• For both models, the growth rate of perturbations 

𝜆(𝜉) acts as a high-pass filter, meaning modes with 

𝜉 >> √
𝜇𝛽𝜀̇𝑒

𝜎𝑒𝑚𝜒
 grow at maximum faster rate. This 

implies a tendency toward localized failure. 

• Both models suggest that an increase strain rate 

promotes shear localization, while greater rate 

sensitivity has a stabilizing effect. The Zavaliangos 

model suggests that increasing cohesion degrees 

reduce localization tendency. However, this 

prediction contradicts experimental evidence, as 

confirmed by parameterization and comparison with 

microstructural observations. 

• In contrast, the Burgos model demonstrates better 

agreement with experimental results, particularly 

those obtained via X-ray tomography, by indicating 

that higher cohesion enhances localization. The 

analysis also aligns well with the deformation 

behavior observed in compressed AA7075 

specimens. 

• Additionally, the Burgos model predicts the 

existence of a critical strain rate below which 

deformation remains stable, a result consistent with 

prior experimental findings. 

Overall, these results underscore the critical role of 

constitutive model in accurately capturing the 

deformation mechanics of semi-solid materials. 

Selecting an appropriate model is essential for reliable 

prediction of localization behavior. Continued research, 

including more detailed experimental validation and 

model refinement, is necessary to further improve the 

accuracy and applicability of these constitutive 

frameworks.  
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