
تعداد نشریات | 24 |
تعداد شمارهها | 849 |
تعداد مقالات | 7,542 |
تعداد مشاهده مقاله | 13,297,781 |
تعداد دریافت فایل اصل مقاله | 11,527,589 |
Role of Constitutive Modeling on the Analysis of Shear Localization in Semi-Solid Deformation | ||
Iranian Journal of Materials Forming | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 اردیبهشت 1404 اصل مقاله (1.17 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijmf.2025.52371.1325 | ||
نویسندگان | ||
M.H. Sheikh-Ansari؛ M. Aghaie-khafri* | ||
Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Postal Code: 1999143344, Tehran, Iran | ||
چکیده | ||
This study presents an analytical framework to investigate the role of constitutive modeling in evaluating the instability of semi-solid deformation. Two constitutive models’ distinct conceptual foundations are considered. The first model characterizes mushy-state deformation as an interpolation between the behaviors of porous and cohesionless granular materials. The second model adopts the Norton-Hoff viscosity law to describe the rheology of semi-solid alloys. The evolution of small perturbations is examined in relation to key constitutive parameters. Both models predict that increased rate sensitivity mitigates the likelihood of shear localization, whereas higher strain rates tend to promote it. However, the models diverge in their predictions regarding the effect of cohesion. The viscosity-based model exhibits stronger agreement with recent X-ray tomography studies and experimental data from tests on 7075 aluminum alloy, indicating its superior capability in capturing semi-solid rheological behavior. Furthermore, this model predicts the existence of a critical strain rate, above which semi-solid deformation becomes unstable for a given cohesion degree. In contrast, the Zavaliangos model suggests that the tendency for localization increases with cohesion, an outcome that contradicts experimental findings. This discrepancy is substantiated through parameterization and quantitative analysis. | ||
کلیدواژهها | ||
Shear localization؛ Semi-solid deformation؛ Dilatancy؛ Perturbation analysis؛ Constitutive model | ||
مراجع | ||
[1] Flemings, M. C. (1991). Behavior of metal alloys in the semisolid state. Metallurgical Transactions A, 22(5), 957-981. https://doi.org/10.1007/BF02661090
[2] Cho, W. G., & Kang, C. G. (2000). Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys. Journal of Materials Processing Technology, 105(3), 269-277. https://doi.org/10.1016/S0924-0136(00)00656-6
[3] Kirkwood, D. H., Suéry, M., Kapranos, P., Atkinson, H. V., & Young, K. P. (2010). Semi-solid processing of alloys (Vol. 124). Berlin: Springer. https://doi.org/10.1007/978-3-642-14355-0
[4] Nafisi, S., & Ghomashchi, R. (2016). Semi-solid processing of aluminum alloys (pp. 1-41). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-48159-4_1
[5] Ji, S., Wang, K., & Dong, X. (2022). An overview on the process development and the formation of non-dendritic microstructure in semi-solid processing of metallic materials. Crystals, 12(8), 1044. https://doi.org/10.3390/cryst12081044
[6] Ragheb, Z. D., Shabestari, S. G., & Najafi, Y. (2023). Effect of strain-induced melt activation process and thixoforming on microstructure and mechanical properties of 319 aluminum alloy. Journal of Alloys and Compounds, 954, 170152. https://doi.org/10.1016/j.jallcom.2023.170152
[7] Li, S., Wang, Y., Li, Z., Liu, X., & Zhao, S. (2023). Study on the semi-solid thixotropic forging forming process for the low-carbon steel claw pole. Materials, 16(13), 4790. https://doi.org/10.3390/ma16134790
[8] Huang, M., Jiang, J., Wang, Y., Liu, Y., Zhang, Y., & Dong, J. (2023). Thixotropic deformation behavior, rapid spheroidization and solid-liquid homogenization of semi-solid Al0.8Co0.5Cr1.5CuFeNi HEA with multilevel microstructure. Scripta Materialia, 229, 115384. https://doi.org/10.1016/j.scriptamat.2023.115384
[9] Yuan, K., Lu, Y., Li, W., Yu, H., & Gao, S. (2022). Rheological characterization and accumulation tests for strong thixotropic engineering slurry. Materials, 15(19), 6891. https://doi.org/10.3390/ma15196891
[10] Megalingam, A., Ahmad, A. H. B., Maarof, M. R. B., & Sudhakar, K. (2022). Viscosity measurements in semi-solid metal processing: current status and recent developments. The International Journal of Advanced Manufacturing Technology, 119(3), 1435-1459. https://doi.org/10.1007/s00170-021-08238-4
[11] Keung, W. C., Lee, Y. F., Shan, W. W., & Luo, S. J. (2008). Thixotropic strength and thixotropic criteria in semi-solid processing. Solid State Phenomena, 141, 319-323. https://doi.org/10.4028/www.scientific.net/SSP.141-143.319
[12] Petera, J., Kaminski, K., & Kotynia, M. (2010). A generalized viscoelastic Maxwell model for semisolid thixotropic alloys. International Journal of Material Forming, 3, 775-778. https://doi.org/10.1007/s12289-010-0817-1
[13] Sheikh-Ansari, M. H., & Aghaie-Khafri, M. (2019). Constitutive modeling of semisolid deformation for the assessment of dilatant shear bands. Applied Mathematical Modelling, 70, 128-138. https://doi.org/10.1016/j.apm.2019.01.019
[14] Sanjuan-Sanjuan, G., & Chavez-Castellanos, Á. E. (2019). Viscoelastic properties of thixotropic semisolid alloy relating the microstructure. Solid State Phenomena, 285, 380-384. https://doi.org/10.4028/www.scientific.net/SSP.285.380
[15] Koke, J., & Modigell, M. (2003). Flow behaviour of semi-solid metal alloys. Journal of Non-Newtonian Fluid Mechanics, 112(2-3), 141-160. https://doi.org/10.1016/S0377-0257(03)00120-9
[16] Modigell, M., Pola, A., & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals, 8(4), 245. https://doi.org/10.3390/met8040245
[17] Tzimas, E., & Zavaliangos, A. (1999). Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta Materialia, 47(2), 517-528. https://doi.org/10.1016/S1359-6454(98)00355-4
[18] Wang, K., Hu, S., Wang, T., Xie, W., Guo, T., Li, F., & Luo, R. (2022). Microstructural evolution and mechanical properties of 7075 aluminium alloy during semi-solid compression deformation. Crystals, 12(8), 1119. https://doi.org/10.3390/cryst12081119
[19] Sheikh-Ansari, M. H., & Aghaie-Khafri, M. (2017). Assessment of Poliak-Jonas criterion for the onset of dynamic recrystallization in semi-solid deformation. Materials Research Express, 4(10), 106516. https://doi.org/10.1088/2053-1591/aa9232
[20] Yamanaka, N., Sakane, S., & Takaki, T. (2021). Multi-phase-field lattice Boltzmann model for polycrystalline equiaxed solidification with motion. Computational Materials Science, 197, 110658. https://doi.org/10.1016/j.commatsci.2021.110658
[21] Liu, X., Tang, F., Zhao, W., Cai, J., & Wei, Y. (2022). Multi-phase field lattice Boltzmann model of columnar-to-equiaxed transition in entire welding molten pool. Computational Materials Science, 204, 111182. https://doi.org/10.1016/j.commatsci.2021.111182
[22] Su, T. C., Chen, M. C., Hu, H. R., Ko, Y. H., & Yao, L. E. (2023). Exploring semi-solid deformation of Al–Cu alloys by a quantitative comparison between drained die compression experiments and 3D discrete element method simulations. In TMS Annual Meeting & Exhibition (pp. 558-567). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-22532-1_76
[23] Karagadde, S., Lee, P. D., Cai, B., Fife, J. L., Azeem, M. A., Kareh, K. M., Puncreobutr, C., Tsivoulas, D., Connolley, T., & Atwood, R. C. (2015). Transgranular liquation cracking of grains in the semi-solid state. Nature Communications, 6(1), 8300. https://doi.org/10.1038/ncomms9300
[24] Morita, S., Yasuda, H., Nagira, T., Gourlay, C. M., Yoshiya, M., & Sugiyama, A. (2012). Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation. In IOP conference series: materials science and engineering (Vol. 33, No. 1, p. 012053). IOP Publishing. https://doi.org/10.1088/1757-899X/33/1/012053
[25] Nagira, T., Morita, S., Yasuda, H., Gourlay, C. M., Yoshiya, M., Sugiyama, A., & Uesugi, K. (2015). Localization of shear strain and shear band formation induced by deformation in semi-solid Al-Cu alloys. In IOP Conference Series: Materials Science and Engineering (Vol. 84, No. 1, p. 012078). IOP Publishing. https://doi.org/10.1088/1757-899X/84/1/012078
[26] Atkinson, H. V. (2005). Modelling the semisolid processing of metallic alloys. Progress in Materials Science, 50(3), 341-412. https://doi.org/10.1016/j.pmatsci.2004.04.003
[27] Nguyen, T. G., Favier, D., & Suery, M. (1994). Theoretical and experimental study of the isothermal mechanical behaviour of alloys in the semi-solid state. International Journal of Plasticity, 10(6), 663-693. https://doi.org/10.1016/0749-6419(94)900280
[28] Martin, C. L., Favier, D., & Suéry, M. (1997). Viscoplastic behaviour of porous metallic materials saturated with liquid part I: Constitutive equations. International Journal of Plasticity, 13(3), 215-235. https://doi.org/10.1016/S0749-6419(97)00009-0
[29] Zavaliangos, A. (1998). Modeling of the mechanical behavior of semisolid metallic alloys at high volume fractions of solid. International Journal of Mechanical Sciences, 40(10), 1029-1041. https://doi.org/10.1016/S0020-7403(98)00011-3
[30] Kang, C. G., & Jung, H. K. (1999). Finite element analysis with deformation behavior modeling of globular microstructure in forming process of semi-solid materials. International Journal of Mechanical Sciences, 41(12), 1423-1445. https://doi.org/10.1016/S0020-7403(98)00107-6
[31] De Deus, H. P. A., Dupim, G. S. (2013). On behavior of the thixotropic fluids. Physics Letters A, 377(6), 478-485. https://doi.org/10.1016/j.physleta.2012.12.011
[32] Burgos, G. (2001). Thixotropic rheology of semisolid metal suspension. Journal of Materials Processing Technology, 110, 53-58. https://doi.org/10.1016/S0924-0136(00)00731-7
[33] Koeune, R., & Ponthot, J. P. (2014). A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. International Journal of Plasticity, 58, 120-153. https://doi.org/10.1016/j.ijplas.2014.01.004
[34] Abali, B. E., Wu, C. C., & Müller, W. H. (2016). An energy-based method to determine material constants in nonlinear rheology with applications. Continuum Mechanics and Thermodynamics, 28, 1221-1246. https://doi.org/10.1007/s00161-015-0472-z
[35] Chen, G., Lin, F., Yao, S., Han, F., Wei, B., & Zhang, Y. (2016). Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions. Journal of Alloys and Compounds, 674, 26-36. https://doi.org/10.1016/j.matsciteng.2016.03.032
[36] Wang, J., Phillion, A. B., & Lu, G. (2014). Development of a visco-plastic constitutive modeling for thixoforming of AA6061 in semi-solid state. Journal of Alloys and Compounds, 609, 290-295. https://doi.org/10.1016/j.jallcom.2014.04.140
[37] Cezard, P., Favier, V., Bigot, R., Balan, T., & Berveiller, M. (2005). Simulation of semi-solid thixoforging using a micro-macro constitutive equation. Computational Materials Science, 32(3-4), 323-328. https://doi.org/10.1016/j.commatsci.2004.09.036
[38] Favier, V., Cezard, P., & Bigot, R. (2009). Transient and non-isothermal semi-solid behaviour: 3D micromechanical modelling. Materials Science and Engineering: A, 517(1-2), 8-16. https://doi.org/10.1016/j.msea.2009.03.018
[39] Favier, V., & Atkinson, H. V. (2011). Micromechanical modelling of the elastic–viscoplastic response of metallic alloys under rapid compression in the semi-solid state. Acta Materialia, 59(3), 1271-1280. https://doi.org/10.1016/j.actamat.2010.10.059
[40] Hill, R. (1962). Acceleration waves in solids. Journal of the Mechanics and Physics of Solids, 10(1), 1-16. https://doi.org/10.1016/0022-5096(62)90024-8
[41] Rudnicki, J. W., & Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23(6), 371-394. https://doi.org/10.1016/0022-5096(75)90001-0
[42] Young, N. J. B. (1976). Bifurcation phenomena in the plane compression test. Journal of the Mechanics and Physics of Solids, 24(1), 77-91. https://doi.org/10.1016/0022-5096(76)90019-3
[43] Nicot, F., Sibille, L., & Darve, F. (2012). Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. International Journal of Plasticity, 29, 136-154. https://doi.org/10.1016/j.ijplas.2011.08.002
[44] Śloderbach, Z. (2016). Closed set of the uniqueness conditions and bifurcation criteria in generalized coupled thermoplasticity for small deformations. Continuum Mechanics and Thermodynamics, 28, 633-654. https://doi.org/10.1007/s00161-016-0924-4
[45] Baldelli, A. A. L., & Maurini, C. (2021). Numerical bifurcation and stability analysis of variational gradient-damage models for phase-field fracture. Journal of the Mechanics and Physics of Solids, 152, 104424. https://doi.org/10.1016/j.jmps.2021.104424
[46] Lemonds, J., Needleman, A. (1986). Finite element analyses of shear localization in rate and temperature dependent solids. Mechanics of Materials, 5(4), 339-361. https://doi.org/10.1016/0167-6636(86)90039-6
[47] Anand, L., Kim, K. H., Shawki, T. G. (1987). Onset of shear localization in viscoplastic solids. Journal of the Mechanics and Physics of Solids, 35(4), 407-429. https://doi.org/10.1016/0022-5096(87)90045-7
[48] Batra, R. C., Chen, L. (2001). Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material. International Journal of Plasticity, 17(11), 1465-1489. https://doi.org/10.1016/S0749-6419(01)00004-3
[49] Benallal, A., & Comi, C. (2003). Perturbation growth and localization in fluid-saturated inelastic porous media under quasi-static loadings. Journal of the Mechanics and Physics of Solids, 51(5), 851-899. https://doi.org/10.1016/j.jems.2002.09.002
[50] Mayer, A. E., Borodin, E. N., & Mayer, P. N. (2013). Localization of plastic flow at high-rate simple shear. International Journal of Plasticity, 51, 188-199. https://doi.org/10.1016/j.ijplas.2013.05.005
[51] Jacquey, A. B., Rattez, H., & Veveakis, M. (2021). Strain localization regularization and patterns formation in rate-dependent plastic materials with multiphysics coupling. Journal of the Mechanics and Physics of Solids, 152, 104422. https://doi.org/10.1016/j.jmps.2021.104422
[52] Garcke, H., Knopf, P., & Yayla, S. (2022). Long-time dynamics of the Cahn–Hilliard equation with kinetic rate dependent dynamic boundary conditions. Nonlinear Analysis, 215, 112619. https://doi.org/10.1007/s00605-021-01334-y
[53] Kareh, K. M., Lee, P. D., Atwood, R. C., Connolley, T., & Gourlay, C. M. (2014). Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography. Nature Communications, 5(1), 4464. https://doi.org/10.1038/ncomms5464
[54] Bineh, B., & Aghaie-Khafri, M. (2016). RUE-based semi-solidprocessing: Microstructure evolution and effective parameters. Materials & Design, 95, 268-286. https://doi.org/10.1016/j.matdes.2016.01.117 | ||
آمار تعداد مشاهده مقاله: 21 تعداد دریافت فایل اصل مقاله: 7 |