[2] Cho, W. G., & Kang, C. G. (2000). Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys. Journal of Materials Processing Technology, 105(3), 269-277. https://doi.org/10.1016/S0924-0136(00)00656-6
[5] Ji, S., Wang, K., & Dong, X. (2022). An overview on the process development and the formation of non-dendritic microstructure in semi-solid processing of metallic materials. Crystals, 12(8), 1044. https://doi.org/10.3390/cryst12081044
[6] Ragheb, Z. D., Shabestari, S. G., & Najafi, Y. (2023). Effect of strain-induced melt activation process and thixoforming on microstructure and mechanical properties of 319 aluminum alloy. Journal of Alloys and Compounds, 954, 170152. https://doi.org/10.1016/j.jallcom.2023.170152
[7] Li, S., Wang, Y., Li, Z., Liu, X., & Zhao, S. (2023). Study on the semi-solid thixotropic forging forming process for the low-carbon steel claw pole. Materials, 16(13), 4790. https://doi.org/10.3390/ma16134790
[8] Huang, M., Jiang, J., Wang, Y., Liu, Y., Zhang, Y., & Dong, J. (2023). Thixotropic deformation behavior, rapid spheroidization and solid-liquid homogenization of semi-solid Al0.8Co0.5Cr1.5CuFeNi HEA with multilevel microstructure. Scripta Materialia, 229, 115384. https://doi.org/10.1016/j.scriptamat.2023.115384
[9] Yuan, K., Lu, Y., Li, W., Yu, H., & Gao, S. (2022). Rheological characterization and accumulation tests for strong thixotropic engineering slurry. Materials, 15(19), 6891. https://doi.org/10.3390/ma15196891
[10] Megalingam, A., Ahmad, A. H. B., Maarof, M. R. B., & Sudhakar, K. (2022). Viscosity measurements in semi-solid metal processing: current status and recent developments. The International Journal of Advanced Manufacturing Technology, 119(3), 1435-1459. https://doi.org/10.1007/s00170-021-08238-4
[12] Petera, J., Kaminski, K., & Kotynia, M. (2010). A generalized viscoelastic Maxwell model for semisolid thixotropic alloys. International Journal of Material Forming, 3, 775-778. https://doi.org/10.1007/s12289-010-0817-1
[13] Sheikh-Ansari, M. H., & Aghaie-Khafri, M. (2019). Constitutive modeling of semisolid deformation for the assessment of dilatant shear bands. Applied Mathematical Modelling, 70, 128-138. https://doi.org/10.1016/j.apm.2019.01.019
[17] Tzimas, E., & Zavaliangos, A. (1999). Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content. Acta Materialia, 47(2), 517-528. https://doi.org/10.1016/S1359-6454(98)00355-4
[18] Wang, K., Hu, S., Wang, T., Xie, W., Guo, T., Li, F., & Luo, R. (2022). Microstructural evolution and mechanical properties of 7075 aluminium alloy during semi-solid compression deformation. Crystals, 12(8), 1119. https://doi.org/10.3390/cryst12081119
[19] Sheikh-Ansari, M. H., & Aghaie-Khafri, M. (2017). Assessment of Poliak-Jonas criterion for the onset of dynamic recrystallization in semi-solid deformation. Materials Research Express, 4(10), 106516. https://doi.org/10.1088/2053-1591/aa9232
[20] Yamanaka, N., Sakane, S., & Takaki, T. (2021). Multi-phase-field lattice Boltzmann model for polycrystalline equiaxed solidification with motion. Computational Materials Science, 197, 110658. https://doi.org/10.1016/j.commatsci.2021.110658
[21] Liu, X., Tang, F., Zhao, W., Cai, J., & Wei, Y. (2022). Multi-phase field lattice Boltzmann model of columnar-to-equiaxed transition in entire welding molten pool. Computational Materials Science, 204, 111182. https://doi.org/10.1016/j.commatsci.2021.111182
[22] Su, T. C., Chen, M. C., Hu, H. R., Ko, Y. H., & Yao, L. E. (2023). Exploring semi-solid deformation of Al–Cu alloys by a quantitative comparison between drained die compression experiments and 3D discrete element method simulations. In TMS Annual Meeting & Exhibition (pp. 558-567). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-22532-1_76
[23] Karagadde, S., Lee, P. D., Cai, B., Fife, J. L., Azeem, M. A., Kareh, K. M., Puncreobutr, C., Tsivoulas, D., Connolley, T., & Atwood, R. C. (2015). Transgranular liquation cracking of grains in the semi-solid state. Nature Communications, 6(1), 8300. https://doi.org/10.1038/ncomms9300
[24] Morita, S., Yasuda, H., Nagira, T., Gourlay, C. M., Yoshiya, M., & Sugiyama, A. (2012). Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation. In IOP conference series: materials science and engineering (Vol. 33, No. 1, p. 012053). IOP Publishing. https://doi.org/10.1088/1757-899X/33/1/012053
[25] Nagira, T., Morita, S., Yasuda, H., Gourlay, C. M., Yoshiya, M., Sugiyama, A., & Uesugi, K. (2015). Localization of shear strain and shear band formation induced by deformation in semi-solid Al-Cu alloys. In IOP Conference Series: Materials Science and Engineering (Vol. 84, No. 1, p. 012078). IOP Publishing. https://doi.org/10.1088/1757-899X/84/1/012078
[27] Nguyen, T. G., Favier, D., & Suery, M. (1994). Theoretical and experimental study of the isothermal mechanical behaviour of alloys in the semi-solid state. International Journal of Plasticity, 10(6), 663-693. https://doi.org/10.1016/0749-6419(94)900280
[28] Martin, C. L., Favier, D., & Suéry, M. (1997). Viscoplastic behaviour of porous metallic materials saturated with liquid part I: Constitutive equations. International Journal of Plasticity, 13(3), 215-235. https://doi.org/10.1016/S0749-6419(97)00009-0
[29] Zavaliangos, A. (1998). Modeling of the mechanical behavior of semisolid metallic alloys at high volume fractions of solid. International Journal of Mechanical Sciences, 40(10), 1029-1041. https://doi.org/10.1016/S0020-7403(98)00011-3
[30] Kang, C. G., & Jung, H. K. (1999). Finite element analysis with deformation behavior modeling of globular microstructure in forming process of semi-solid materials. International Journal of Mechanical Sciences, 41(12), 1423-1445. https://doi.org/10.1016/S0020-7403(98)00107-6
[33] Koeune, R., & Ponthot, J. P. (2014). A one phase thermomechanical model for the numerical simulation of semi-solid material behavior. Application to thixoforming. International Journal of Plasticity, 58, 120-153. https://doi.org/10.1016/j.ijplas.2014.01.004
[34] Abali, B. E., Wu, C. C., & Müller, W. H. (2016). An energy-based method to determine material constants in nonlinear rheology with applications. Continuum Mechanics and Thermodynamics, 28, 1221-1246. https://doi.org/10.1007/s00161-015-0472-z
[35] Chen, G., Lin, F., Yao, S., Han, F., Wei, B., & Zhang, Y. (2016). Constitutive behavior of aluminum alloy in a wide temperature range from warm to semi-solid regions. Journal of Alloys and Compounds, 674, 26-36. https://doi.org/10.1016/j.matsciteng.2016.03.032
[36] Wang, J., Phillion, A. B., & Lu, G. (2014). Development of a visco-plastic constitutive modeling for thixoforming of AA6061 in semi-solid state. Journal of Alloys and Compounds, 609, 290-295. https://doi.org/10.1016/j.jallcom.2014.04.140
[37] Cezard, P., Favier, V., Bigot, R., Balan, T., & Berveiller, M. (2005). Simulation of semi-solid thixoforging using a micro-macro constitutive equation. Computational Materials Science, 32(3-4), 323-328. https://doi.org/10.1016/j.commatsci.2004.09.036
[38] Favier, V., Cezard, P., & Bigot, R. (2009). Transient and non-isothermal semi-solid behaviour: 3D micromechanical modelling. Materials Science and Engineering: A, 517(1-2), 8-16. https://doi.org/10.1016/j.msea.2009.03.018
[39] Favier, V., & Atkinson, H. V. (2011). Micromechanical modelling of the elastic–viscoplastic response of metallic alloys under rapid compression in the semi-solid state. Acta Materialia, 59(3), 1271-1280. https://doi.org/10.1016/j.actamat.2010.10.059
[41] Rudnicki, J. W., & Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23(6), 371-394. https://doi.org/10.1016/0022-5096(75)90001-0
[43] Nicot, F., Sibille, L., & Darve, F. (2012). Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. International Journal of Plasticity, 29, 136-154. https://doi.org/10.1016/j.ijplas.2011.08.002
[44] Śloderbach, Z. (2016). Closed set of the uniqueness conditions and bifurcation criteria in generalized coupled thermoplasticity for small deformations. Continuum Mechanics and Thermodynamics, 28, 633-654. https://doi.org/10.1007/s00161-016-0924-4
[45] Baldelli, A. A. L., & Maurini, C. (2021). Numerical bifurcation and stability analysis of variational gradient-damage models for phase-field fracture. Journal of the Mechanics and Physics of Solids, 152, 104424. https://doi.org/10.1016/j.jmps.2021.104424
[48] Batra, R. C., Chen, L. (2001). Effect of viscoplastic relations on the instability strain, shear band initiation strain, the strain corresponding to the minimum shear band spacing, and the band width in a thermoviscoplastic material. International Journal of Plasticity, 17(11), 1465-1489. https://doi.org/10.1016/S0749-6419(01)00004-3
[49] Benallal, A., & Comi, C. (2003). Perturbation growth and localization in fluid-saturated inelastic porous media under quasi-static loadings. Journal of the Mechanics and Physics of Solids, 51(5), 851-899. https://doi.org/10.1016/j.jems.2002.09.002
[51] Jacquey, A. B., Rattez, H., & Veveakis, M. (2021). Strain localization regularization and patterns formation in rate-dependent plastic materials with multiphysics coupling. Journal of the Mechanics and Physics of Solids, 152, 104422. https://doi.org/10.1016/j.jmps.2021.104422
[52] Garcke, H., Knopf, P., & Yayla, S. (2022). Long-time dynamics of the Cahn–Hilliard equation with kinetic rate dependent dynamic boundary conditions. Nonlinear Analysis, 215, 112619. https://doi.org/10.1007/s00605-021-01334-y
[53] Kareh, K. M., Lee, P. D., Atwood, R. C., Connolley, T., & Gourlay, C. M. (2014). Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography. Nature Communications, 5(1), 4464. https://doi.org/10.1038/ncomms5464
|