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Abstract– Distributed spectrum sensing (DSS) is of great importance in Cognitive Radio, 
especially under fading or shadowing effects. In order to evaluate the performance of a distributed 
system, it is commonly compared with the centralized system as an upper performance bound. 
Now the question is whether or not one can obtain a distributed strategy serving as an upper bound 
to benchmark any distributed strategy, tighter than that of the centralized scheme. Here, we 
suggest employing the Neyman-Pearson (NP) fusion rule to achieve an upper bound. Furthermore, 
the analysis of a randomized fusion rule has been provided, which is a long-existing problem in 
this field. For this purpose, theoretical analysis on the performance of the NP fusion rule is carried 
out. Next, we compare the traditional fusion rules with the proposed bound and observe in which 
special cases of the probability of false alarm at the fusion center these counting rules are 
optimum. We further study the effects of varying the number of participating sensors on fusion 
performance in detail. Remarkably, simulation results in some applicable examples illustrate the 
significant cooperative gain achieved by the proposed NP fusion rule.            

 
Keywords– Cognitive radio, distributed spectrum sensing, neyman-pearson criterion, decision fusion rule, data 
fusion  
 

1. INTRODUCTION 
 

In the traditional spectrum allocation policy, most of the spectrum is allocated exclusively to different 
licensed users, known as Primary Users (PUs). Due to the rapid growth of wireless communications and 
emergence of new applications in recent years, we are faced with a lack of available spectrum [1-4].  

The Cognitive Radio (CR) has been introduced as an enabling technology for improving spectrum 
utilization efficiency and meeting the increasing demand for wireless communications [1-4]. The idea of 
CR is to permit unauthorized users known as Secondary Users (SUs), to access the free bands when and 
where the PUs are not using it. Since SUs are considered to be of lower priority, a fundamental 
requirement is to avoid the interference with PUs in their vicinity [3, 5], as well as proper channel 
assignment [6]. Therefore, it is necessary that SUs reliably detect the existence of the PUs through 
continuous spectrum sensing, making the spectrum sensing an essential task for CR. Spectrum sensing can 
be conducted either non-cooperatively, where each SU detects the PUs without informing the other SUs, 
or cooperatively, in which a group of SUs perform spectrum sensing by collaboration.  

Spectrum sensing at each SU can be performed locally by different schemes such as Likelihood Ratio 
Test [7], energy detection [7-8], matched filter [9-10], or cyclostationary feature detection [11-13], 
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depending on the PU signal and the environment. The low Signal to Noise Ratio (SNR), multi-path fading 
and shadowing effects, unknown time scatter channel, time varying of the noise/interference level and 
hidden terminal problem, encourages the study of spectrum sensing by multiple SUs, cooperatively.  

Cooperative spectrum sensing, which has recently been studied, outperforms the non-cooperative 
spectrum sensing in several aspects [14-19] and can be implemented in two scenarios: centralized or 
distributed [20-23]. Since some practical issues restrict the applicability of the centralized detection, we 
consider a distributed scheme. In this scheme, each SU individually creates its own discrete messages 
based on its local measurement and then reports to the fusion center. For the distributed scheme, different 
structures have appeared, among which the parallel structure seems to be the most convenient [24].  

It can be seen that the overall performance depends very much on the fusion scheme [25], thus it is 
important how we combine the local data from the SUs in order to improve the local sensing performance 
as much as possible. Since in a CR network, a larger probability of detection (ܲୢ ) leads to less interference 
with PUs, and smaller probability of false alarm ( ୤ܲୟ) results in higher spectrum efficiency, it is desirable 
to maximize the ܲୢ  while ୤ܲୟ is minimized. Nonetheless, it can be shown that this optimization cannot be 
carried out on ܲୢ  and ୤ܲୟ simultaneously [7] and the Neyman-Pearson (NP) criterion is a good candidate to 
maximize ܲୢ , putting a restriction on ୤ܲୟ .  

A general problem in NP distributed detection is optimizing the SU detectors and the fusion center, 
simultaneously. However, to alleviate the limitations, two distinct cases have been considered in literature. 
In the first one, the design of the SU detectors is studied, assuming that the fusion decision rule is given 
[26-28]. The second one, which is the focus of our attention in this paper, is to obtain the optimum fusion 
rule for given local detectors. Varshney and Hoballah in [29] and Thomopoulos et al. in [30], in their 
pioneering efforts, used the LRT as the decision rule for the fusion center. They studied the case of ܰ PUs, 
with binary decisions in each, resulting in 2ே nonlinear coupled equations that should be solved to obtain 
the optimum fusion rule. Apparently, the computational complexity of this process grows exponentially 
with ܰ. In [25], the performance of the distributed NP detection systems for the case of two, three and 
more sensors is studied under some simplifying assumptions. In this paper, an attempt is made to describe 
the problem in a detailed form and to evaluate the performance of the fusion center for all possible 
situations, resulting in more generality. An important motivation of this field is whether one may obtain a 
distributed strategy to benchmark any distributed strategy. Our scheme is simple and possesses some 
unique features, summarized as follows:  

1) Derives an upper performance bound of distributed detection.  
2) Analyzes the randomized fusion rule.  
3) Obtains a closed form formulation for the case of two and three sensors.  
4) Generalizes the fusion rule to the case of ܰ sensors.  
5) Compares the performance of our proposed fusion rule with the traditional fusion rules.  

Extensive simulation results illustrate the effectiveness of the proposed scheme, resulting in higher ܲୢ  
compared with the existing solutions.  

The rest of the paper is organized as follows, in Section 2a, we describe the detection problem, both 
local detection problems at the sensors and the decision fusion problem. Then in Section 2b, we briefly 
introduce the optimal decision fusion rule using NP criterion. The analytical study including the cases of 
two and three detectors are represented in Section III. Simulation results are given in Section IV. Finally, 
Section V concludes the paper. 

 
2. THE PROBLEM FORMULATION  

a) System model 
 

We consider a parallel distributed detection system consisting of ܰ secondary detectors with a fusion 
center in a CR network. The spectrum sensing problem at each detector can be formulated by the 
following binary hypothesis test, 
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 ൜ℋ଴:࢟௜ = ௜࢔ , ݅ = 1,2, … ,ܰ,
ℋଵ:࢟௜ = ࢙௜ + ௜࢔ , ݅ = 1,2, … ,ܰ, (1) 

 
where, ࢙௜ is the PU signal received at the ݅୲୦ SU. We also assume that the PU signals ࢙௜ and noise ࢔௜ 
received at each SU are independent. Each SU employs a decision rule ݀௜(࢟௜), ݅ = 1,⋯ ,ܰ to make a local 
decision as follows,  
௜ݑ  = ݀௜(࢟௜) = ൜1 , ࢟௜ ∈ Γଵ,

0 , ࢟௜ ∈ Γ଴, (2) 
 

where Γ଴ and Γଵ are the decision regions for the null and alternate hypotheses, respectively. Then each 
local detector sends a summary of its own observations to the fusion center in the form of ୤ܲୟ೔, ܲୢ ೔ and ݑ௜, 
where ୤ܲୟ೔ and ܲୢ ೔  denote the probability of false alarm and the probability of detection for the ݅୲୦ detector, 
respectively.  

b) Hypothesis test at the fusion center 

The final decision ݑ଴ is to be made at the fusion center based on the received information. Spectrum 
sensing can therefore be stated as a binary hypothesis testing problem, with the null and alternative 
hypotheses  
 ൜ℋ଴: PU	signal is absent,

ℋଵ: PU	signal is present. (3) 
 

The optimal decision rule at the fusion center in the sense of maximizing ܲୢ  for a given ୤ܲୟ is the NP test. 
We must note that the structure of the fusion rule is obtained independently from the values of the local 
decisions ݑ௜; however the final decision is made upon the local decisions.  

c) Analysis of randomized fusion rule based on the NP criterion 

In order to make the final decision ݑ଴, we consider an NP test at the fusion center. The NP 
formulation of this problem can be stated as follows: for a prescribed bound on the probability of false 
alarm at the fusion center, ܲ୤ୟ, find the optimum decision rule which maximizes the probability of 
detection, ܲୢ, 

 

 

ܲୢ ( ሚ݀ே௉) = ෍ P
௅(࢛)வఎ

(࢛|ℋଵ) + ߛ ෍ P
௅(࢛)ୀఎ

(࢛|ℋଵ), 

୤ܲୟ( ሚ݀ே௉) = ෍ P
௅(࢛)வఎ

(࢛|ℋ଴) + ߛ ෍ P
௅(࢛)ୀఎ

(࢛|ℋ଴). 

 

(4) 

where ࢛ = ⋯,ଵݑ] ே]், ሚ݀ே௉(࢛) is the conditional probability of accepting ℋଵ, 0ݑ, ≤ ߛ ≤ 1 is the 
randomization constant and the decision threshold, 	ߟ are determined according to the desired false alarm 
probability, ߙ at the fusion center, i.e, 	ܲ୤ୟ( ሚ݀ே௉) =  Since, the decisions of the sensors are independent .ߙ
from each other, the fusion center test based on a likelihood ratio test (LRT) can be formulated as follows: 
 

(࢛)ܮ  =
ܲ(࢛|ℋଵ)
ܲ(࢛|ℋ଴) = ෑ

(௜|ℋଵݑ)ܲ
(௜|ℋ଴ݑ)ܲ

ே

௜ୀଵ

= ෑܮ(ݑ௜)
ே

௜ୀଵ

. 

 
(5) 

We must note that ܮ(ݑ௜) takes two different values, either (1 − ܲd݅)/(1 − ܲfa݅) when ݑ௜ = 0 with 
probability (1 − ܲfa݅) under hypothesis ℋ଴ and probability (1 − ܲd݅) under hypothesis ℋଵ, or ܲୢ ೔/ ୤ܲୟ೔ 
when ݑ௜ = 1 with probability ୤ܲୟ೔  under hypothesis ℋ଴ and probability ܲୢ ೔ under hypothesis ℋଵ. 
Therefore, we have, 

(࢛)ܮ  =
∏ ܲୢ

೔

௨೔ே
௜ୀଵ (1 − ܲୢ ೔)

(ଵି௨೔)

∏ ୤ܲୟ೔
௨೔ே

௜ୀଵ (1 − ୤ܲୟ೔)(ଵି௨೔)
≷ ߟ
ℋభ

ℋబ
. 

 
(6) 
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Now, employing Eqs. (4)-(6), we can implement the NP test at the fusion center. Note that the 
person-by-person optimal solution under the independent observation assumption still requires a 
simultaneous solution of 2ே +ܰequations. Apparently, the computational complexity of this 
process grows exponentially with N. In the following section, we present a method to reduce the 
computational complexity of the implementation. 
 

3. PERFORMANCE ANALYSIS OF THE PROPOSED OPTIMAL FUSION  
RULE FOR COOPERATIVE SPECTRUM SENSING 

 
As mentioned previously, to assess the performance of the distributed scheme, the performance is 
compared with the centralized scheme which uses much more information. Here, we suggest an upper 
performance bound of distributed detection tighter than the centralized scheme. Therefore, in this Section 
we obtain the upper bound of the distributed scheme through implementation and performance evaluation 
of the proposed NP strategy and the existing detectors. We show that AND, OR and Majority fusion rules 
are optimum only in special cases of the probability of false alarm at the fusion center, i.e. in special cases 
their performance meets our bound, simplify the equations and expression of our analysis, as follows:  

 

௜ܴܩ  ≜
ܲୢ ೔

1− ܲୢ ೔

1 − ୤ܲୟ೔

୤ܲୟ೔
. (7) 

 
We must note that since the ROC of the NP detector is convex, it follows that ܲୢ ೔ > ୤ܲୟ೔ , ݅ = 1,2,⋯ ,ܰ and 
௉ౚ೔
௉౜౗೔

≥ 1 and 
ଵି௉ౚ೔
ଵି௉౜౗೔

≤ 1; i.e. ܴܩ௜ is always greater than or equal to unity, ܴܩ௜ ≥ 1. In the following, we study 

the NP fusion rule in special cases. 
  
a) Implementation of the proposed optimal fusion rule with two SUs (ࡺ = ૛) 
 

In this subsection, we consider two SUs in the network which independently sense the PU’s spectrum. 
Regarding different values of ୤ܲୟ, we find the corresponding ܲୢ , via computation of the threshold ߟ and ߛ 
to obtain the ROC. In order to find the value of ߟ, we have 		ܧ{ܮ(࢛);ℋ଴} = ୤ܲୟ; Therefore, we should 
consider different permutations of ܮ(࢛), i.e. 2ே!; since ࢛ can take 2ே different values. In the configuration 
of two sensors, the decision vector ࢛ can take four realizations, i.e., ࢛ଵ ≜ [0,0]் ,࢛ଶ ≜ [0,1]்,࢛ଷ ≜
[1,0]்,࢛ସ ≜ [1,1]் and according to (6) the LR at the fusion center can be written as:  

 

(࢛)ܮ  =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ ௗܲభ ௗܲమ

୤ܲୟభ ୤ܲୟమ
, ࢛ = ࢛ସ,

ௗܲభ(1− ௗܲమ)
୤ܲୟభ(1− ୤ܲୟమ) , ࢛ = ࢛ଷ,

(1− ௗܲభ) ௗܲమ
(1− ୤ܲୟభ) ୤ܲୟమ

, ࢛ = ࢛ଶ,

(1− ௗܲభ)(1− ௗܲమ)
(1− ୤ܲୟభ)(1− ୤ܲୟమ) , ࢛ = ࢛ଵ.

 (8) 

 
So we have 2ଶ! = 24 different permutations of ܮ(࢛). According to the condition ܲୢ ೔ > ୤ܲୟ೔, it can be shown 
that there are only two valid cases of possible permutations which we need to consider [31]. We consider 
these cases and use the NP fusion rule and obtain the upper bound of the distributed cooperative sensing 
scheme (see [32] for details).  

 
1) Case 1: ܴܩଵ <   ଶܴܩ

In the following part, we have obtained the ܲୢ of the resulting NP fusion rule, for different values of ܲ୤ୟ 
and in this case ܲୢ is equal to, 
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 ܲୢ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ܲୢ ಲಿವ

୤ܲୟಲಿವ
୤ܲୟ	 , 0 ≤ ୤ܲୟ < ୤ܲୟಲಿವ

(1− ܲୢ భ)ܲୢ మ

(1− ୤ܲୟభ) ୤ܲୟమ
( ୤ܲୟ − ୤ܲୟಲಿವ) + ܲୢ ಲಿವ , ୤ܲୟಲಿವ ≤ ୤ܲୟ < ୤ܲୟమ

ܲୢ భ(1− ܲୢ మ)
୤ܲୟభ(1− ୤ܲୟమ) ( ୤ܲୟ − ୤ܲୟమ) + ܲୢ మ , ୤ܲୟమ ≤ ୤ܲୟ < ୤ܲୟೀೃ

(1− ܲୢ భ)(1− ܲୢ మ)
(1− ୤ܲୟభ)(1− ୤ܲୟమ) ( ୤ܲୟ − ୤ܲୟೀೃ) + ܲୢ ೀೃ , ୤ܲୟೀೃ ≤ ୤ܲୟ < 1

 (9) 

 
where  

 
 

ܲୢ ఽొీ = ܲୢ భܲୢ మ ,
ܲୢ ో౎ = 1− (1− ܲୢ భ)(1 − ܲୢ మ). (10) 

 
2) Case 2: ܴܩଵ >   ଶܴܩ

Once again, we obtain ܲୢ for different values of ܲ୤ୟ.In this case, ܲୢ is given as  
 

 ܲୢ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ܲୢ ಲಿವ

୤ܲୟಲಿವ
୤ܲୟ , 0 ≤ ୤ܲୟ < ୤ܲୟಲಿವ

ܲୢ భ(1− ܲୢ మ)
୤ܲୟభ(1− ୤ܲୟమ) ( ୤ܲୟ − ୤ܲୟಲಿವ) + ܲୢ ಲಿವ , ୤ܲୟಲಿವ ≤ ୤ܲୟ < ୤ܲୟభ

(1− ܲୢ భ)ܲୢ మ

(1− ୤ܲୟభ) ୤ܲୟమ
( ୤ܲୟ − ୤ܲୟభ) + ܲୢ భ , ୤ܲୟభ ≤ ୤ܲୟ < ୤ܲୟೀೃ

(1− ܲୢ భ)(1− ܲୢ మ)
(1− ୤ܲୟభ)(1− ୤ܲୟమ) ( ୤ܲୟ − ୤ܲୟೀೃ) + ܲୢ ೀೃ , ୤ܲୟೀೃ ≤ ୤ܲୟ < 1

 (11) 

 
3) Case 3: ܴܩଵ =   ଶܴܩ

In this case, assuming that the detectors are identical, we have ୤ܲୟభ = ୤ܲୟమ and ܲୢ భ = ܲୢ మ. In the following, 
we obtain ܲୢ  for different values of ୤ܲୟ given by (12).  
 

 ܲୢ =

⎩
⎪⎪
⎨

⎪⎪
⎧(
ܲୢ భ

୤ܲୟభ
)ଶ ୤ܲୟ , 0 ≤ ୤ܲୟ < ୤ܲୟಲಿವ

2(
ܲୢ భ(1− ܲୢ మ)
୤ܲୟభ(1− ୤ܲୟమ))( ୤ܲୟ − ୤ܲୟಲಿವ) + ܲୢ ಲಿವ , ୤ܲୟಲಿವ ≤ ୤ܲୟ < ୤ܲୟೀೃ

(
1− ܲୢ భ

1− ୤ܲୟభ
)ଶ( ୤ܲୟ − ୤ܲୟೀೃ) + ܲୢ ೀೃ , ୤ܲୟೀೃ ≤ ୤ܲୟ < 1

 (12) 

 
In [32], we depict the ROC curve in these cases. As it can be seen in the figures, the use of NP fusion rule 
improves the performance compared to conventional fusion rules. As shown in the figures, we should note 
that with given local probability of false alarm and probability of detection, AND and OR would lead to 
specific values of the probability of false alarm at the fusion center, in which their probability of detection 
meets the optimal NP performance. Hence it is clear that AND and OR of all or some of the local 
decisions lead to optimum performance only for special cases of the probability of false alarm in the 
fusion center.  

b) Generalization of the proposed optimal fusion rule to multi-SUs (ࡺ > ૛) 

In this section, we will generalize the distributed detection problem with fusion center. At first, we 
consider the case of a three-sensor configuration and, similar to the former section, regarding different 
values of ୤ܲୟ, we find the corresponding ܲୢ . Then we solve the problem for ܰ > 3. In the three-sensor 
configuration, the decision vector ࢛ can take eight realizations, i.e.,  
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࢛ଵ ≜ [1,1,1]் , ࢛ଶ ≜ [1,1,0]் ,
࢛ଷ ≜ [1,0,1]் , ࢛ସ ≜ [1,0,0]் ,
࢛ହ ≜ [0,1,1]் , ࢛଺ ≜ [0,1,0]் ,
࢛଻ ≜ [0,0,1]் , ଼࢛ ≜ [0,0,0]் .

 (13) 

 
and the LRT at the fusion center can be written as: 

 

(࢛)ܮ  =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
ܲୢ భܲୢ మ ܲୢ య

୤ܲୟభ ୤ܲୟమ ୤ܲୟయ
, ࢛ = ࢛ଵ,

ܲୢ భܲୢ మ(1− ܲୢ య)

୤ܲୟభ ୤ܲୟమ(1− ୤ܲୟయ) , ࢛ = ࢛ଶ,

ܲୢ భ(1 − ܲୢ మ)ܲୢ య

୤ܲୟభ(1 − ୤ܲୟమ) ୤ܲୟయ
, ࢛ = ࢛ଷ,

ܲୢ భ(1 − ܲୢ మ)(1− ܲୢ య)

୤ܲୟభ(1 − ୤ܲୟమ)(1− ୤ܲୟయ) , ࢛ = ࢛ସ,

(1− ܲୢ భ)ܲୢ మܲୢ య

(1− ୤ܲୟభ) ୤ܲୟమ ୤ܲୟయ
, ࢛ = ࢛ହ,

(1− ܲୢ భ)ܲୢ మ(1− ܲୢ య)
(1− ୤ܲୟభ) ୤ܲୟమ(1− ୤ܲୟయ) , ࢛ = ࢛଺,

(1− ܲୢ భ)(1− ܲୢ మ)ܲୢ య

(1− ୤ܲୟభ)(1− ୤ܲୟమ) ୤ܲୟయ
, ࢛ = ࢛଻,

(1− ܲୢ భ)(1− ܲୢ మ)(1 − ܲୢ య)
(1− ୤ܲୟభ)(1− ୤ܲୟమ)(1 − ୤ܲୟయ) , ࢛ = ଼࢛.

 (14) 

 
We must note that the threshold ߟ should be computed for different values of ୤ܲୟ. In order to find the 

proper value of ߟ we use ܧ{ܮ(࢛);ℋ଴} = ୤ܲୟ; therefore, we should consider different permutations of ܮ(࢛), 
i.e. 2ଷ!. In this case we have 2ଷ! = 40320 cases and regarding the fact that ܲୢ ೔ > ୤ܲୟ೔ , it is reduced to 12 
cases. That for each case, the ROC should be obtained. For example, assume that ܴܩଷ < ଶܴܩ < ଵܴܩ <
 ଷ. The detection probability of the resulting NP test is then given by (15) (see Appendix A forܴܩଶܴܩ
details).  

 

ܲୢ =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

(ଵ࢛)ܮ ୤ܲୟ	 , 0 ≤ ୤ܲୟ < ܲ୤ୟಲಿವ
( ୤ܲୟ −ܲ୤ୟಲಿವ)ܮ(࢛ଶ) + ܲୢ ಲಿವ , ܲ୤ୟಲಿವ ≤ ୤ܲୟ < ܲ(࢛ଵ ,࢛ଶ|ℋ଴)

( ୤ܲୟ −ܲ(࢛ଵ ,࢛ଶ|ℋ଴))ܮ(࢛ଷ) + ܲ(࢛ଵ ,࢛ଶ|ℋଵ) , ܲ(࢛ଵ ,࢛ଶ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛ଷ|ܪ଴)
( ୤ܲୟ −ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴))ܮ(࢛ହ) + ܲ(࢛ଵ , . . . ,࢛ଷ|ℋଵ)) , ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴) ≤ ܲ୤ୟ < ܲ୤ୟಾೌೕ೚ೝ೔೟೤

( ୤ܲୟ −ܲ୤ୟಾೌೕ೚ೝ೔೟೤)ܮ(࢛ସ) + ܲ(࢛ଵ ,࢛ଶ,࢛ଷ ,࢛ହ|ℋଵ , ܲ୤ୟಾೌೕ೚ೝ೔೟೤ ≤ ୤ܲୟ < ܲ(࢛ଵ , . . . ,࢛ହ|ℋ଴)
( ୤ܲୟ − ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴))ܮ(࢛଺) + ܲ(࢛ଵ , . . . ,࢛ହ|ℋଵ) , ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ , . . . ,࢛଺|ℋ଴)
( ୤ܲୟ − ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴))ܮ(࢛଻) + ܲ(࢛ଵ , . . . ,࢛଺|ℋଵ) , ܲ(࢛ଵ , . . . ,࢛଺|ℋ଴) ≤ ܲ୤ୟ < ܲ୤ୟೀೃ

( ୤ܲୟ − ܲ୤ୟೀೃ)ܮ(଼࢛) + ܲ(࢛ଵ, . . . ,࢛଻|ℋଵ) , ܲ୤ୟೀೃ ≤ ୤ܲୟ < 1
1 , ܲ୤ୟ = 1

 (15) 

As expected, the increased performance due to the NP fusion rule in certain cases like the three-
sensor configuration is higher than the two-sensor configuration. Once again let us note that there are 
points on the ROC curve for the NP fusion that represent the performance of AND, OR and Majority of all 
or some of the local decisions in special cases of ୤ܲୟ in the fusion center, i.e. if the ୤ܲୟ of the NP fusion 
center is equal to what we reach through an AND, OR or Majority fusion rule, the NP fusion results in the 
same probability of detection as those respectively. One may think that given a ୤ܲୟ for the fusion center we 
can adjust the ୤ܲୟ for each sensor to reach ୤ܲୟ in NP ROC diagram of the fusion center and use the above 
mentioned decision rule (AND, OR, ...). That is not true, however, since NP fusion rule suggests efficient 
୤ܲୟ for each local sensor such that ܲୢ  is greater than that of the above mentioned detectors, hence the best 
ܲୢ  is obtained in the fusion center with NP fusion rule.  



Performance comparison of the Neyman-Pearson fusion… 
 

June 2012                                                                            IJST, Transactions of Electrical Engineering, Volume 36, Number E1      

7

As stated earlier, the proposed fusion rule can be generalized to the case of more secondary 
users (N > 3). The derivations for each case is similar to the one described for N = 3. In Fig. 1, 
with simulation we illustrate the ROC curves for ܰ > 3. In this Figure it has been shown that the 
performance increases with ܰ. In the next section, we illustrate the effect of our NP fusion rule on the 
performance of a distributed detection system with three examples. 

  
Fig. 1. ROCs for a fusion center 

 
4. SIMULATION RESULTS AND DISCUSSIONS 

 
Simulation examples are provided to evaluate and compare the performances of the proposed NP fusion 
rule. In the first one, we consider the detection of a known signal in additive white gaussian noise 
(AWGN) and in the second one, a signal with fast phase variation as the PU signal in AWGN is examined 
and in extremity, we consider an orthogonal frequency division multiplexing (OFDM) PU signal in 
AWGN. Thenceforth, we evaluate the performance of the NP fusion rule which has led to the derivation 
of the upper bound and then compare it with AND, OR and Majority fusion rules with simulation in each 
example. We will also see that AND, OR and Majority fusion rules for special cases for ୤ܲୟ in the fusion 
center are the NP fusion rule. Simulation results illustrate the relative performance of the proposed 
detector. In all cases, the probability of false alarm at the fusion center is specified. After computing the 
required threshold at the local sensors, the probability of detection at the fusion center is obtained as a 
function of ୤ܲୟ೔  and ܲୢ ೔ . In all simulations, SNR is defined as the ratio of the signal power to the noise 
variance in the fusion center, (ߩ =  ଶ) and we determined the threshold in each local detector, asߪ/ଶ|ܣ|
follows. The decision statistics for 10଺ independent trials in the absence of any signal was sorted in 
ascending order, and the threshold was chosen as the 100% ∗ ୤ܲୟ -percentile of the resulting data. For 
example, for ୤ܲୟ 	= 0.01, the threshold is chosen as the 0.01 ∗ 10଺ = 10ସth ordered data; i.e. such that 
100% ∗ ୤ܲୟ of the decision statistics is above the threshold. For determining the threshold in fusion center, 
please see the Appendix.  
 
a) Detection of a known signal in additive White Gaussian Noise 
 

We consider the following hypothesis test for detecting the problem of a known signal in additive 
Gaussian noise in each sensor [7]:  

 
 

 ൜ℋ଴:࢟௜ = ࢝௜ , ݅ = 1,2, … ,ܰ,
ℋଵ:࢟௜ = +૚ܣ ࢝௜ , ݅ = 1,2, … ,ܰ, (16) 
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where ૚ = [1,⋯ ,1]், ࢝௜s are independent and identically distributed (i.i.d.) Gaussian random variables 
with zero mean and known variance ߪଶ, and ܣ is the DC level [7]. Sufficient statistics, in this case, are 
equal to:  

 ܶ = ෍࢟௜

ே

௡ୀଵ

[݊] ≷ ௜ߟ
ℋభ

ℋబ
. (17) 

 
where ߟ௜ denotes the threshold of the ݅୲୦ local detector and is determined by the false alarm probability at 
each detector, i.e, ୤ܲୟ೔ = ୢܲ ,௜. Note that the probability of detectionߙ ೔ , and the probability of false alarm, 
୤ܲୟ೔ , are given by 

 ୤ܲୟ೔ = ௜ݑ)ܲ = 1|ℋ଴) = ܳቆ
௜ߟ

ߪ √ܰ
ቇ, (18) 

 

 ܲୢ ೔ = ௜ݑ)ܲ = 1|ℋଵ) = ܳቆ
௜ߟ ܣܰ−
ߪ √ܰ

ቇ, (19) 

where  

(ݔ)ܳ  = න
1
ߨ2√

ஶ

௫
exp	 ቆ

ଶݐ−

2
ቇ݀(20) .ݐ 

 
Computing the threshold ߟ௜ from Eq. (18) and replacing it in Eq. (19) we have  

 

 ܲୢ ೔ = ܳ ቆܳିଵ( ୤ܲୟ೔)−
ܣ √ܰ
ߪ

ቇ. (21) 

 
Therefore, ݑ௜, ୤ܲୟ೔ and ܲୢ ೔  of the local detectors are sent to the data fusion center where the desired final 
results are obtained.  
 
b) Invariant activity detection of a constant magnitude signal with unknown parameters in White 
Gaussian Noise 
 

As a second example we consider the detection of a signal with fast phase variation [33-35] as the 
following hypothesis test in each sensor:  

 
 ൜ℋ଴:࢟௜ = ௜࢔ ,

ℋଵ:࢟௜ = ܽࣘ + ௜࢔ .
 (22) 

 
where ࢟௜ = ,௜[2]ݕ,௜[1]ݕ] . . . , ௜࢔ ,௜[ܰ]]் is the observed signalݕ = [݊௜[1],݊௜[2], . . . , ݊௜[ܰ]]் is the zero mean 
complex white Gaussian noise with unknown variance ߪଶ, ܽ > 0 is the amplitude of the received signal 
and ࣘ = [݁௝థభ , ݁௝థభ , . . . , ݁௝థಿ]் represents the unknown received signal phase. This problem is encountered 
in the detection of a Phase Shift Keying (PSK) signal. The GLR detector is given by 
  

ୋ୐ୖܮ  	≜
∥ ࢟௜ ∥ଵଶ

∥ ࢟௜ ∥ଶଶ
>  , (23)	ୋ୐ୖߟ

where ∥ ࢟௜ ∥௣= (∑ |ே
௞ୀଵ (௞|௣ݕ

భ
೛ is the p-norm of ࢟௜; ∥ ࢟௜ ∥ଶଶ is the squared of the Euclidean norm of ࢟௜ and 

  .௅ோ is chosen to satisfy the required probability of false alarm ୤ܲୟ (for derivation detail, see [33])ீߟ
 
c) OFDM PU signal in White Gaussian Noise 
 

The third example is the detection of an Orthogonal Frequency Division Multiplexing (OFDM) PU 
signal in AWGN. Since CR only uses non-contiguous bands in the spectrum, OFDM seems to be a 
suitable transmission technique. In brief, the primary target of CR is to find available bands and change, if 
necessary, system parameters such as carrier frequency, transmission bandwidth, power consumption and 



Performance comparison of the Neyman-Pearson fusion… 
 

June 2012                                                                            IJST, Transactions of Electrical Engineering, Volume 36, Number E1      

9

modulation type to achieve efficient use of spectrum resources [3, 4, 36]. Besides, one of the main 
constraints in CR networks is that PU’s signal detection should be performed in a very short time [37-39]. 
OFDM-based CR networks are known to be an excellent fit for the physical architecture of CR networks 
[40-41], mainly because multi-carrier sensing can be exploited in OFDM-based CR networks and the 
overall sensing time can be reduced.  

Figure 2 depicts the probability of detection versus SNR for a known signal in AWGN with ୤ܲୟ =
10ିଶ. We compare the performances of a single detector with that of the distributed detection in a 
data fusion system (N = 2) and and we show the significant cooperative gain achieved by the NP 
fusion rule. It is seen that at low values of N (here N = 2), the performance of the OR fusion rule 
is close to the performance of the NP fusion rule. However, as will be seen, as the number of SUs 
increases, significant increase in performance gain of the NP fusion rule over the OR fusion rule 
is observed (see e.g. Fig. 7). We must note that the degrade in the performance of the AND fusion 
rule in high SNRs is due to the fact that the AND fusion rule decides on the detection only if all 
the sensors (SUs) send the detection signal 

Figures 3-5 illustrate the comparison between the traditional data fusion rules (AND and OR) and the 
proposed data fusion rule (NP fusion rule) for the case ܰ = 2. We see that the best ܲୢ  is obtained in the 
fusion center with NP fusion rule, which is always superior to AND and OR fusion rules. For the purpose 
of detecting the PSK signal with ܯ = 8, Fig. 4 compares the AND, OR and NP fusion rules for the case 
ܰ = 2 . It is clear that the NP fusion rule is always superior to AND and OR fusion rules. The fusion rule 
AND performs better than the OR fusion rule for smaller values of SNR untill the crossover 
point, after which the OR fusion rule performs better. This should be justified noting the fact that 
the detection by SUs at low SNRs is so rare and then the OR fusion rule can not outperforms the 
AND fusion rule (see [41] for more discussion). 

Figures 6-8 illustrate the comparison between the traditional data fusion rules (AND, OR and 
Majority) and the proposed data fusion rule (NP) for the case ܰ = 3. In Fig. 7, the performance of 
proposed data fusion rule (NP) comparing with that of the other decision fusion rules are 
investigated. As expected, the performance of NP improves with increasing the number of SUs. 
However, the performances based on decision rules come with different compromises. For 
example, the fusion rule AND is the best decision rule at low SNR but definitely a bad choice at 
high SNR. The Majority rule behaves well at very low SNRs but performs poorly at higher SNR. 
The performance of the fusion rule OR lies between the two extremes of AND rule and the 
Majority rule. Fig. 8 compares the AND, OR, Majority and NP fusion rules for the case ܰ = 3 for the 
problem detection of a PSK signal with ܯ = 8 and ୤ܲୟ = 10ିଷ. It is clear that the NP fusion rule is always 
superior to AND, OR and Majority fusion rules. Also, AND is superior to OR and Majority at a low SNR, 
with increasing the SNR Majority is superior to AND and OR is superior to AND and Majority at a high 
SNR. As expected, as the number of SUs increases, significant increase in the performance gain 
of the optimum NP fusion rule over other fusion rules is observed 

In Figs. 9-10 we evaluate and compare the performance of the proposed NP fusion rule for the 
detection of an OFDM signal in AWGN. The number of subcarriers is set to 64 and the modulation used is 
8PSK. Fig. 9 illustrates simulation results for the detection of an OFDM signal with different (traditional 
and proposed) fusion rules and ܰ = 2. As mentioned previously, it should be taken into consideration that 
the NP fusion rule is always superior to AND and OR fusion rules. As aforementioned, AND fusion rule is 
superior to OR fusion rule at a low SNR but by increasing the SNR, OR fusion rule is superior to AND 
fusion rule. Fig. 10 compares AND, OR, Majority and NP fusion rules for the case that ܰ = 3. Also, it is 
known that the NP fusion rule is always superior to AND, OR and Majority fusion rules. In addition, AND 
is superior to OR and Majority at a low SNR, but by increasing the SNR, Majority is superior to AND and 
subsequent increase can lead to OR being superior to AND and Majority at a high SNR. But in all the 
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SNRs, the upper bound obtained mentioned in this paper is superior to the performance of other traditional 
fusion rules.  

 

Fig. 2. Performance comparison of the data fusion rule (ࡺ = ૛) and single detector in terms of ܌ࡼ 
 versus SNR for the problem detection of a known signal in additive 

 Gaussian noise with ܉܎ࡼ = ૚૙ି૛ 

 

Fig. 3. Performance comparison of the NP fusion rule and AND and OR data fusion rules: in terms  
of ܌ࡼ versus SNR for the problem detection of a known signal in additive 

 Gaussian noise with ࡺ = ૛ and ܉܎ࡼ = ૚૙ି૜ 

 

Fig.  4. Performance comparison of the NP fusion rule and AND and OR fusion rules:  
in terms of ܌ࡼ versus SNR for the problem detection of a PSK 

 signal with ࡹ = ૡ, ࡺ = ૛ and ܉܎ࡼ = ૚૙ି૛ 
 

Signal to Noise Ratio(dB) 

Signal to Noise Ratio(dB) 

Signal to Noise Ratio(dB) 
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Fig.  5. Performance comparison of the NP fusion rule and AND and OR fusion rules: 
 in terms of ܌ࡼ versus SNR for the problem detection of a PSK  

signal with ࡹ = ૚૟, ࡺ = ૛ and ܉܎ࡼ = ૚૙ି૛  

 

Fig.  6. Performance comparison of the NP fusion rule and AND, OR and Majority fusion rules: 
 in terms of ܌ࡼ versus SNR for the problem detection of a known signal in  

additive Gaussian noise with ࡺ = ૜ and ܉܎ࡼ = ૚૙ି૞ 

 

Fig 7. Performance comparison of the NP fusion rule and AND, OR and Majority data fusion rules: 
 in terms of ܌ࡼ versus SNR for the problem detection of a PSK  

signal with ࡹ = ૡ, ࡺ = ૜ and ܉܎ࡼ = ૚૙ି૞ 
 

Signal to Noise Ratio(dB) 

Signal to Noise Ratio(dB) 

Signal to Noise Ratio(dB) 
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Fig  8. Performance comparison of the NP fusion rule and AND, OR and Majority data fusion rules: 
 in terms of ܌ࡼ versus SNR for the problem detection of a PSK signal  

with ࡹ = ૚૟, ࡺ = ૜ and ܉܎ࡼ = ૚૙ି૜ 

 

Fig 9. Performance comparison of the NP fusion rule and AND and OR data fusion rules: in terms  
of the Probability of Detection versus SNR for the problem detection of a OFDM  

signal with ࡺ = ૛ and ܉܎ࡼ = ૚૙ି૛  
 

 

Fig. 10. Performance comparison of the NP fusion rule and AND, OR and Majority data fusion rules: in  
terms of the Probability of Detection versus SNR for the problem detection of a  

OFDM signal with ࡺ = ૜ and ܉܎ࡼ = ૚૙ି૛ 
 

Signal to Noise Ratio(dB) 

Signal to Noise Ratio(dB) 

Signal to Noise Ratio(dB) 
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5. CONCLUSION 
 
We studied the performance of the parallel distributed NP detection system consisting of ܰ sensors and a 
fusion center. We assumed that the decision rules of the sensors are given, and that decisions of different 
sensors are conditionally independent. The decisions at the sensors and the false alarm and detection 
probabilities are sent to the fusion center, where we try to obtain a detection performance that is better 
than that of the local sensors. We analyzed the performance of the NP fusion rule and evaluated the 
performance in different situations. In this study, an upper bound of distributed detection has been 
successfully derived, which has led to our claim that it is more convenient to compare the performance to 
this upper bound of the distributed scheme rather than the centralized scheme. Thenceforth, for two and 
three sensor configuration, analytical formulation were derived and the performance illustrated by 
simulation examples. Also, we showed that the AND, OR and Majority decision fusion rules in special 
cases for ୤ܲୟ in the fusion center are optimum. For greater number of sensors, we developed a computer 
simulation structure and evaluated the performance of the fusion center. Also, the effects of varying the 
number of participating individual sensors on fusion were studied in detail and it has been shown that the 
performance increases with ܰ. It is shown that distributed spectrum sensing is a practical and efficient 
approach to increase the probability of signal detection to reduce sensitivity requirements of individual 
radios.  
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APPENDIX 
A. Derivation of The Decision Fusion Using NP Criterion for N=3 
In order to find the threshold for achieving a ୤ܲୟ-level NP test, we must consider ܲ(ܮ(࢛) >   ℋ଴). We have|ߟ

 

P(ܮ(࢛) > (ℋ଴|ߟ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 , ߟ < (଼࢛)ܮ
ܲ(࢛ଵ, . . . ,࢛଻|ℋ଴) , (଼࢛)ܮ ≤ ߟ < ,(଻࢛)ܮ
ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴) , (଻࢛)ܮ ≤ ߟ < ,(଺࢛)ܮ
ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴) , (଺࢛)ܮ ≤ ߟ < ,(ସ࢛)ܮ

ܲ(࢛ଵ,࢛ଶ,࢛ଷ,࢛ହ|ℋ଴) , (ସ࢛)ܮ ≤ ߟ < ,(ହ࢛)ܮ
ܲ(࢛ଵ,࢛ଶ,࢛ଷ|ℋ଴) , (ହ࢛)ܮ ≤ ߟ < ,(ଷ࢛)ܮ
ܲ(࢛ଵ,࢛ଶ|ℋ଴) , (ଷ࢛)ܮ ≤ ߟ < ,(ଶ࢛)ܮ
ܲ(࢛ଵ|ℋ଴) , (ଶ࢛)ܮ ≤ ߟ < ,(ଵ࢛)ܮ

0 , (ଵ࢛)ܮ ≤ ,ߟ

 (24) 

where  

 
ܲ(࢛ଵ,࢛ଶ,࢛ଷ,࢛ସ,࢛ହ,࢛଺,࢛଻|ℋ଴) = ୤ܲୟೀೃ ,
ܲ(࢛ଵ,࢛ଶ,࢛ଷ,࢛ହ|ℋ଴) = ୤ܲୟಾೌೕ೚ೝ೔೟೤ ,

ܲ(࢛ଵ|ℋ଴) = ୤ܲୟಲಿವ .
 (25) 

 
we see that the desired threshold for different values of ୤ܲୟ in the NP test is given by (26) and the randomization 
constant is (27).  
 

଴ߟ  =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
(ଵ࢛)ܮ , 0 ≤ ୤ܲୟ < ୤ܲୟಲಿವ ,
(ଶ࢛)ܮ , ୤ܲୟಲಿವ ≤ ୤ܲୟ < ܲ(࢛ଵ,࢛ଶ|ℋ଴),
(ଷ࢛)ܮ , ܲ(࢛ଵ,࢛ଶ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴),
(ହ࢛)ܮ , ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴) ≤ ୤ܲୟ < ୤ܲୟಾೌೕ೚ೝ೔೟೤ ,
(ସ࢛)ܮ , ୤ܲୟಾೌೕ೚ೝ೔೟೤ ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴),
(଺࢛)ܮ , ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴),
(଻࢛)ܮ , ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴) ≤ ୤ܲୟ < ୤ܲୟೀೃ ,
(଼࢛)ܮ , ୤ܲୟೀೃ ≤ ୤ܲୟ < 1,

0 , ୤ܲୟ = 1,

 (26) 

 



S. Mosleh et al. 
 

IJST, Transactions of Electrical Engineering, Volume 36, Number E1                                                                            June 2012 

16

ߛ  =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ ୤ܲୟ 	

୤ܲୟಲಿವ
, 0 ≤ ୤ܲୟ < ୤ܲୟಲಿವ ,

୤ܲୟ 	− ୤ܲୟಲಿವ
ܲ(࢛ଶ|ℋ଴) , ୤ܲୟಲಿವ ≤ ୤ܲୟ < ܲ(࢛ଵ,࢛ଶ|ℋ଴),

୤ܲୟ 	− ܲ(࢛ଵ,࢛ଶ|ℋ଴)
ܲ(࢛ଷ|ℋ଴) , ܲ(࢛ଵ,࢛ଶ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴),

୤ܲୟ 	− ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴)
ܲ(࢛ହ|ℋ଴) , ܲ(࢛ଵ, . . . ,࢛ଷ|ℋ଴) ≤ ୤ܲୟ < ୤ܲୟಾೌೕ೚ೝ೔೟೤ ,

୤ܲୟ 	− ୤ܲୟಾೌೕ೚ೝ೔೟೤

ܲ(࢛ସ|ℋ଴) , ୤ܲୟಾೌೕ೚ೝ೔೟೤ ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴),

୤ܲୟ 	− ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴)
ܲ(࢛଺|ℋ଴) , ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴),

୤ܲୟ 	− ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴)
ܲ(࢛଻|ℋ଴) , ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴) ≤ ୤ܲୟ < ୤ܲୟೀೃ ,

୤ܲୟ 	− ୤ܲୟೀೃ
ܲ(଼࢛|ℋ଴) , ୤ܲୟೀೃ ≤ ୤ܲୟ < 1,

0 , ୤ܲୟ = 1.

 (27) 

By using (14), (26), and (27) the resulting NP test, ࢊ෩۾ۼ for different values of ୤ܲୟ will be  

 ሚ݀୒୔(࢛) = ቐ
୤ܲୟ	

୤ܲୟಲಿವ
, ࢛ = ࢛ଵ,

0 , others,
 (28) 

for 0 ≤ ୤ܲୟ < ୤ܲୟಲಿವ, and  

 ሚ݀୒୔(࢛) = ൞

1 , ࢛ = ࢛ଵ,
୤ܲୟ 	− ୤ܲୟಲಿವ
ܲ(࢛ଶ|ℋ଴) , ࢛ = ࢛ଶ,

0 , others,

 (29) 

for ୤ܲୟಲಿವ ≤ ୤ܲୟ < ܲ(࢛ଵ,࢛ଶ|ℋ଴), and  

 ሚ݀୒୔(࢛) = ൞

1 , ࢛ = ࢛ଵ,࢛ଶ,
୤ܲୟ 	− ܲ(࢛ଵ,࢛ଶ|ℋ଴)

ܲ(࢛ଷ|ℋ଴) , ࢛ = ࢛ଷ,

0 , others,

 (30) 

for ܲ(࢛ଵ,࢛ଶ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ,࢛ଶ,࢛ଷ|ℋ଴), and  

 ሚ݀୒୔(࢛) = ൞

1 , ࢛ = ࢛ଵ,࢛ଶ,࢛ଷ,
୤ܲୟ 	− ܲ(࢛ଵ,࢛ଶ,࢛ଷ|ℋ଴)

ܲ(࢛ହ|ℋ଴) , ࢛ = ࢛ହ,

0 , others,

 (31) 

for ܲ(࢛ଵ,࢛ଶ,࢛ଷ|ℋ଴) ≤ ୤ܲୟ < ୤ܲୟಾೌೕ೚ೝ೔೟೤ , and  

 ሚ݀୒୔(࢛) =

⎩
⎨

⎧
1 , ࢛ = ࢛ଵ,࢛ଶ,࢛ଷ,࢛ହ,
୤ܲୟ 	− ୤ܲୟಾೌೕ೚ೝ೔೟೤

ܲ(࢛ସ|ℋ଴) , ࢛ = ࢛ସ,

0 , others,

 (32) 

for ୤ܲୟಾೌೕ೚ೝ೔೟೤ ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛ସ,࢛ହ|ℋ଴), and  

 ሚ݀୒୔(࢛) = ൞

1 , ࢛ = ࢛ଵ, . . . ,࢛ହ,
୤ܲୟ 	− ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴)

ܲ(࢛଺|ℋ଴) , ࢛ = ࢛଺,

0 , others,

 (33) 

for ܲ(࢛ଵ, . . . ,࢛ହ|ℋ଴) ≤ ୤ܲୟ < ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴), and  
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 ሚ݀୒୔(࢛) = ൞

1 , ࢛ = ࢛ଵ, . . . ,࢛଻,
୤ܲୟ 	− ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴)

ܲ(࢛଻|ℋ଴) , ࢛ = ࢛଻,

0 , others,

 (34) 

for ܲ(࢛ଵ, . . . ,࢛଺|ℋ଴) ≤ ୤ܲୟ < ୤ܲୟೀೃ , and  

 ሚ݀୒୔(࢛) = ቐ
୤ܲୟ 	− ୤ܲୟೀೃ
ܲ(଼࢛|ℋ଴) , ࢛ = ଼࢛,

1 , others,
 (35) 

for ୤ܲୟೀೃ ≤ ୤ܲୟ < 1. 


