
تعداد نشریات | 24 |
تعداد شمارهها | 849 |
تعداد مقالات | 7,535 |
تعداد مشاهده مقاله | 13,279,499 |
تعداد دریافت فایل اصل مقاله | 11,517,200 |
Mechanical Properties and Residual Stress Measurement in the Friction Stir Welding Process of Al 6061-T6 Plates with Copper and Brass Interlayer | ||
Iranian Journal of Materials Forming | ||
دوره 12، شماره 1، فروردین 2025، صفحه 51-64 اصل مقاله (5.16 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22099/ijmf.2025.51807.1310 | ||
نویسندگان | ||
S. Aryanpour Kashani؛ M. Honarpisheh* | ||
Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran | ||
چکیده | ||
Friction stir welding was used to join 6061-T6 aluminum plates with and without the addition of commercial pure copper and brass alloy (CuZn30) interlayers. The effects of these interlayers on mechanical properties, and residual stress distribution were analyzed. Tensile and microhardness tests were conducted to evaluate mechanical performance, while residual stress was measured using the contour method. Welding was performed at rotational speeds of 900 and 1120 rpm and feed rates of 25 and 50 mm/min. Results showed a 54% increase in yield strength in the no-interlayer condition and a 35% increase with a copper-interlayer compared to the base metal. The highest hardness, 158 Vickers, was recorded in the brass-interlayer joint. Residual stress analysis revealed that stresses were tensile near the weld center and compressive in the base metal. Longitudinal residual stresses were generally higher than transverse stresses. The brass interlayer led to the highest residual stress distribution, followed by the copper interlayer, indicating the interlayer’s role in increasing residual stress in friction stir welding. | ||
کلیدواژهها | ||
Friction stir welding؛ Interlayer metal؛ 6061-T6 aluminum؛ Residual stress | ||
مراجع | ||
[1] Jha, A. K., Murty, S. N., Diwakar, V., & Kumar. K. S. (2003). Metallurgical analysis of cracking in weldment of propellant tank. Engineering Failure Analysis, 10(3), 265-273. https://doi.org/10.1016/S1350-6307(02)00073-0
[2] Doshi, S. J., Gohil, A., Mehta, N., & Vaghasiya. S. (2018). Challenges in fusion welding of Al alloy for body in white. Materials Today: Proceedings, 5(2), 6370-6375. https://doi.org/10.1016/j.matpr.2017.12.247
[3] Kah, P., Rajan, R., Martikainen, J., & Suoranta. R. (2015). Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. International Journal of Mechanical and Materials Engineering, 10(1), 1-10. https://doi.org/10.1186/s40712-015-0053-8
[4] Ma, Z., Sharma, S., & Mishra. R. (2006). Effect of friction stir processing on the microstructure of cast A356 aluminum. Materials Science and Engineering: A, 433(1-2), 269-278. https://doi.org/10.1016/j.msea.2006.06.099
[5] Cao, X., Wallace, W., Immarigeon, J. P., & Poon. C. (2003). Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Materials and Manufacturing Processes, 18(1), 23-49. https://doi.org/10.1081/AMP-120017587
[6] Mandal, N. R. (2017). Ship construction and welding (Vol. 329). Springer.
[7] Rajawat, M. S., Pagrut, S., Dwivedi, S., Raj, R., & Dixit. A. R. (2022). Microstructural characterization of friction stir assisted laminated lap welding of AA6063 sheets. Materials Today: Proceedings, 56(949-953). https://doi.org/10.1016/j.matpr.2022.02.633
[8] Mishra, R. S., & Ma. Z. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1-2), 1-78. https://doi.org/10.1016/j.mser.2005.07.001
[9] Hossfeld, M. (2023). On friction, heat input, and material flow initiation during friction stir welding: tool and process optimization. Journal of Manufacturing and Materials Processing, 7(1), 34. https://doi.org/10.3390/jmmp7010034
[10] Kallee, S. W. (2010). Industrial applications of friction stir welding. In Friction stir welding (pp. 118-163). Woodhead Publishing.
[11] Ahmed, M. M., El-Sayed Seleman, M. M., Fydrych, D. & Çam. G. (2023). Friction stir welding of aluminum in the aerospace industry: the current progress and state-of-the-art review. Materials, 16(8), 2971. https://doi.org/10.3390/ma16082971
[12] Singh, V. P., Patel, S. K., Ranjan, A., & Kuriachen, B. (2020). Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. Journal of Materials Research and Technology, 9(3), 6217-6256. https://doi.org/10.1016/j.jmrt.2020.01.008
[13] Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., & Suleymanova. I. (2023). A critical review on solid-state welding of high entropy alloys–processing, microstructural characteristics and mechanical properties of joints. Defence Technology, 34, 78-133. https://doi.org/10.1016/j.dt.2023.08.001
[14] Zhao, Y., Lu, Z., Yan, K., & Huang, L., (2015). Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Materials & Design (1980-2015), 65, 675-681. https://doi.org/10.1016/j.matdes.2014.09.046
[15] Abd El-Hafez, H., & El-Megharbel, A. (2018). Friction stir welding of dissimilar aluminum alloys. World Journal of Engineering and Technology, 6(2), 408-419. https://doi.org/10.1016/S1350-6307(02)00073-0
[16] Khojastehnezhad, V. M., & Pourasl, H. H. (2018). Microstructural characterization and mechanical properties of aluminum 6061-T6 plates welded with copper insert plate (Al/Cu/Al) using friction stir welding. Transactions of Nonferrous Metals Society of China, 28(3), 415-426. https://doi.org/10.1016/S1003-6326(18)64675-8
[17] Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials & Design, 51, 466-473. https://doi.org/10.1016/j.matdes.2013.04.056
[18] Xue, P., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering: A, 527(21-22), 5723-5727. https://doi.org/10.1016/j.msea.2010.05.061
[19] Leon, J. S., & Jayakumar, V. (2014). Investigation of mechanical properties of aluminium 6061 alloy friction stir welding. International Journal of Students’ Research in Technology & Management, 2(04), 140-144.
[20] Esmaeili, A., Givi, M. B., & Rajani. H. Z. (2012). Investigation of weld defects in dissimilar friction stir welding of aluminium to brass by radiography. Science and Technology of Welding and Joining, 17(7), 539-543. https://doi.org/10.1179/1362171812Y.0000000044
[21] Zhang C., & Shirzadi. A. A. (2018). Measurement of residual stresses in dissimilar friction stir-welded aluminium and copper plates using the contour method. Science and Technology of Welding and Joining, 23(5), 394-399. https://doi.org/10.1080/13621718.2017.1402846
[22] Morishige, T., Kawaguchi, A., Tsujikawa, M., Hino, M., Hirata, T., & Higashi. K. (2008). Dissimilar welding of Al and Mg alloys by FSW. Materials Transactions, 49(5), 1129-1131. https://doi.org/10.2320/matertrans.MC200768
[23] Li, X. W, Zhang, D. T., Qiu, C., & Zhang, W. (2012). Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Transactions of Nonferrous Metals Society of China, 22(6), 1298-1306. https://doi.org/10.1016/S1003-6326(11)61318-6
[24] Song, S. W., Kim, B. C., Yoon, T. J., Kim, N. K., Kim, I. B., & Kang, C. Y. (2010). Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW. Materials Transactions, 51(7), 1319-1325. https://doi.org/10.2320/matertrans.M2010032
[25] Jafari, H., Honarpisheh, M., & Mansouri, H. (2019). Investigation of mechanical properties of friction stir welded dissimilar 6061-T6 and 7075-T6 aluminum alloys. In Proceedings of the 27th Annual International Conference of Iranian Society of Mechanical Engineers (ISME2019). Tehran, Iran.
[26] Jafari, H., Mansouri, H., & Honarpisheh, M. (2019). Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. Journal of Manufacturing Processes, 43, 145-153. https://doi.org/10.1016/j.jmapro.2019.05.023
[27] Abdollah-Zadeh, A., Saeid, T., & Sazgari. B. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535-538. https://doi.org/10.1016/j.jallcom.2007.06.009
[28] Akinlabi, E. T. (2010). Characterisation of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper [Doctoral dissertation, Nelson Mandela Metropolitan University]. http://hdl.handle.net/10948/1536
[29] Liu, P., Shi, Q., Wang, W., Wang, X., & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials. Materials Letters, 62(25), 4106-4108. https://doi.org/10.1016/j.matlet.2008.06.004
[30] Bisadi, H., Tavakoli, A., Sangsaraki, M. T., & Sangsaraki, K. T. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials & Design, 43, 80-88. https://doi.org/10.1016/j.matdes.2012.06.029
[31] Zhang, Q. Z., & Wei, L. I. U. (2015). Microstructure and mechanical properties of dissimilar Al–Cu joints by friction stir welding. Transactions of Nonferrous Metals Society of China, 25(6), 1779-1786. https://doi.org/10.1016/S1003-6326(15)63783-9
[32] Xue, P., Ni, D. R., Wang, D., Xiao, B. L., & Ma, Z. Y. (2011). Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science and Engineering: A, 528(13-14), 4683-4689. https://doi.org/10.1016/j.msea.2011.02.067
| ||
آمار تعداد مشاهده مقاله: 12 تعداد دریافت فایل اصل مقاله: 11 |