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Abstract – Most parts of southern Iran have frequently experienced drought and flooding events. 
The occurrence of these natural disasters is common in Fars province which supplies about 25% of 
the national wheat product. Shiraz (capital city of the province) is studied as a representative of the 
province. Estimating rainfall and temperature can help in agricultural water management, protection 
from water shortages, and flood damage, thus having significant economic impacts. The prediction 
is, however, a complicated procedure and conventional mathematical methods are not able to easily 
capture such a relationship. To overcome the problem, neural network-based models were used for 
forecasting temperature and rainfall in Shiraz (Iran). Various simulation results based on the real data 
are presented. The results suggest that the applied methodology is suitable and more practical than 
the previous approaches for the prediction of rainfall and temperature. The developed model is able 
to predict rainfall and temperature one season ahead with reasonable error. 
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1. INTRODUCTION 
 

Forecasting is a highly complex application, because we are typically dealing with systems that receive 
thousands of inputs, which interact in a complex nonlinear fashion. Usually with a very small subset of 
inputs or measurements available from the system, its behavior is to be estimated and extrapolated to the 
future. What gives some hope solving some of the difficult forecasting problems is that typically successive 
events or inputs that affect the time series are serially correlated, and that causes a time series pattern that 
can give some hint of the future. Time series can exhibit some past random-like cyclical behavior, and can 
therefore give a hint about the probable position in the cycle at a certain instant in the future [1].  

Neural networks (NN's) are powerful computational tools for learning complex mapping. They may be 
easily developed and solve complicated problems. They only need an historical pattern of the events and a 
judicious selection of NN parameters and structure. There is substantial literature available on various NN's 
and their applications [2-4]. Most neural network approaches to the problem of forecasting use a multilayer 
network trained using the backpropagation algorithm. Consider a time series x(1),...,x(t-1), where it is 
required to forecast the value of x(t). The inputs to the multilayer network are typically chosen as the 
previous k values x(t-k),...,x(t-1) and the output will be the forecast. The network is trained and tested on 
sufficiently large training and testing sets that are extracted from the historical time series. In addition to 
previous time series values, one can utilize, as inputs, the values or forecasts of other time series (or external 
variables) that have a correlated or causal relationship with the series to be forecasted [1].  
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Although the influence of teleconnection patterns on Shiraz rainfall have already been investigated, a 
model has not yet been developed to seek the impact of combined indices on the rainfall.  Moreover, every 
member of the hierarchy of classical multivariate methods such as multiple regression, principal component 
analysis (PCA), and canonical correlation analysis (CCA) are inherently linear, but natural phenomena such 
as climatic variables are nonlinear with complex interactions. The significantly advanced nonlinear 
empirical modeling ability of neural networks can be utilized to overcome these two shortcomings.      

In this paper, the problem of forecasting the rainfall of Shiraz is investigated using NN approaches. 
Besides some preprocessing analysis, order identification and model reduction methods are also invoked in 
order to improve the results. The structure of this paper is as follows: First, problem formulation and order 
identification are presented. A linear model is then tried in order to investigate the complications. A neural 
network based model is further developed and optimized and a conclusion will be given in the last section. 
 

2. PROBLEM FORMULATION 
 

Understanding the predictability of the atmosphere at a seasonal-to inerannual time-scale has improved 
considerably during the past decade. It has been shown that the variability of rainfall and temperature in Iran 
has been accentuated by the occurrence of El Nino-Southern Oscillation (ENSO), North Atlantic Oscillation 
(NAO) and the Persian Gulf sea surface temperatures (PGSSTs) [5-8]. Compared to other parts of Iran, the 
impact of the PGSSTs on surface climate is more meaningful for the southwestern portion of the country [8]. 
These studies have shown that the variations in PGSSTs account for about 35% of the total variance of 
winter rainfall in Shiraz. The influence of ENSO and NAO phenomena on the rainfall was, however found 
to be less than the corresponding values of PGSSTs.    

The aim is to forecast temperature and rainfall in Shiraz based on the related and historical data available. 
The inputs that we used are combinations of the following: 

1) The seasonal rainfall at the previous time periods; 
2) The seasonal average of the temperature at the previous time periods; 
3) The seasonal average of the Persian Gulf Sea Surface Temperature (PGSST); 
4) The seasonal average of the Southern Oscillation Index (SOI); 
5) The seasonal average of the North Atlantic Oscillation (NAO). 

Measurements of the above variables were available from 1951 to 1993. The first two data sets were derived 
from the yearly weather-books published by the Iranian Meteorological Organization (IMO) for the period 
1951-1993. The PGSST data were extracted from the comprehensive oceanic and atmospheric data set 
(COADS) for the period 1951-1993. The Troup′s (1965) Southern Oscillation Index (SOI) data, which have 
been used as the ENSO indicator, were supplied by the Australian Bureau of Meteorology. The NAO data 
were extracted from the web site of the national oceanic and atmospheric administration (NOAA). Time 
series were created from these data, and then the models were developed based on the data from 1951-1990. 
Models are tested based on the data from 1991-1993. 

As is the case with many neural network applications, preprocessing the inputs may improve the results 
significantly. Input and output preprocessing means extracting features from the inputs and transforming the 
target outputs in a way that makes it easier for the network to extract useful information from the inputs and 
associate it with the required outputs. Preprocessing is considered an art and there is no set of rules in 
choosing it [1].  

The cross-correlation function is a measure for the statistical dependence of two different processes, x(t) 
and y(t). The amount of correlation between x and y can be expressed by a coefficient of correlation. The 
correlation coefficient is the correlation function normalized so that the autocorrelation will be 1 for lag 0 
[9]. Normalized correlation coefficients between Shiraz rainfall and temperature and other variables up to a 
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maximum lag of 25 were calculated. As shown in Fig.1, Shiraz rainfall and temperature are more correlated 
with PGSST than with NAO or SOI. This supports the idea that rainfall and temperature in Shiraz are more 
influenced by the surface climate of the Persian Gulf than the other previously studied teleconnections. It is 
obvious from Fig.1 that temperature is more correlated with PGSST than rainfall. Also, normalized 
correlation coefficient curves related to temperature have a more regular shape than those related to rainfall. 
So it is not surprising that temperature can be more accurately forcasted than rainfall. 

 

 
Fig. 1. Normalized correlation coefficients between Shiraz rainfall  

and temperature and other teleconnections 
 

3. ORDER IDENTIFICATION 
 

In a dynamic system the current outputs depend not only on the current inputs, but also on the inputs and 
outputs at the previous time periods. As the first step of modeling, a reasonable estimate of the order of the 
system under consideration should be obtained. In other words, we should reasonably estimate how many 
previous inputs and outputs have had considerable effects on current outputs. The function lipschit of 
MATLAB Neural Network Based System Identification (NNSYSID) Toolbox can be employed to do this 
[10]. 

First the training set is scaled to zero mean and variance one, and then the test set is scaled with the 
same constants. Given corresponding input and output sequences, the function lipschit calculates a matrix of 
indices that can be helpful for determining a proper lag space structure before identifying a model of a 
dynamic system. An insufficient lag space structure leads to a large index. While increasing the lag space the 
index will decrease until a sufficiently large lag space structure is reached. Increasing the lag space further 
will not change the index significantly. In other words, we are looking for the knee-point of the plot.  The 
indices for system orders from 1 to 40 were investigated. Results for rainfall are shown in Fig.2. It is not 
unreasonable to use a seventh order model for rainfall prediction, because the slope of the curve decreases 
for model orders equal or greater than 7. Also, a fourth order model may be reasonable too. 
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(a) 
 

             
(b) 
 

                
(c)  

Fig. 2. Order identification for Shiraz rainfall; (a) input: PGSST, output: Shiraz rainfall 
(b) input: NAO, output: Shiraz rainfall (c) input: SOI, output: Shiraz rainfall 

 
4. FITTING A LINEAR MODEL 

 
The golden rule in identification (and in most other matters) is to try simple things first. If a linear model 
does a job properly, one should not bother wasting time on neural network based models. The ARX (auto 
regression with eXtra inputs, called eXogeneous variables in econometrics) model was used to identify a 
seventh order linear model with three inputs (PGSST, NAO and SOI) and one output (rainfall) [11-12]. 
Results are shown in Fig.3. 

The normalized root mean square error (NRMSE) is used for model performance investigation 
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where x̂  is the model output, x is the target and time increment, t, is season. NRMSE is 0.4432 for training 
set and 0.5774 for test set. 

It is often useful to perform a regression analysis between the model response and the corresponding 
targets. Here we have three parameters. The first two correspond to the slope and the y-intercept of the best 
linear regression relating targets (T) to model outputs (A). If we had a perfect fit (outputs exactly equal to 
targets), the slope would be 1, and the y-intercept would be 0. The third variable is the correlation coefficient 
(R) between the outputs and targets. It is a measure of how well the variation in the targets is explained by 
the outputs. If this number is equal to 1, then there is perfect correlation between targets and outputs [13]. R 
is 0.815 for training set and 0.674 for test set. The best previous prediction of Shiraz rainfall has resulted in a 
correlation coefficient of R=0.425, which was obtained by Nazemosadat for winter rainfall. So, the ARX 
model, because of its ability to consider the impact of combined indices on rainfall has significantly 
improved predictions. Although the ARX model, because of its ability to investigate the impact of combined 
indices on the rainfall, has significantly improved predictions, it is apparent that the linear model has severe 
problems. It is thus concluded that the underlying system′s behavior may be described more accurately by a 
nonlinear model.  
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(b) 

Fig. 3. ARX model results for rainfall forecasting in Shiraz: (a) train set (b) test set 
 

5. SELECTING A NONLINEAR MODEL STRUCTURE 
 
A neural network ARX (NNARX) model structure with the same parameters is attempted. NNARX 
determines a nonlinear ARX model of a dynamic system by training a hidden layer neural network with the 
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Levenberg-Marquardt algorithm [10]. Initially a fully connected network architecture with 15 hyperbolic 
tangent hidden nodes, one linear output node and 496 weights was selected. A schematic diagram of such a 
network is shown in Fig.4. We trained the network for 300 iterations with a small weight decay of 0.001. 
NRMSE is 3.0097e-004 for the training set and 0.5147 for the test set. R is 1 for the training set and 0.789 
for the test set. Results are shown in Fig. 5. Performance of this nonlinear model is compared to that of the 
linear model in Table 1, which shows noticeable improvement. The NNARX model has increased 
correlation (R) and decreased NRMSE with respect to the linear ARX model. Also, results of a fourth order 
NNARX model are summarized in Table 1. It can be concluded that the number of data in the train and test 
sets is not sufficient. 

 

 
Fig. 4. Neural network schematic diagram  
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(b)  

Fig. 5. NNARX model results for rainfall forecasting in Shiraz: (a) train set (b) test set 
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Though better performance of the seventh order NNARX model with respect to the ARX model was 

obvious, it showed overfitting of data to some extent. Therefore, to remove the superfluous weights from the 
network, the function NNPRUNE of NNSYSID Toolbox was used. This function determines the optimal 
network architecture by pruning the network according to the optimal brain surgeon strategy [10]. The 
network was retrained with a maximum of 50 iterations after each weight elimination (i.e. eliminate one 
weight, retrain, eliminate one weight, retrain,...). This is the slowest but safest strategy. It is reasonable to 
select the network with the smallest test error as the final one. NNPRUNE produces the plot shown in Fig. 6, 
which displays training error, test error, and final prediction error estimate of generalization (FPE) of each of 
the intermediate networks. The plot reveals that the minimum of the test error occurs when there are only 
478 weights left in the network. Regularization is helpful when pruning neural networks.  

 

 
(a) 

  
                                                                                              (b)  

Fig. 6. Network pruning result: (a) training error, test error and final prediction error estimate of generalization (FPE)  
of each of the intermediate networks, where half of mean square error (MSE/2) was chosen 

 as the performance index. (b) a close-up of (a), which shows the minimum test  

Table 1. Rainfall forecasting 
 

Train Test MODEL 
STRUCTURE 

Model 
Order NRMSE R NRMSE R 

ARX 7 0.4432 0.815 0.5774 0.674 
4 3.0249e-006 1 0.4249 0.87 NNARX 
7 3.0097e-004 1 0.5147 0.789 

Pruned.NNARX 7 1.9945e-005 1 0.3939 0.907 
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However, when the optimal network architecture was found, it had to be retrained without the weight 
decay [10]. Now NRMSE is 1.9945e-005 for training set and 0.3939 for test set. R is 1 for training set and 
0.907 for test set. It is concluded that the performance of the network is improved very much by pruning. 
Fig.7 shows the optimal network results. Ideally it is expected that the training error increase as the weights 
are pruned, while test error decrease until a certain minimum, and then start increasing. However, such 
strange results are not uncommon because results depend heavily on the local minimum from which one 
starts out [10].  

 

1955 1960 1965 1970 1975 1980 1985 1990
0

50

100

150

200

250

300

350

400

450

500
Solid: Measured Value , Dashed: One-Step Ahead Prediction

R
ai

nf
al

l (
m

m
)

Years

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

Measured Value (T)

M
od

el
 O

ut
pu

t (
A

)

Best Linear Fit:  A = (1) T + (0.000634)

R = 1

Data Points    
A = T          
Best Linear Fit

 
(a) 

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Measured Value (T)

M
od

el
 O

ut
pu

t (
A

)

Best Linear Fit:  A = (0.616) T + (17.3)

R = 0.907

Data Points    
A = T          
Best Linear Fit

 
(b) 

Fig. 7. Optimized network results for rainfall forecasting in Shiraz: (a) train set (b) test set 
 

6. TEMPERATURE FORECASTING 
 

According to our experience and the relatively high correlation between rainfall and temperature an 
NNARX model structure with the same parameters (except the maximum iteration of 50) was employed for 
temperature prediction. NRMSE is 1.6300e-004 for training set and 0.0669 for test set. R is 1 for training set 
and 0.989 for test set, which is very satisfactory. Results are shown in Fig.8 and Tables 1 and 2. 

 
Table 2. Temperature forecasting 

 
Model Train Test 
Structure NRMSE R NRMSE R 
NNARX 1.63300E-004 1 0.0669 0.989  
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(b) 

Fig. 8. NNARX model results for temperature forecasting in Shiraz: (a) train set (b) test set 
 

 
7. CONCLUDING REMARKS 

 
Most parts of Iran in general frequently suffer from water shortage, southern parts in particular. For periods 
when the temperature is above normal, the demand for water increases for both domestic and irrigation 
purposes. Severe drought is, therefore, expected when a prolonged shortage of rainfall coincides with hot 
weather and heat waves. The ever-increasing population of Iran causes an increase in the demand for fresh 
water, and competent management of water resources is needed to mitigate the hazards of drought and 
flooding. Accurate forecasting of rainfall and temperature a season or even a few seasons ahead, is becoming 
more and more necessary in the region to accomplish the desired criteria for the management of water 
resources. Such forecasting is also important for resource management in agriculture, range land, soil 
conservation, tourism, housing and industry.  

This paper utilized the time series as a benchmark to compare several black-box modeling methods 
such as linear system identification methods and neural networks. Models were applied to forecast rainfall 
and temperature of the city of Shiraz one season ahead. Simulation results show the capability of neural 
networks for time series prediction and suggest that the applied methodology is more efficient than the 
previous approaches. As shown, rainfall was not predicted as accurately as temperature because rainfall 
depends on numerous factors, of which only three were considered. Prediction will be improved by utilizing 
other variables that have a causal relationship with rainfall as network inputs. In a future work, some 
orthogonalization methods to reduce the number of inputs will be studied. 
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ABBREVIATIONS USED IN THIS PAPER 
 

ARX            atoRegression with eXtra inputs (called eXogeneous variables in econometrics)  
CCA            Canonical correlation analysis 
ENSO          El Nino-southern oscillation      
FPE              final prediction error 
NAO            north atlantic oscillation 
NN               neural network 
NNARX       neural network ARX 
NRMSE       normalized root mean square error 
PCA             principal component analysis 
PGSST         persian gulf sea surface temperature 
R                  correlation coefficient 
SOI              southern oscillation Index  
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