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Abstract — A one point quadrature pentahedral solid element with hourglass stabilization is
developed for large deformation analysis of elastoplastic solids. This type of element is particularly
suited for analysis of shell-like structures where multiple fracturing without any predefined direction
takes place in the shell surface. Thus, the element design is motivated by requirements of the analysis
of delamination and fracture in multilayered composite shells. The element formulation and the
hourglass control procedure are based on the standard assumed strain method for stabilization of
solid elements previously developed by other researchers. Several numerical tests, from simple beam
bending to fracture analysis of laminated plates have been carried out to assess the performance of
the element.
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1. INTRODUCTION

It is well known that a full integration of the internal forces and stiffness matrix arising in finite element
analysis leads to difficulties in certain classes of problems. For instance, so-called volumetric locking is
observed when the material is nearly incompressible. In addition, this scheme requires many computational
operations to construct an element stiffness matrix and to obtain its internal forces. To remedy this situation,
reduced integration schemes (RI) were introduced. However, a major drawback of the RI schemes is a mesh
instability often known as hourglassing. They constitute a special case of the phenomenon known as
kinematic or spurious zero-energy modes, and once activated they very quickly destroy the solutions. The
selective reduced integration method (SRI), which was subsequently introduced, improved the drawbacks of
the RI method, but it did not improve the computational efficiency.

Recently, Belytschko and his co-workers [1, 2] have developed a reduced integration method with
hourglass control. This method maintains the computational efficiency of RI, avoiding its instability, and can
be readily implemented. This method has been widely used for hourglass stabilization of 2D quadrilateral,
plate, shell and solid elements.

The first attempts of this kind can be traced to Doherty et al. [3] who under-integrated the shear terms,
suppressing the parasitic shear which causes the stiff behaviour of fully integrated quadrilaterals. However,
these elements did not perform well for incompressible problems. Subsequently, Wilson et al. [4]
constructed an element for both compressible and incompressible materials by adding incompatible bubble
modes. The failure of the element to pass the patch test was remedied by Taylor et al. [5]. These elements
comprise the underlying ideas for the later developed elements with hourglass control.

In earlier papers, Belytschko and his colleagues [2, 6, 7, 8] developed reduced integration elements by
employing hourglass control methods. The main process of hourglass control has been constructed by
introducing parameters for artificial damping and artificial stiffness; the latter being preferred [9]. In these
works, the anti-hourglass mode vectorsy, which are derived by orthogonal conditions to preserve
consistency, play an important part in the construction of a stabilization stiffness matrix and an additional
correction force vector to avoid hourglass phenomena.
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Unfortunately, the magnitudes of the associated generalized stresses are governed by user-input
hourglass control parameters. These parameters are usually chosen to be just large enough to prevent
hourglassing, so this approach to stabilization is often called perturbation hourglass control [10]. However,
coarse mesh solutions of bending dominated problems can be quite sensitive to the magnitude of the
stabilization parameter. More importantly, the stabilization does not project out volumetric strains, so for
incompressible materials it is possible for the element to become quite stiff or even lock as the stabilization
parameter is increased. This is particularly important in the nonlinear range where many materials are almost
incompressible [11].

In the following years, efforts focused on determining the control value of the hourglass control
parameters (Stainier & Ponthot, [9]). Belytschko et al. [2, 8] introduced the idea of using a variational form
of the three field Hu-Washizu principle, while Liu et al. [12, 13] proposed using a Taylor development of
the strain rate. In this alternative approach the strain field is projected to eliminate the volumetric locking.
This methodology can be considered as a special case of the B -bar (B ) method, in which the gradient
matrix B of the standard displacement element is replaced by an assumed gradient matrix B . In other
words, the standard B matrix is projected onto a smaller space to eliminate the hourglass and locking
phenomena both in a mathematical and physical sense [14].

Further contributions to the field were made by Koh and Kikuchi [15], Jetteur and Cescotto [16] among
others. Koh and Kikuchi [15] developed 8-node bricks with directional reduced integration, which are
effective for certain types of shells and beams. However, it can be shown that these elements are very
sensitive to mesh distortion in the thin plate limit, so the elements can not be used as general purpose shell or
plate elements. It appears from these studies that general three-dimensional elements, when distorted, will
not perform well for plates and shells. Therefore, the enforcement of a structural hypothesis, such as the
Kirchhoff or Mindlin-Reissner hypothesis, is crucial for good performance in thin plates and shells [11]. Liu
et al. [17] proposed a new simple approach which is called the “multi-point quadrature scheme”, in which
two quadrature points were used for a 4-node quadrilateral element in elastoplastic dynamic analysis by an
explicit time integration scheme. However, the selection of the proper integration points for other elements
in 3D has remained unresolved.

Belytschko and Bindeman [11] developed uniform reduced integration elements by the assumed strain
method introduced by Simo and Hughes [18] to build a strain field avoiding the locking phenomenon by
including shear locking. They extended their element to nonlinear problems in which an additional
correction nodal force vector is required, and is then carried out in a corotational system. However, the
choice of a corotational formulation for general 3D problems is not straightforward [11]. They have shown
that the Simo-Hughes form of the Hu-Washizu variational principle is far more concise and the results differ
little from the more complicated forms which ensue from the complete application of the Hu-Washizu
variational principle [1].
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Fig. 1. Geometric crack modelling for 8-node brick and 6-node pentahedral elements
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An 8-node brick element with mixed formulation for large deformation analysis has recently been
developed by Li and Cescotto [19] which uses the same approach as Belytschko and Bindeman [11] and
reportedly passes the large strain patch tests and guarantees stability and convergence. It has the correct rank
of the stiffness matrix so that the hourglass modes can be avoided completely.

For a general 3D analysis of structures, 8-node solid elements are frequently used and preferred to other
simple solid elements. However, in special circumstances, other solid elements may effectively be used. For
example, pentahedral elements sometimes appear in relatively thick shell analysis as a substitute for
triangular shell elements [20]. Here, the pentahedral element has been developed as an essential part of an
element-split fracturing algorithm to be used in an advanced combined finite/discrete element analysis to
investigate the formation, propagation and interaction of cracks and interlaminar delaminations in
composites due to impact loadings [21, 22]. The impact analysis is performed using an explicit time
integration scheme neglecting any wave propagation effects.

The 8-node brick solid element could not be used in such an approach due to the creation of various

types of elements (brick and pentahedral elements) from geometric modelling of a crack inside a damaged
element (see Fig. 1). In contrast, splitting a pentahedral element creates only similar types of elements.
In the following, a one point quadrature formulation for the 6-node pentahedral element is described which
is mainly based on the work by Belytschko and Bindeman [11] and Li and Cescotto [19] for an 8-node brick
element. Several numerical tests from simple beam bending to fracture analysis of laminated plates have
been carried out to assess the performance of the element.

2. FINITE ELEMENT INTERPOLATION AND DEFORMATION MODES
a) Shape functions

Figure 2 defines three coordinate systems, global XYZ, local xyz and curvilinear £77¢ , required in the
formulation of the pentahedral element. All calculations are carried out on the local corotational system and
then transformed to global vectors for updating the global quantities according to the explicit time
integration scheme.

4(0,0,1)

6(0,1,1)
5(1,0.1) z

CAZ

(0,0,-1)

Mid-surface 2(1,0,-1) 3(0,1,-1)

Fig. 2. Pentahedral element. Global XYZ, local xyz and curvilinear {77 coordinate systems

The basic shape functions are obtained by multiplying the basis functions of a three node element by an
appropriate function along the ¢ direction, i.e.

1

Ny=—(1=9(1=n)(1+ &) i=14
N, = %5(1 +,) i=2,5 (1)
N =1+ i=3.6
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For general pentahedral elements, the most obvious integration pattern is a combination of an
appropriate triangular array in two dimensions and a Gauss distribution in the third direction. For the present
case of the 6-node element, each triangular face requires only a single integration point to evaluate its
constant strain states. However, even by ignoring the spurious modes along the thickness, a spurious mode
corresponding to in-plane rotation of one triangular face relative to the other exists. So the minimum
practical pattern of integration points for this element which avoids spurious modes is a 3x2 pattern [20].
Obviously, this pattern is not economically acceptable in the context of an explicit approach, therefore a one
point quadrature with hourglass stabilization is adopted.

b) Geometry Description

Adopting the isoparametric interpolation, the spatial coordinates of a given point (&,77,{") within the
element may be expressed as

X. =

1

N, X, i=123 @)
1

M

where X, =(X,,)" =(X,, X5, X3, X4, X;5.X,s)" is a vector of nodal coordinates. After some
manipulations the above expression may be written as

x = (T E+ L+ +my &0 +mynd)X, 3)

where

t7 =%[1,o,0,1,0,0], I =%[—1,1,0,—1,1,0], I =%[—1,0,1,1,0,1], I3 =%[—1,o,0,1,0,0],

m’ =%[l,—1,o,—1,1,0], m] =%[1,0,—1,—1,0,1]

¢) Kinematic description

1. Displacements: A similar approach for the displacement vector # leads to
u, = (6" + 1 E+n+ 150 +m{ &0 +ming)d, )

where d; represents the nodal displacement vector. The physical meaning of these deformation modes may
be better understood from Figs. 3 and 4 in which deformation modes along the X, and x, axes have been
considered, respectively.

—— — L——
T L] m
u u,! :
, * | u; < 5
e |
[ —1 S
!r 1 I !
u, uy u; u; N_:.’ H;J
K | —
Fig. 3. Modes of deformation along the X, axis Fig. 4. Modes of deformation along the X, axis

By substituting the physical coordinates instead of the curvilinear coordinates in Eq. (3), a more
appropriate format is achieved
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T T T
u; =(gy +x;b5 +h,v,)d, ®)

where
bj :N,j(o):_(o)a 2o :t_(t Xj)bja VYo =M, _(man)bj7 h1 :gga hz :774:
ox,
where i, j =1,2,3 and o =1,2 and the summation rule over the repeated indices is implied throughout the
paper, unless otherwise stated. The following orthogonality conditions are readily verified;

b/t=b/m, =0, t'm,=m,t=0, b/X,=5,, hjh,=25,, (6)

where i_ta is a vector of the nodal values of £,

H; = (hal’haZ’haS’ha4’h haG) (7)

as»

2. Strain Tensor: Assuming that small strain approximations are applicable, the strain-displacement
relations are expressed as

ou,
u, , =—- 8
L] axj ( )
U, =(bJT~ +ha,/7£)di &)
So the strain-displacement matrix B is defined
Couy bl +h,,7, 0 0 d,
Uz 0 by +h, 7, 0
u 0 0 by +h, 5y, | d
33 —Bd=| . ) . 3 T he3Y g 2 (10)
Uy +uy, by +h, Y, by +h,7, 0
Uyy +s, 0 by +h,5v, by +h,,1, d
| Usy TUL3 | b3T + ha,ﬂg 0 blT + ha,]"{g
or in compact form
e=t+g, =(B+B,)d (11)
with
g, =B,d=hI'd (12)
where B is the constant part and B , 18 the hourglass stabilization part of the B matrix
hath 0 0 |
0 ha,27£ 0
0 0 syl
B - a3ila 13
! ha,ZYg ha,lyg 0 ( )
0 ha,3"{£ ha,Z’YZ
_ha,SYZ 0 ha,lyz i
and
hy, 0 0 hy O 0 Y, 0 0
0 m, O 0 hy, O 0 vy, 0
0 0 A 0 0 7
b= 13 23| po 0 0 v, (14)
hy hy 0 by, hy 0 v, 0 0
0 hz hy 0 hy hy, 0 v, 0
_h1,3 0 My hysy 0 by, | 10 0 v,
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To evaluate the £, ; terms, the chain rule may effectively be used

o(e) _0(e) 05  0O(s) O 0(e) ¢

= (15)
ox, 05 ox; 0n Ox; 0g Ox;
which requires the evaluation of the Jacobian matrix
Y
Ox, Ox; O
y_| % o o
ox, Ox, Ox,
%5 on 9
| Ox; Ox; Oxy |
which eventually results in evaluation of the derivatives of the hourglass modes
hl,i:é/Ji;1+77Ji;1’ h2,i:§Ji]1+§Jigl (17)

where J;; " is the ij component of the J~' matrix.

3. ASSUMED STRAIN FIELD AND STABILIZATION PROCEDURE

As emphasized by Belytschko and Bindeman [11] and later by Li and Cescotto [19], if Eq. (11) is used as
the discretized strain field, the element can lock for incompressible materials and exhibit excessive energy in
shear mode for bending dominated problems. To remedy this situation, an assumed strain field is employed
for the non-constant part of the strain field.

a) Assumed strain field
First, the hourglass strain field is decomposed into normal and shear components
g, =¢€, +¢, (18)
in which the normal term is decomposed into deviatoric and volumetric parts
€, =¢) +¢) (19)
To eliminate volumetric locking, the strain field must be designed (projected) so that in the hourglass mode
the dilatation of the projected strain field vanishes throughout the element. Hence, the volumetric part &, of

the normal component of the hourglass strain field € is neglected [11, 19]. The strain-displacement matrix
B¢ then takes the form

2h¥h —haoth —hasvl ]
- ha,lyg 2ha,27£ - ha,37£
i =L Therta “haate 2hesve 20)
3 0 0 0
0 0 0
0 0 0 |
For the shear part, the shear parameters are introduced to avoid shear locking problems
0 0 0 |
0 0 0
. 0 0 0
B = ﬂlzha,zyg ﬂlzha,ﬂz 0 @D
0 ﬂ23ha,372 ﬂZSha,Zyg
_ﬂ13ha,37£ 0 ﬂ13ha,17£ ]
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The f; parameters may be determined from the element geometry according to the following rules:

1812 _ min(xmean > Vmean ) , ﬂ23 _ min(ymean > Z mean ) min(xmean > Z mean ) (22)

- - . Bi-
max(xmean > ymean ) max(ymean > Zmean ) max(x

mean > Zmean )

where

1
Ymean:g(|Y15|+‘Y24|+|Y26|+|Y35|+|Yl6‘+|YS4 ) (23)

with Y =x,y,z and ¥; =Y, -Y,.

For bending dominated problems shear locking is possible when f; =1, whereas f; =0 is associated
with torsion dominated problems in which only shear energy exists. Therefore, Egs. (18) and (19) describe a
strain field that may behave well for both thin and thick structures thus avoiding hourglass locking for
bending and torsional deformations. The hourglass strain field may be expressed as

g, =€l +¢) (24)
with a similar expression for the corresponding hourglass mode derivatives, (g, =hI' d)
h=h,+h, (25)

where h and I' are defined in Egs. (14), and the normal, deviatoric and shear parts of # may be defined as

hl,l 0 0 hz,l 0 0 —2h1,1 _hl,z _hl,3 2h2,1 _hz,z _hz,z
0 h1,2 0 0 hz,z 0 _hl,l 2hl,z _h1,3 _h2,1 2h2,2 _h2,3
h = 0 0 s O 0 hys h, =l —hy —hy 2hy —hyy —hy, 2k,
"10 0 0 0 0 ’ 310 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0| | 0 0 0 0 0 |
F 0 0 0 0 0 0
0 0 0 0 0 0
b 0 0 0 0 0 0
- Bihsy o Pk, 0 Bihy,y  Prahy, 0
0 Bohis  Porh, 0 Bahsy  Pohy,
_ﬂlShl,S 0 Bishiy Pishys 0 Pishy, ]

For later usage, it is convenient to define

g, =0Id (206)
as the generalized hourglass strain.
b) Stabilization procedure for linear elastic problems

The stabilization force vector may be evaluated from the stabilization stiffness matrix

f

stab — Kstabd ’ and Kstab :! Q BQCBth (27)

Here, the approach adopted by Li and Cescotto [19] is followed. For linear elastic materials, the stress field
can be expressed as

6=C=C(g, +¢,) (28)
where
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I-v v 0 0 0
v l-v v 0 0 0
1% v 1-v 0 0 0
e _ 2G 0 0 0 M 0 0
(1-2v) 3
0 0 0 a=2) 0
2
0 0 0 0 a-2v)
L 2
The total stress is composed of two parts
6=0,+0, (29)
where
6, =C’, (30)
¢, =C‘he,, 31

Applying Eq. (25) and considering the following properties for linear elastic materials
C’h, =2Gh,, C°h, =Gh, (32)
Equation (31) results in
6,=h,c, (33)
where 6, is the generalized hourglass stress

6, =2Gg,, (34)

and h, :hd—i-lh
2

N

where h_ may be interpreted as the interpolation function of the generalized hourglass stress in the element.
¢) Stabilization procedure for nonlinear applications

To extend the formulation for nonlinear application, the variational form of the Hu-Washizu principle is
used, where the displacements, strains and stresses are used as the independent test functions [18]

[ 468" (Z-0)dQ+] 6 6" (Viu—8)dQ+[ ,6(Vu)'6 d2-5d £ =0 (35)

where Q is the current domain, V*u is the symmetric part of the displacement gradient field, € is the
discretized strain field (assumed), o is the discretized stress field (assumed), X is the Cauchy stress
obtained from the strain field &, £ is the external load and d is the nodal displacement.

Following standard argument, it may be shown that the first term results in expressions (30, 31, 34) for
the total stress and generalized hourglass stress, while the second term results in expressions (11, 12, 26) for
total strain and generalized hourglass strain (For a comprehensive discussion see [19]. Only the third term of
Eq. (35) directly contributes to the internal force vector

[ o6(V'w)'e da=] 5" (B" +T"h{ )0, +h_ 6 ,)dQ (36)

O
where h. =h, +h_ . By defining
H=|  hlh_dQ (37)
Equation (36) becomes
[ 06(V'w'e da=5d"(VB'e,+T"Hs ) (38)
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Thus, we have the equilibrium equation
fim _fext — 0 (39)
where

int ! T
" =VB'o,+I'" Ho,
The second part of the internal force vector is the hourglass contribution and is denoted

f" =I'"Ho,, (40)

For the purpose of implementation, Eqs. (37) and (40) have been expanded, resulting in the following
explicit formulae (a,b =1,2 and i,k,/ =1,2,3 and j =1,2 with no summation rule over repeated indices)

1 =2Gy,0, +2Gy,0,, (41)

_ ol gh jl.gh Jl.gh J2 ngh J2 gh J2 . gh
O, =Sien +8hey +Sh&y +Si7en +85 &) +85 €y (42)

a. 1 1 a as 2 a. 1 as 1 a a
Sijh = [_5 + E 1'12':|Hijh > Siib = (E)Hn‘h + (5:85 )Hllb + (Eﬂli )Hk,f > Hijb = I Q, ha,ihb,de

The values of H 5b are numerically evaluated at the gauss point.

As suggested by Belytschko ef al. [1, 11], the value of the shear modulus G is updated for inelastic stress

increments according to

2G = s (43)
HAe
where
133 133
[Ty ==2XXAS,AS,;, I, == 2Ae;Ae; (44)
2404 Y 244 Y

and AS; and Ae; are components of the deviatoric part of the stress and strain increments, respectively,
which are evaluated at the integration point.

4. NUMERICAL VERIFICATION

In this section some of the test results are reviewed to assess the performance of this element within the
context of an explicit dynamic analysis.

Fig. 5. Hourglass instability of the cantilever beam and its stabilized solution. ( £ =210€9,
v=0.1, p=7600, length =10 ,width =1, height =1, load =525e5)

a) Cantilever beam

A cantilever beam subjected to a constant edge loading is considered. This fundamental test is
presented to demonstrate a simple view of how the stabilized element may prevent the hourglass instability
of an elastically bending beam. The behavior of the element without any hourglass control is depicted in Fig.
5. The element fails at the very beginning of the analysis, however, with the hourglass control a very smooth
deformed shape is achieved. Figure 6 compares the displacement history for the pentahedral and 8-node
brick elements.
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Fig. 6. Comparison of the free-end vertical displacement Fig. 7. Spherical shell

for 6-node and 8-node meshes

b) Spherical shell

The geometric and material description of this standard test of shell elements [23] is depicted in Fig. 7.
The pressure load is applied normally to the surface of the elements and its local direction and magnitude are
kept constant during the analysis. Without any hourglass control, the analysis fails in the early timesteps, and
the hourglass modes completely destroy the results of the analysis, as depicted in the figure. The results of
deformation for a stabilized brick element and the present stabilized pentahedral element are compared in
Fig. 9. The reference curve is taken from the analysis by quadrilateral shell elements based on Belytschko et
al. [24].

Fig. 8. Hourglass instability of the spherical shell

0.04-1

—— Pentahedrall
0.02 ===== Biick solid
weevees Shell

e
B
L

Displacement
& & &
g8 ® B

L L L

&
8

0.1

e wes | e ee | sew
Time
Fig. 9. Crown displacement history of the spherical shell for different finite element meshes
¢) Cylindrical panel loaded impulsively

A cylindrical panel was studied by Belytschko and Leviathan [10] to simulate the experimental results
reported by Balmer and Witmer [25]. The geometry and mechanical properties of the structure are defined in
Fig. 10. The impulsive loading with initial velocity v, lasts 4 msec. Due to symmetry, only one half of the
structure is modelled and a 3D elastic perfectly plastic law based on the von Mises yield criterion and an
associated flow rule is used. The permanent deformed shape of the cylinder is shown in Fig. 11. The
displacement of the midpoint along the crown line of the cylinder is compared with the experimental results
[25] and the numerical results obtained by Belytschko et al. [26, 10] (Fig. 12).
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prcsc_ribcd i
velocity v i hinged
Cylindrical panel parameters
a=10.205 in b=154 in
fixdd 1 =12.56 in R =2.9375 in
t=0.125 in a =120°
E =1.05e07 v =033
p=2.5€—04 Vo =5650 in/sec
ogea’ ® 1 oy =4.4e04 psi E,=0

Fig. 10. Cylindrical panel. Geometry and mechanical properties

Displacement

il DE+00 25‘-04 4EI-04 OEI-M !ELM 1E-03
e Time
Fig. 11. Permanent deformation of the cylindrical panel Fig. 12. Comparison of the displacement history of the

crown of the cylinder at its midspan

d) Impact loading of a composite plate

A numerical simulation is undertaken to study the fracture and delamination behaviour of a laminated
composite plate which is subjected to a high velocity impact at its centre. The impact loading is simulated by
a triangular load applied from 0 to 5 usec with a peak force of 14N. Figure 13 illustrates the geometry of
the plate, and defines the material properties and other necessary information [27]. The composite ply
pattern is assumed to be [+ 45,,-45,,+45,,-45,,+45, ,]. Because of nonsymmetry, the whole plate has to
be modelled.

An unstructured mesh of pentahedral elements is used for modelling the plate. A regular three-element
mesh is used across the thickness of each layer. In this example, the possibility of fracture and delamination
is not restricted to any particular region. At the starting point, over 30,000 elements and 25,000 points are
used for the finite element modelling.

Figures 14-15 compare the fractured region (matrix cracking) of different layers at two different stages
of the loading. Shaded regions in these figures represent the failed points of the mesh. Figure 16 illustrates
the debonding patterns at different interfaces at the end of analysis. A special local remeshing technique is
used for geometric modelling of a crack. Interactions between crack faces have been modelled using
concepts of frictional contact mechanics [22].

5. CONCLUSIONS

A one point quadrature pentahedral solid element with hourglass stabilization has been developed as part of
a combined finite/discrete element procedure to analyse the formation, propagation and interaction of cracks
in solids due to impact loading. The element formulation and the hourglass control procedure are based on
the assumed strain method. The element performs well in large deformation and nonlinear analysis. It is a
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computationally inexpensive element and its main drawback is the fact that the number of elements are
doubled in comparison to a brick element modelling of the same domain. Several numerical tests from
simple beam bending to fracture analysis of laminated plates, have been carried out and confirmed as
excellent performances of the element.

Model size = 0.1524x0.1524x0.00444 m
Ply layout [+ 45,,-45, ,+45,,—45,+45,,
E,, =152.4€3MPa E,, =10.7e3MPa
X, =2772MPa Y, =79.3MPa
X, =3100MPa Y, =231MPa
v =035 p=155¢3 Kg/m®
S =132.8MPa

Fig. 13. [+ 45,,-45, ,+45,,-45, ,+45 | Composite plate subjected to impact
loading. Geometry and mechanical properties

Fig. 14. Fracture patterns of different layers at t = 0.0136 ms
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Fig. 15. Fracture patterns of different layers at t = 0.0362 ms
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Fig. 16. Delamination patterns at different layer interfaces at ¢t = 0.0362 ms
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