Acharya, V. V., & Richardson, M. (2009). Causes of the financial crisis. Critical
Review, 21(2-3), 195-210. https://doi.org/10.1080/08913810902952903.
Acosta-González, E., Fernández-Rodríguez, F., & Ganga, H. (2019). Predicting
corporate financial failure using macroeconomic variables and accounting
data. Computational Economics, 53(1), 227-257.
https://doi.org/10.1007/s10614-017-9737-x
Addo, P. M., Guegan, D., & Hassani, B. (2018). Credit risk analysis using
machine and deep learning models. Risks, 6(2), 38.
https://doi.org/10.3390/risks6020038.
Aiginger, K. (2009). The current economic crisis: Causes, cures and
consequences. WIFO Working Papers, No. 341. Austrian Institute of
Economic Research (WIFO). http://hdl.handle.net/10419/128899.
Aikman, D., Haldane, A. G., & Nelson, B. D. (2015). Curbing the credit cycle.
The Economic Journal, 125(585), 1072-1109.
https://doi.org/10.1111/ecoj.12113.
Aldasoro, I., Borio, C., & Drehmann, M. (2018). Early warning indicators of
banking crises: expanding the family. BIS Quarterly Review, March, 29-45.
https://www.bis.org/publ/qtrpdf/r_qt1803e.htm.
Ashtab, A., Haghighat, H., & Kordestani, G. (2017). Comparison of the accuracy
of financial crisis prediction models and their impact on earnings
management tools. Accounting and Auditing Reviews, 24(2), 147-172. (In
Persian). doi: 10.22059/acctgrev.2017.231176.1007585.
Bagheri, M., Farkhani, H., & Tabataba'i Nejhad, S. M. (2016). The Survey of
Concept and Necessity of Syndicated Loans in Iran’s Legal System. Public
Law Researsh, 18(52), 87-105. doi: 10.22054/qjpl.2016.6792.
Bahmani-Oskooee, M., & Gelan, A. (2018). On the relation between currency
depreciation and domestic credit in Iran: An asymmetry analysis. The
Journal of Economic Asymmetries, 18, e00105.
https://doi.org/10.1016/j.jeca.2018.e00105.
Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating
multiple classifiers for stock price direction prediction. Expert Systems with
Applications, 42(20), 7046–7056.
https://doi.org/10.1016/j.eswa.2015.05.013.
Behera, J., Pasayat, A. K., Behera, H., & Kumar, P. (2023). Prediction-based
mean-value-at-risk portfolio optimization using machine learning regression
algorithms for multi-national stock markets. Engineering Applications of
Taheri Haftasiabi et al., Iranian Journal of Economic Studies, 12(1) 2023, 217-248 243
Artificial Intelligence, 120, 105843.
https://doi.org/10.1016/j.engappai.2023.105843.
Beutel, J., List, S., & von Schweinitz, G. (2019). Does machine learning help us
predict banking crises? Journal of Financial Stability, 45, 100693.
https://doi.org/10.1016/j.jfs.2019.100693.
Biljanovska, N., Chen, S., Gelos, R. G., Igan, D. O., Martínez Pería, M. S., Nier,
E., & Valencia, F. (2023). Macroprudential policy effects: Evidence and open
questions. IMF Departmental Papers, 2023(002).
https://doi.org/10.5089/9798400226304.087.A001.
Bloom, D. E., Canning, D., Kotschy, R., Prettner, K., & Schünemann, J. (2018).
Health and economic growth: Reconciling the micro and macro evidence
(IZA Discussion Paper No. 11940). Institute of Labor Economics (IZA).
https://hdl.handle.net/10419/193234
Bluwstein, K., Buckmann, M., Joseph, A., Kapadia, S., & Şimşek, Ö. (2023).
Credit growth, the yield curve and financial crisis prediction: Evidence from
a machine learning approach. Journal of International Economics, 145,
103773. https://doi.org/10.1016/j.jinteco.2023.103773.
Borio, C., & Drehmann, M. (2009). Assessing the risk of banking crises –
revisited. BIS Quarterly Review, March, 29-46.
https://www.bis.org/publ/qtrpdf/r_qt0903e.pdf.
Brunnermeier, M. K. (2009). Deciphering the liquidity and credit crunch 2007–
2008. Journal of Economic perspectives, 23(1), 77-100.
Çebi, C., & Özlale, Ü. (2012). The yield curve and predicting recessions in
Turkey. Emerging Markets Finance and Trade, 48(5), 4-15.
https://doi.org/10.2753/REE1540-496X480501.
Cecchetti, S. G., Kohler, M., & Upper, C. (2009). Financial crises and economic
activity. Federal Reserve Bank of Kansas City Economic Review, 94(4), 5-
28. https://doi.org/10.3386/w15379.
Chatzis, S. P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., &
Vlachogiannakis, N. (2018). Forecasting stock market crisis events using
deep and statistical machine learning techniques. Expert Systems with
Applications, 112, 353-371. https://doi.org/10.1016/j.eswa.2018.06.032.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 785-794).
https://doi.org/10.1145/2939672.2939785
Choi, H., & Lee, H. (2018). Predicting financial distress of contractors in the
construction industry using ensemble learning. Expert Systems with
Applications, 110, 1-10. https://doi.org/10.1016/j.eswa.2018.05.027.
Claessens, S., Khoo, C., & Sousa, R. M. (2016). Embedded supervision: How to
build regulation into decentralized finance. International Monetary Fund
Working Paper, 16/222. https://doi.org/10.5089/9781475554761.001.
244 Taheri Haftasiabi et al., Iranian Journal of Economic Studies, 12(1) 2023, 217-248
Danisman, G. O., & Tarazi, A. (2024). ESG activity and bank lending during
financial crises. Journal of Financial Stability, 70, 101206.
https://doi.org/10.1016/j.jfs.2023.101206.
Drehmann, M., & Juselius, M. (2014). Evaluating early warning indicators of
banking crises: Satisfying policy requirements. International Journal of
Forecasting, 30(3), 759-780.
https://doi.org/10.1016/j.ijforecast.2013.10.002.
Estrella, A., & Mishkin, F. S. (1996). The yield curve as a predictor of U.S.
recessions. Current Issues in Economics and Finance, 2(7), 1-6.
https://www.newyorkfed.org/research/current_issues/ci2-7.html.
Faraji Dizaji, S., & van Bergeijk, P. A. G. (2013). Potential early warning signals
of banking crises in Iran. Applied Economics Letters, 20(13), 1217-1220.
https://doi.org/10.1080/13504851.2013.802089.
Fereidouni, H. G., & Masron, T. A. (2022). Geopolitical risks, sanctions, and
banks' lending behavior: Evidence from Iran. Journal of Banking & Finance,
135, 106394. https://doi.org/10.1016/j.jbankfin.2021.106394.
Friedman, M., & Schwartz, A. J. (1963). A monetary history of the United States,
1867–1960. Princeton University Press.
Gorton, G. (2018). Financial crises. Annual Review of Financial Economics, 10,
43-58. https://doi.org/10.1146/annurev-financial-110217-022552.
Greenwood, R., Hanson, S. G., Shleifer, A., & Sørensen, J. A. (2022). Predictable
financial crises. The Journal of Finance, 77(2), 863-921.
Guo, J., Li, X., & Li, Y. (2022). Hyperparameter optimization for LightGBM
using Bayesian optimization. IEEE Access, 10, 33050-33060.
https://doi.org/10.1109/ACCESS.2022.3159818.
Hamori, S., & Hamori, N. (2010). Introduction of exotic derivative products can
lower financial market volatility: Evidence from Asian emerging economies.
Applied Financial Economics, 20(19), 1493-1504.
https://doi.org/10.1080/09603107.2010.498352.
Hellwig, M. (2008). The causes of the financial crisis. CESifo Forum, 9(4), 12-
21. http://hdl.handle.net/10419/166335.
Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International
Conference on Document Analysis and Recognition, 1, 278-282.
https://ieeexplore.ieee.org/document/598994.
Hördahl, P., Sobrun, J., & Turner, P. (2016). Low long-term interest rates as a
global phenomenon. Bank for International Settlements Working Papers, No.
574. https://www.bis.org/publ/work574.pdf.
Huang, H.-C., & Chen, S.-L. (2015). Do yield spreads predict economic activities
in emerging economies? Emerging Markets Finance and Trade, 51(2), 302-
314. https://doi.org/10.1080/1540496X.2015.1011547.
Huang, J., Li, Y. F., & Xie, M. (2021). An empirical analysis of data
preprocessing for machine learning-based software cost estimation.
Information and Software Technology, 132, 106448.
https://doi.org/10.1016/j.infsof.2020.106448.
Taheri Haftasiabi et al., Iranian Journal of Economic Studies, 12(1) 2023, 217-248 245
Huynh, T., & Uebelmesser, S. (2024). Early warning models for systemic banking
crises: Can political indicators improve prediction? European Journal of
Political Economy, 81, 102484.
https://doi.org/10.1016/j.ejpoleco.2023.102484.
Imamvardi, Ghodratollah, and Jafari, Seyedeh Mahboobeh. (2019). The effect of
financial crises on the transmission of impulses and volatility between
developed financial markets and Iran. Financial Economics (Financial
Economics and Development), 13(47), 63-84. SID.
https://sid.ir/paper/229017/fa
Jordà, Ò., Schularick, M., & Taylor, A. M. (2015). Leveraged bubbles. Journal of
Monetary Economics, 76, S1-S20. DOI: 10.1016/j.jmoneco.2015.08.005
Joseph, A. (2020). Parametric inference with universal function approximators.
arXiv preprint arXiv:1903.04209.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. Y.
(2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In
Advances in Neural Information Processing Systems 30, 3146-3154.
https://www.researchgate.net/publication/378480234_LightGBM_A_Highl
y_Efficient_Gradient_Boosting_Decision_Tree.
Khajavi, S., & Ghadirian Arani, M. H. (2017). The role of management ability in
predicting financial crises. Journal of Financial Accounting Research, 9(4),
83-102. (In Persian). https://far.ui.ac.ir/article_22651.html?lang=en.
Khajavi, S., & Ghadirian Arani, M. H. (2018). The role of intellectual capital in
financial distress prediction. Journal of Accounting Advances, 10(2), 137-
166. https://doi.org/10.22099/JAA.2018.29323.1706
Khan, M. A., Ahmad, H., & Gee, C. S. (2016). Bank lending channel and
monetary policy transmission in Pakistan: Evidence from bank level data.
International Journal of Financial Studies, 4(2), 13.
https://doi.org/10.3390/ijfs4020013.
Kindleberger, C. P. (1978). Manias, panics, and crashes: A history of financial
crises. MacMillan
https://www.proquest.com/openview/8779fb634cfd78f9327c89f1e9b81268/
1?pq-origsite=gscholar&cbl=1818121 .
Kose, M. A., Nagle, P., Ohnsorge, F., & Sugawara, N. (2017). Debt and growth:
Is there a magic threshold? World Bank Policy Research Working Paper, No.
8786. https://doi.org/10.1016/j.physa.2017.05.
Krishnamurthy, A., & Muir, T. (2020). How credit cycles across a financial crisis.
Journal of Political Economy, 128(9), 3391-3447.
https://www.nber.org/system/files/working_papers/w23850/w23850.pdf.
Kumar, B. S., & Lakshmi, S. U. (2022). Dow Jones weekly returns using machine
learning with data analysis. International Journal of Research Publication
and Reviews, 2(1), 125-135. http://dx.doi.org/10.2139/ssrn.3741015.
Laborda, R., & Olmo, J. (2021). Volatility spillover between economic sectors in
financial crisis prediction: Evidence spanning the great financial crisis and
246 Taheri Haftasiabi et al., Iranian Journal of Economic Studies, 12(1) 2023, 217-248
COVID-19 pandemic. Research in International Business and Finance, 57,
101402. https://doi.org/10.1016/j.ribaf.2021.101402.
Laeven, L., & Valencia, F. (2008). Systemic banking crises: A new database. IMF
Working Papers, 08(224), 1-78.
https://www.imf.org/external/pubs/ft/wp/2008/wp08224.pdf.
Lundberg, S. M., Erion, G., & Lee, S.-I. (2020). From local explanations to global
understanding with explainable AI for trees. Nature Machine Intelligence,
2(1), 2522-5839. https://doi.org/10.1038/s42256-019-0138-9.
Luo, J., Chen, H., Zhang, Q., Xu, Y., Huang, H., & Zhao, X. (2018). An improved
grasshopper optimization algorithm with application to financial stress
prediction. Applied Mathematical Modelling, 64, 654-668.
https://doi.org/10.1016/j.apm.2018.07.044.
Mack, A., Bechtel, B., & Vasquez Cortes, P. (2017). The Net Stable Funding
Ratio and bank net interest margins. Journal of Banking & Finance, 85, 139-
159. https://doi.org/10.1016/j.jbankfin.2017.09.015.
Manganelli, S., & Popov, A. (2013). Financial dependence, global growth
opportunities, and growth revisited. Economics Letters, 120(1), 123-125.
https://doi.org/10.1016/j.econlet.2013.04.009.
Mbaye, S., Moreno Badia, M., & Chae, K. (2018). Bailing out the people? When
private debt becomes public. International Monetary Fund Working Paper,
18/141. https://doi.org/10.5089/9781484366392.001.
Mendoza, E. G., & Terrones, M. E. (2012). An anatomy of credit booms and their
demise. National Bureau of Economic Research Working Paper, No. 18379.
https://doi.org/10.3386/w18379.
Metawa, N., Pustokhina, I. V., Pustokhin, D. A., Shankar, K., & Elhoseny, M.
(2021). Computational intelligence-based financial crisis prediction model
using feature subset selection with optimal deep belief network. Big Data,
9(2), 100-115. https://doi.org/10.1089/big.2020.0158.
Mienye, D. I., & Jere, N. R. (2024). A Survey of Decision Trees: Concepts,
Algorithms, and Applications. IEEE Access, PP(99), 1-
1. https://doi.org/10.1109/ACCESS.2024.3416838
Minoiu, Camelia, Andres Schneider, and Min Wei (2023). “Why Does the Yield
Curve Predict GDP Growth? The Role of Banks,” Finance and Economics
Discussion Series 2023-049. Washington: Board of Governors of the Federal
Reserve System, https://doi.org/10.17016/FEDS.2023.049.
Minsky, H. P. (1972). Financial stability revisited: The economics of disaster. In
Board of Governors of the Federal Reserve System (Ed.), Reappraisal of the
Federal Reserve Discount Mechanism (Vol. 3, pp. 95-136). Washington,
D.C.
https://fraser.stlouisfed.org/files/docs/historical/federal%20reserve%20histo
ry/discountmech/fininst_minsky.pdf.
Mishkin, F. S. (1992). Anatomy of a financial crisis. Journal of Evolutionary
Economics, 2(2), 115-130. https://doi.org/10.1007/BF01213856.
Taheri Haftasiabi et al., Iranian Journal of Economic Studies, 12(1) 2023, 217-248 247
Mishra, A., & Burns, K. (2017). The effect of liquidity shocks on the bank lending
channel: Evidence from India. International Review of Economics &
Finance, 52, 55-76. https://doi.org/10.1016/j.iref.2017.09.011.
Mishra, V. K., Dasgupta, U., Patra, S., Pal, R., & Anand, K. (2022). A dynamic
two-level artificial neural network for estimation of parameters in combined
mode conduction-radiation heat transfer in porous medium: An application
to handle huge dataset with noise. Heat Transfer, 51(2), 1306-1335.
https://doi.org/10.1002/htj.22353.
Mousavi, S., & Shakeri, A. (2023). Macroeconomic determinants of credit risk in
Iranian banking sector: The role of oil prices and exchange rates.
International Journal of Financial Studies, 11(1), 15.
https://doi.org/10.3390/ijfs11010015.
Papík, M., & Papíková, L. (2023). Impacts of crisis on SME bankruptcy
prediction models’ performance. Expert Systems with Applications, 214,
119072. https://doi.org/10.1016/j.eswa.2022.119072.
Reinhart, C. M., & Rogoff, K. S. (2009). This time is different: Eight centuries of
financial folly. Princeton University Press. DOI:10.2307/j.ctvcm4gqx
Ristolainen, K., Roukka, T., & Nyberg, H. (2024). A thousand words tell more
than just numbers: Financial crises and historical headlines. Journal of
Financial Stability, 70, 101209. https://doi.org/10.1016/j.jfs.2023.101209.
Roohi Sara, M., Taherinia, M., Zalqi, H., & Sarlak, A. (2023). Presenting a Model
for Predicting Financial Crises in Iran's Capital Market Using Hybrid
Algorithms. Journal of Modern Research in Decision Making, 8(3), 104-131.
(in Persian). https://civilica.com/doc/1937009.
Samitas, A., Kampouris, E., & Kenourgios, D. (2020). Machine learning as an
early warning system to predict financial crises. International Review of
Financial Analysis, 71, 101507. https://doi.org/10.1016/j.irfa.2020.101507.
Sapiri, M. (2024). A qualitative analysis on the role of auditors in preventing
financial crises. Golden Ratio of Auditing Research, 4(2), 89-106.
https://doi.org/10.52970/grar.v4i2.393.
Schwartz, A. J. (1986). Real and pseudo financial crises. In F. Capie & G. E.
Wood (Eds.), Financial Crises and the World Banking System (pp. 11-31).
MacMillan. https://www.nber.org/system/files/chapters/c7506/c7506.pdf.
Shafiei, S., & Sabouri Deilami, M. H. (2009). Investigating the Impact of Iran's
Macroeconomic Variables on the Global Financial Crisis. Commercial
Review, New Series, 7(39), 2-16. (in Persian).
https://www.sid.ir/paper/457299/fa.
Shehata, G. A. B., & Bassiony, H. E. M. (2023). Contemporary economic crises
in the Arab region: Causes and repercussions. Journal of the Advances in
Agricultural Researches, 28(2), 520-540.
https://doi.org/10.21608/jalexu.2023.205315.1133.
Sufi, A., & Taylor, A. M. (2022). Financial crises: A survey. In G. Gopinath, E.
Helpman, & K. Rogoff (Eds.), Handbook of International Economics (Vol.
6, pp. 291-340). Elsevier. https://doi.org/10.1016/bs.hesint.2022.02.012.
248 Taheri Haftasiabi et al., Iranian Journal of Economic Studies, 12(1) 2023, 217-248
Taheri Bozkhaneh, S., Ehsani, M. A., Gilak Hakimabadi, M. T., & Farzin Vash,
A. (2019). Designing a Financial Crisis Early Warning System in Iran with
the Introduction of a New Index. Economic Analysis of Iranian Development,
7(1), 151-179. (in Persian). doi: 10.22059/jte.2017.59617.
Tang, J., Henderson, A., & Gardner, P. (2021). Exploring AdaBoost and random
forests machine learning approaches for infrared pathology on unbalanced
data sets. Analyst, 146(19), 5880–5891.
https://doi.org/10.1039/D1AN01085H.
Touzani, H., & Hirschi, M. (2021). Accuracy of XGBoost predictions with
hyperparameter tuning for tourism demand forecasting. Tourism Economics,
28(3), 679-699. https://doi.org/10.1177/13548166211004613.
Wang, J., Zeng, C., Han, X., Ma, Z., & Zheng, B. (2023). Detecting early warning
signals of financial crisis in spatial endogenous credit model using patch-size
distribution. Physica A: Statistical Mechanics and its Applications, 625,
128925. https://doi.org/10.1016/j.physa.2023.128925.
Wang, L., & Wu, C. (2017). A combination of models for financial crisis
prediction: Integrating probabilistic neural network with back-propagation
based on adaptive boosting. International Journal of Computational
Intelligence Systems, 10(1), 507-520.
https://doi.org/10.2991/ijcis.2017.10.1.34.
Yan, F., Chen, Z., Li, J., & Tang, L. (2019). A novel hybrid stock selection method
with stock prediction. Applied Soft Computing, 80, 820–831.
https://doi.org/10.1016/j.asoc.2019.04.041.
Zhang, H., & Li, J. (2018). A LightGBM approach for big data in machine
learning. IEEE Access, 6, 35877–35888.
https://doi.org/10.1109/ACCESS.2018.2837695.
Zhang, L., Aggarwal, C., & Qi, G.-J. (2019). Stock price prediction via
discovering multi-frequency trading patterns. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2141-2149. https://doi.org/10.1145/3292500.3330664.
Zhang, Z., & Yang, H. (2021). Methods to prevent overfitting and underfitting in
machine learning. Journal of Data Science, 19(4), 567-576.
https://doi.org/10.6339/21-JDS1018
Zhao, X., Chen, H., & Wang, Y. (2022). Data normalization strategies for
machine learning in financial applications. Journal of Financial Data
Science, 4(1), 15-32. https://doi.org/10.3905/jfds.2022.1.044