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Abstract– In this paper, based on the free vortex theorem and the momentum equation, a 
theoretical model to predict the pressure head distribution, the pressure coefficient, the end depth 
ratio (EDR), and flow discharge at the brink of free overfalls in channels of different cross sections 
with sub-critical flow is presented. Using available experimental and theoretical results of other 
investigators for rectangular, triangular, exponential, trapezoidal, inverted triangular (∆-shaped), 
inverted semicircular and also circular channels, the proposed method has been examined. The 
presented theory agrees well with the experiments.           
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1. INTRODUCTION 
 

If the flow at an abrupt end of a long channel is not submerged by the tailwater, it can be referred to as a 
free overfall. In channels with mild slopes, the approaching flow is sub-critical (Fig. 1). At the upstream 
control section with a critical depth yc, vertical accelerations are negligible and a hydrostatic pressure 
distribution can be safely assumed. At the brink section with depth yb, the pressure distribution is no 
longer hydrostatic, both due to the curvature of the flow and the aeration of the under nappe. Since there is 
a unique relationship between the critical depth and flow discharge, the ratio of the end-depth to the 
critical depth (EDR) offers a possibility to predict the flow discharge and study erosion at the brink of a 
free overfall. For steep slopes, where the approaching flow is super-critical, flow discharge is a function of 
end-depth, channel slope, and channel roughness. 

Fundamental experimental research was carried out by Rouse to estimate the end depth ratio (EDR), 
which was found to be 0.715 in mildly sloping confined rectangular channels [1]. Since then, numerous 
experiments have been conducted to estimate the EDR in channels with various shapes. Recently, Dey did 
a literature review of these investigations [2]. Other researchers have conducted a large number of 
experiments and given different theoretical approaches for a single or a few number of channels [3-21]. 

In this paper, a general theoretical model to predict the EDR and flow discharge in channels of 
different shapes with approaching sub-critical flow is presented. The proposed model is compared with the 
existing data and the theoretical approaches from the other researchers outlined above. 
 

2. PROPOSED MODEL 
 

Figure 1 shows a free overfall in a prismatic channel of constant bottom slope S0. At the end section, the 
approximate centrifugal pressure head at any streamtube can be computed by Newton’s law of 
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acceleration as yiui
2/(rig) [22]. Therefore, the pressure head at any streamtube (hi) can be estimated as 
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where g= acceleration of gravity; yi, ui and ri are flow depth, flow velocity and radius of curvature of 
streamtube i, respectively. The pressure head at the channel bottom of b-b section is 
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where uB and rB are the flow velocity and the radius of curvature at the channel  bottom of the end-
depth. Since hB is equal to zero, the radius of streamline curvature at the channel bottom (rB) can be 
obtained as uB

2/g. 

@

 
 
 
 
 
 
 
 
 
 

 
The same as Ali and Sykes [9], applying the Bernoulli’s theorem to the top (index S) and bottom (index 

B) streamlines in the brink section, the boundary velocities can be estimated as 
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where yc = critical depth at section c-c, H = yc+αVc
2/(2g) = yc+Dc/2 is specific energy at section c-c, D 

=A/T is hydraulic depth, A= flow area, T= top width of flow, α = energy correction coefficient which is 
assumed to be unity. Equation (4) gives rB = 2H. Using free-vortex theorem as uiri = uBrB = C, the radius of 
curvature at any point of section b-b can be found as 
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If yb is divided into n parallel streamlines, then for each streamline, Eq. (1) gives the pressure head as 
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In a general case, if y = yi, as shown in Fig. 1, the pressure force at the end section is equal to 
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The above procedure gives the coefficient of pressure distribution as 

)5.0/( 2
bb yFK γ=                                                                   (8) 

 
Applying the momentum equation to the control volume between sections c-c and b-b in Fig. 1, yields 

)(sin ccbbbc VVQWdxFF ββρθτ −=+−− ∫                                             (9) 
 
where γ= specific weight of fluid, F= hydrostatic load, τ= wall and bed shear stresses, W= gravity force of 
fluid in the control volume, ρ= mass density of fluid, Q= flow discharge, V= mean flow velocity, and β= 
Boussinesq coefficient, and subscripts c and b refer to sections c-c and b-b, respectively. For simplicity, in 
this analysis, β is assumed to be unity. 

For analytical simplicity, a state of pseudo-uniform flow is assumed within the control volume, where 
wall and shear stresses are compensated by the stream-wise component of gravity force of fluid. In sub-
critical flows, an error of about 1% in estimation of the EDR due to the exclusion of wall and bed shear 
stresses is obtained [23]. Rajaratnam and Muralindhar [7] have shown that this error is about 3% in 
horizontal and mildly sloping channels. However, in sub-critical flow for low flow rates, the distance 
between sections c-c and b-b is of the order of (3~4) yc [22, 23], and as such is sufficiently small for this 
assumption to be accurate for a first order approximation. Using the above assumptions, Eq. (9) can be 
simplified as 

                   Fc – Fb = ρQ(Vb-Vc)                                                                     (10) 
 

Introducing Fc = γ(A y )c and Fb=γK(A y )b in Eq. (10), one gets 
 

)()()( cbbc VVQyAKyA −=− ργγ                                                      (11) 
 

where y = depth of the centroid of a cross section below the flow surface. Using V=Q/A and γ=ρg, Eq. 
(11) can be simplified as 
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 In the critical section, the flow discharge can be computed as 
 

 cc TAgQ // 32 =                                                                   (13) 
 

Substituting Q from Eq. (13) into Eq. (12), one gets 
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Table 1 shows the calculated values of A, y , T and K of different channels. In this table, b= bottom 
width of rectangular or trapezoidal channel, d = channel diameter, m= side slope of trapezoidal or 
triangular channel, N = my/b, z = height of the inverted triangular channel, c1 and c2 = constant 
coefficients which define the channel shape, (e. g., in rectangular channels c1=b, c2=0 and in triangular 
channels c1 = 2m, c2 = 1), and ŷ = y/d in circular channels or ŷ = y/z in inverted triangular channels. ψ(ŷ) 
and η(ŷ) are defined [16, 20] as 

 
ψ(ŷ) = arcsin(2ŷ) + 2ŷ(1-4ŷ2)0.5                                                          (15) 

 
η(ŷ) = arcoss(1-2ŷ) – 2(1-2ŷ)[ŷ(1-ŷ)]0.5                                                  (16) 

 
Using Eqs. (14) and (13), the EDR, and consequently, the flow discharge of various channel shapes have 
been computed. The results for rectangular, triangular and exponential channels are presented in Table 2. 
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In this table, the possible differences of results between the experiments and the proposed model are also 
presented. 

The presented method can be used for the super-critical flow.  In this case, using Manning's equation 
and a control volume between the brink and uniform flow sections, flow discharges as a function of the 
end-depth and channel slope can be estimated. 
 

Table 1. Geometric parameters and pressure coefficient for various channels 

Cross-Section A y  T K 

Rectangular by y/2 b 0.3033 

Triangular my2 y/3 2my 0.3558 

Exponential 21 c1

2

c y
1 c

+

+
 

2

y
2+c

 2c
1yc  0.3366 

Nc=0 Nc=∞ 
Trapezoidal by(1+N) 

2N+3 y
6(1+N)

 b(1+2N) 
0.3033 0.3558 

ŷc≈0 ŷc=1 
Inverted triangular 2ˆ ˆ(2-y)y z

3
 

2ˆ ˆ3y-y z
ˆ6-3y

 
ˆ2(1-y) z

3
 

0.3033 0 

ŷc≈0 ŷc=0.5 Inverted 
semicircular 0.25d2ψ(ŷ) 

2 1.5ˆ1-(1-4y )ˆ[y- ]d
ˆ3ψ(y)

 d(1-4ŷ 2)0.5 
0.3033 0 

ŷc≈0 ŷc=1 
Circular 0.25d2η(ŷ) 

1.5ˆ ˆ1 8 [y(1-y)]ˆ{y- + }d
ˆ2 3 η(y)

 2d[ŷ(1-ŷ)]0.5 
0.3033 0 

 
3. ANALYSIS OF THEORETICAL AND EXPERIMENTAL RESULTS 

 
a) Rectangular, triangular and exponential channels 

 
In rectangular channels, the proposed method gives the values of 0.7016 and 0.3033 for EDR and K, 

respectively. According to Table 2, the values of EDR reported by other investigators have a slight 
difference (1% to 2%) with the proposed method. The differences between the other formulas with the 
proposed method are about –1.5% to 3%. In triangular channels, the values of EDR and K by the proposed 
method are 0.8051 and 0.3558, respectively. Here, all experiments and methods confirm the proposed 
method. Anderson’s method is an exception. In exponential channels, the proposed method gives EDR 
and K equal to 0.7641 and 0.3366, respectively. This value of EDR has about a 1% to 4% difference with 
the experimental results reported by other researchers. The differences between the proposed flow 
discharge with the experimental results are from – 4.5% to 2%; Anderson’s method gives a difference of 
about –7.5%. 
 
b) Trapezoidal channel 
 

Figure 2a illustrates the variation of EDR with myc/b for the trapezoidal channels. It is shown that the 
experimental results of Diskin [3] and Pagliara and Viti [25] confirm the proposed method, but the 
experimental data of Keller and Fong [26] have some differences with the results of the presented theory. 
In addition, the theoretical approach given in this paper is in good agreement with the theoretical 
approaches of Murty Bhallamudi [11]. Ali and Sykes’s [9] theory, in which the free vortex theorem has 
been used, has some differences with the proposed method.  
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Table 2. Comparison between the EDR and flow discharge by the proposed model and experimental results of 
other investigators in rectangular, triangular, and exponential channels 

Cross section Investigator (s) EDR=yb/yc % Difference Flow discharge (Q) % Difference Remark 

This study 0.7016 - 1.7016g0.5byb
1.5 - U 

Rouse [1] 0.715 -1.87 1.654g0.5byb
1.5 2.88 C 

0.715 -1.87 1.654g0.5byb
1.5 2.88 C Rajaratnam & 

Muralidhar [5] 0.705 -0.48 1.6893g0.5byb
1.5 0.73 U 

Hager [10] 0.696 0.80 1.7222g0.5byb
1.5 -1.20 U 

Murty [11] 0.705 -0.48 1.6893g0.5byb
1.5 0.73 U 

Rectangular 

Anderson [24] 0.694 1.10 1.7297g0.5byb
1.5 -1.62 U 

This study 0.8051 - 1.2158g0.5myb
2.5 - U 

Rajaratnam & 
Muralidhar [5] 0.795 1.27 1.2548g0.5myb

2.5 -3.11 U 

Ali & Sykes [9] 0.798 0.89 1.243g0.5myb
2.5 -2.19 U 

Murty [11] 0.795 1.27 1.2548g0.5myb
2.5 -3.11 U 

Ahmad [14] 0.802 0.39 1.2276g0.5myb
2.5 -0.96 U 

Triangular 

Anderson [24] 0.762 5.66 1.395g0.5myb
2.5 -12.85 U 

This study 0.7642 - 
21.5 c0.5

1 b
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U= unconfined and C= confined  
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b) Variation of Nb= myb/b with Qm1.5/(g0.5b2.5) in       
trapezoidal channels 

Fig. 2. a) Variation of EDR = yb/yc with Nc= myc/b@

 
Figure 2b illustrates the variation of myb/b with Qm1.5/(g0.5b2.5). From this figure, it can be seen that the 
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experimental data of Diskin [3], Pagliara and Viti [25], Keller and Fong [26], and also the theoretical 
approaches of Ali and Sykes [9], and Murty Bhallamudi [11] are in good agreement with the proposed 
method. In trapezoidal channels, the coefficient of pressure distribution (K) changes from 0.3033 for 
rectangular channels to 0.3558 for triangular channels. 

 
c) Inverted triangular channel 

 
For inverted triangular channels, the dependence of EDR on yc/z is shown in Fig. 3a. Up to yc/z=0.60, 

the EDR varies almost linearly from 0.701 to 0.686. The curve rises sharply from yc/z=0.80. The values of 
EDR from the proposed method are close to the experimental data of Dey and Ravi Kumar [18] with an 
accuracy of ±5%. The variation of yb/z with Q/(g0.5z2.5) is presented in Fig. 3b. The experimental data of 
Dey and Ravi Kumar [18] are agreeable with the proposed method with an accuracy of ±5%. In addition, 
the computed curve agrees well with their theory. The pressure distribution coefficient (K) is equal to 
0.3033 for yc/z≈0 (same as a rectangular channel), but is equal to zero for yc/z=1. 
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Fig. 3. a) Variation of EDR=yb/yc with yc/z,                           b) Variation of yb/z with Q/(g0.5z2.5) in inverted 

………………………………………………………………..triangular channels@
d) Inverted semicircular channel 
 

The dependence of EDR on yc/d is shown in Figure 4a. Up to yc/d=0.40, the EDR has a value of about 
0.7. The results from the present study agree satisfactorily with the experimental data of Dey [20]. Also, 
the computed curve agrees well with Dey’s theory. Equation (8) in Sterling & Knight’s work [13] gives 
the EDR=0.75, which slightly overestimates the EDR from the proposed method. Figure 4b can be used to 
estimate the flow discharge from the measured end-depth. The values of K are between 0.3033 and zero in 
the range of 0<yc/d<0.5, which are the same as in inverted triangular channels. 
 
d) Circular channel 
 

The variation of EDR with yc/d is shown in Fig. 5a. In the range of 0.10<yc/d<0.82, the curve 
obtained from the model lies a little above the experimental data of Rajaratnam and Muralidhar [6]. It is in 
good agreement with the data of Sterling and Knight [13] and agrees fairly well with the data of Smith [4]. 
The mean value of the EDR estimated from the experimental data of Smith, Rajaratnam & Muralidhar and 
also Sterling & Knight are 0.772, 0.725 and 0.743, respectively. The proposed model gives the mean value 
of EDR around 0.756 in the range of 0<yc/d<0.7. This result is within –2%, +4% and +2% of the mean 
value of EDR observed by Smith, Rajaratnam & Muralidhar and Sterling & Knight, respectively. The 
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computed curve agrees very well with Dey’s theory [15]. The variation of yb/d with Q/(g0.5d2.5) is shown in 
Fig. 5b. The experimental data of Smith, Rajaratnam and Muralidhar and also Sterling and Knight agree 
well with the obtained curve for Q/(g0.5d2.5)<0.50. However, the experimental data of Smith for large 
values of Q/(g0.5d2.5) are underestimated by the proposed method. In addition, the computed curve agrees 
well with Dey’s theory [15]. The pressure coefficient (K) is equal to 0.3366 for yc/d≈0 (same as an 
exponential channel), and decreases when critical depth yc increases and reaches zero for yc/d=1. 
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     Fig. 4. a) Variation of EDR=yb/yc with yc/d 
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b) Variation of yb/d with Q/(g0.5d2.5) in  
circular channels 

Fig. 5. a) Variation of EDR=yb/yc with yc/d@
 

Fig. 5a shows that at low depths of flow, the proposed method and also Dey’s theory are unable to 
give the proper results. Based on experiments, Sterling & Knight [13] gave an interesting hypothesis that 
the hydraulic behavior of a circular channel at low flow depths is similar to a trapezoidal channel and none 
of the theories that account for the variation of the EDR can be successfully applied to a circular channel. 
Experimental data on Fig. 2a and Fig. 5a confirm their idea. It can be added that the hydraulic behavior of 
an inverted semicircular channel for the variation of EDR with yc/d (Fig. 4a) is the same as that of an 
inverted triangular channel (Fig. 3a). In this case, both the proposed and Dey’s theories can be 
successfully used in these channels. 

The existence of abrupt discontinuity in the EDR at yc/d>0.73 and discharge relationship at   
Q/(g0.5d2.5) > 0.50 for the experimental data of Smith [4] in Fig. 5 needs further clarification. In a circular 
channel, when yn/d is greater than 0.82 (yn is the uniform flow depth), it is possible to have two different 
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depths for the same discharge [22, 24]. Since in a mildly sloping channel the critical depth is less than the 
uniform flow depth, one can expect that for some lower depths where yc/d is a bit less than 0.82, the 
conduit simply flow full. Under these conditions, cross-waves in the water surface can exist and accurate 
measurements of the flow is practically impossible. In addition, Smith [4] indicated that the exact point at 
which the discontinuity occurs varies with the channel slope. A steeper slope can delay the discontinuity 
to a value yc/d greater than 0.73 or Q/(g0.5d2.5) > 0.50. It seems that a similar condition might occur in any 
gradually closing conduit. Additional tests are required to establish the correct discharge relationship in 
these channels.  
 

4. CONCLUSIONS 
 
Based on the free vortex theorem the pressure distributions at the brink depth and end-pressure coefficient 
(K) of the free overfall in horizontal or mildly sloping channels with different cross sections have been 
theoretically estimated. Using the momentum equation, the end depth ratio (EDR) is obtained. For design 
purposes, charts have been constructed to facilitate the prediction of flow discharge when EDR is known. 
The proposed method has been verified with the available experimental and theoretical results of other 
investigators. The results showed that: 

-The EDR in rectangular, triangular, and exponential channels are 0.7016, 0.8051, and 0.7642, 
respectively. The proposed model is valid in trapezoidal channels with myb/b<1, in inverted triangular 
with yb/z<0.5, in inverted semicircular with yb/d<0.3, and in circular channels with yb/d<0.5 within ±5% 
error with the experimental results and agrees very well with the theoretical approaches of other 
investigators. 
-The presented theory, as well as some complicated theories of other investigators (e.g., 15, 18, 20) give 
almost the same results. In addition, the proposed theory is capable of predicting the pressure 
distribution of the brink section. 
-None of the existing theories which account for the determination of EDR can be successfully applied 
to a circular channel. A circular channel at low flow depths resembles a trapezoidal channel. The 
hydraulic behavior of an inverted semicircular channel is similar to an inverted triangular channel.  
-The writers believe that the presented method can also be used for the super-critical approaching flow. 
In the latter case, using Manning’s equation and the control volume between the end-depth and uniform 
flow depth, flow discharge as a function of the end-depth and channel slope can be easily estimated.  
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