| 
		Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19  (6), 716–723. https://doi.org/10.1109/TAC.1974.1100705Ali, A. H., Thind, S., & Sharma, H. (2014). Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart, and GreenSeeker optical sensor in north-western India. Field Crops Research, 161 , 11-15. https://doi.org/10.1016/j.fcr.2014.03.001Alsina, I., Duma, M., Dubova, L., & Dagis, S. (2016). Comparison of different chlorophylls determination methods for leafy vegetables. Agronomy Research, 14(2), 309-316.
 Baresel, J. P., Rischbeck, P., Hu, Y., Kipp, S., Barmeier, G., Mistele, B., & Schmidhalter, U. (2017). Use of a digital camera as an alternative method for non-destructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat. Computers and Electronics in Agriculture , 140 , 25-33. https://doi.org/10.1016/j.compag.2017.05.032Basyouni, R., Dunn, B., & Goad, C. (2015). Use of non-destructive sensors to assess nitrogen status in potted poinsettia (Euphorbia pulcherrima L.  (Wild. ex Klotzsch)) production. Scientia Horticulturae-Amsterdam,  192, 47-53. https://doi.org/10.1016/j.scienta.2015.05.011Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., Yue, S., Cheng, S., Ustin, S. L., & Khosla, R. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112 , 54-67. https://doi.org/10.1016/j.compag.2014.08.012Gianquinto, G., Orsini, F., Fecondini, M., Mezzetti, M., Sambo, P., & Bona, S. (2011). A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. European Journal of Agronomy , 35 (3), 135-143. https://doi.org/10.1016/j.eja.2011.05.005Larijani, M., Farokhi-Teymorlou, R. (2012). Evaluation of image processing technique in estimation of nitrogen and plant yield and comparison with conventional methods. Agricultural Machinery, 1(2), 84-91.
 Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy,  28(4), 614-624. https://doi.org/10.1016/j.eja.2008.01.005Li, M., Im, J., & Beier, C. (2013). Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over huntington wildlife forest. GIScience and Remote Sensing, 50 (4), 361–384. https://doi.org/10.1080/15481603.2013.819161Liaqat, M. U., Cheema, M. J. M., Huang, W., Mahmood, T., Zaman, M., & Khan, M. M. (2017). Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Computers and Electronics in Agriculture , 138 , 39-47. https://doi.org/10.1016/j.compag.2017.04.006Meng, Q., Cooke, W., & Rodgers, J. (2013). Derivation of 16-day time-series NDVI data for environmental studies using a data assimilation approach. GIScience Remote Sensing, 50(5), 500–514. https://doi.org/10.1080/15481603.2013.823733
 Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R.V. (2013). A review of methods for sensing the nitrogen status in plants. advantages, disadvantages and recent advances. Sensors , 13(8), 10823-43. https://doi.org/10.3390/s130810823Ozdemir, I. (2014). Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using Rapid Eye data. GIScience and Remote Sensing, 51(3), 288–300. https://doi.org/10.1080/15481603.2014.912876
 Padilla, F. M., Peña-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2014). Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. European Journal of Agronomy,  58, 39-52. https://doi.org/10.1016/j.eja.2014.04.006Padilla, F. M., Pe˜na-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2016). Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. European Journal of Agronomy, 73 , 83–97. https://doi.org/10.3390/s18072083Padilla, F. M., Pe˜na-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2017). Determination of sufficiency values of canopy reflectance vegetation indices for maximum growth and yield of cucumber. European Journal of Agronomy, 84 , 1-15. https://doi.org/10.1016/J.EJA.2016.12.007Schmidt, J., Beegle, D., Zhu, Q., & Sripada, R. (2011). Improving in-season nitrogen recommendations for maize using an active sensor. Field Crops Research, 120 , 94-101. https://doi.org/10.1016/j.fcr.2010.09.005Sharma, L. K., Bu, H., & Franzen, D. W. (2014). Comparison of two ground-based active-optical sensors for in-season estimation of corn (Zea mays, L .) yield. Journal of Plant Nutrition, 39 (7), 957-966. https://doi.org/10.1080/01904167.2015.1109109Sharma, L. K., Bu, H., Franzen, D. W., & Denton, A. (2016). Use of corn height measured with an acoustic sensor improves yield estimation with ground-based active optical sensors. Computers and Electronics in Agriculture, 124 , 254-262. https://doi.org/10.1016/j.compag.2016.04.016Wang, L., Zhou, X., Zhu, X., & Guo, D.W. (2017). Estimated of leaf nitrogen concentration in wheat using MK-SVR algorithm and satellite remote sensing data. Computers and Electronics in Agriculture,  140, 327-337. https://doi.org/10.1016/j.compag.2017.05.023Wu, J., Wang, D., Rosen, C. J., & Bauer, M. E. (2007). Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research,  101, 96–103. https://doi.org/10.1016/j.fcr.2006.09.014Yang, C. M., Liu, C. C., & Wang, Y. W. (2008). Using Formosat-2 satellite data to estimate leaf area index of rice crop. Journal of Photogrammetry and Remote Sensing, 13 (4), 253–260. https://doi.org/10.6574/JPRS.2008.13(4).3Yuan, F., Wang, C., & Mitchell, M. (2014). Spatial patterns of land surface phenology relative to monthly climate variations: US Great Plains. GIScience and Remote Sensing, 51 (1), 30–50. https://doi.org/10.1080/15481603.2014.883210 |