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Abstract– In this paper, a genetic algorithm (GA) method is employed to determine the location 
of the critical non-circular slip surface giving the minimum factor of safety in conjunction with the 
magnitude of interslice forces and their points of application. A generalized method of slices 
satisfying both force and moment equations of equilibrium is adopted for stability calculations. 
The GA adopted here minimizes an objective function that has three terms, namely, error in 
equilibrium equations, safety factor and a penalty term. By minimizing this objective function, a 
critical slip surface (with minimum safety factor) is obtained that satisfies both force and moment 
equations of equilibrium and is kinematically admissible as well. No assumption is made regarding 
the location of the thrust line where its position is determined through the GA process. 
Furthermore, all slip surfaces are kinematically admissible and physically acceptable by 
considering a suitable penalty term.  The proposed algorithm is applied to a number of problems 
and the results are compared with previous work and discussed in detail.            
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1. INTRODUCTION 
 

The conventional limit equilibrium method of slope stability analysis consists of two steps; calculation of 
the safety factor of a particular trial slip surface, and the other, searching for a critical slip surface with the 
lowest safety factor value. During the past 30 years considerable attention has been given to the first step. 
Methods by Bishop [1], Fredlund and Krahn [2], Janbu [3], Lowe and Karafiath [4], Morgenstern and 
Price [5], and Spencer [6] are among the available methods. Only a small amount of research has been 
developed for the second step. The use of optimization techniques in locating the critical slip surface is 
becoming increasingly popular among researchers. The traditional mathematical optimization methods 
that have been used include dynamic programming [7], conjugate-gradient [8], random search [9-12] and 
simplex optimization [13-15]. More recently, Pham and Fredlund [16] applied dynamic programming to 
stability analysis of slopes. In their approach, stresses acting along the critical slip surfaces were computed 
using a finite element analysis, thus eliminating the need to describe the relationship between interslice 
forces. Also, Krahn [17] presented a finite element based limit analysis. In that paper, various limit 
equilibrium methods were compared and discussed in detail, and it was shown that all limit equilibrium 
methods may fail to satisfy equilibrium conditions for very steep slip surfaces. For instance, with the GLE 
(Generalized Limit Equilibrium) method it is possible that the interslice forces would have to act outside 
the slice for the slice itself to be in moment equilibrium. Similarly, fixing the location of the thrust line in 
the Generalized (Rigorous) Janbu Method may result in a convergence problem. In order to overcome this 
restriction, in the approach presented in subsequent sections the Generalized Janbu Method was adopted, 
however, location of the thrust line was not fixed apriori. In other words, the thrust line could assume any 
                                                           
∗Received by the editors June 12, 2004; final revised form June 12, 2005. 
∗∗Corresponding author 
 
 



S. Solati / G. Habibagahi 
 

Iranian Journal of Science & Technology, Volume 30, Number B1                                                                          February 2006 

2 

location along the side of slices, with its optimum location being determined during the optimization 
process. 

The genetic algorithm (GA) differs from other search methods in that it searches among a population 
of points and works with a coding of the parameter set rather than the parameters themselves. It also uses 
probabilistic rather than deterministic transition rules. Goh [18] presented GA to locate the critical 
"circular" slip surface. 

This paper presents a method for determining the critical "non-circular" slip surfaces using GA, 
satisfying both force and moment equations of equilibrium. Fundamental formulations of the generalized 
(rigorous) Janbu approach were adopted as the limit equilibrium method. The proposed method is capable 
of determining the interslice forces and their location without any apriori assumption, as well as the safety 
factor. The robustness of the proposed approach is illustrated via some example problems and the results 
are compared with conventional methods. 
 

2. GENETIC ALGORITHM 
 
The genetic algorithm developed by Holland [19], relies on the principle of Darwin's theory of survival of 
the fittest. Solutions to a problem can be obtained through evolution. The algorithm is started with a set of 
possible solutions. The set of possible solutions is called “population”. Each possible solution within the 
population is called a “chromosome”. Each chromosome is assigned with a fitness value based on the 
fitness function. Solutions from one population are taken and used to construct a new population so that 
the new population (offspring) will be fitter than the old one. This process is repeated until certain criteria 
are met. For example, the reproduction will stop when the total number of generations reaches a specified 
maximum value. The basics of GA are described in the following sections: 
 
a) Coding 
 

The first step in GA is to translate the real problem into biological terms. For this purpose, all the 
variables of the problem are represented by so-called "chromosomes" and the process is called coding. 
Binary coding is the simplest and most common one. In binary coding, each chromosome is a string of 
bits, 0 or 1. 
 
b) Selection 
 

In order to reproduce offspring, parents need to be selected. The most commonly used methods are 
the roulette wheel selection and rank selection. In order to minimize an objective function, the 
chromosomes are ranked in a descending order based on their fitness values. Next, a probability value, jP , 
is assigned to each chromosome j=1,2,…,n, giving higher probability to chromosomes of lower fitness 
function value. The worst chromosome after ranking is j=1, and its probability value 1p  will be the 
smallest. The best chromosome is j=n, and its probability value, np , will be the largest. The probability 
values for other chromosomes are linearly interpolated as 
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, is set to unity and the average of 

probability values for all chromosomes is then 1/n. For this purpose, a value of c/n can be assigned to np , 
so that the probability value for the best chromosome is c times the average, where c>1. The 
corresponding probability value for the worst chromosome 1p is then (2-c)/n. To ensure that all 
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probability values are nonnegative, c should be less than or equal to 2. Using the smaller value of c will 
result in a more robust but slower search [20]. 
 
c) Crossover 
 

The crossover strategy determines how the parent chromosomes are combined in order to generate 
offspring. Crossover is applied to randomly selected pairs of parents with a probability equal to the 
specified crossover rate. Single-point and two-point crossover, the most popular operators, are explained 
below. 
 
 Single-point crossover: One crossover point is randomly selected along the parent chromosomes. The 
binary string from the beginning of parent 1 to its crossover point is copied to the new offspring in the 
same positions. The rest (from the same crossover point of parent 2 to its tail) is copied to the new 
offspring in the same positions. See example bellow 
 

11001 010 ; 1101 111                11001111 ; 1101010 
 
Two-point crossover: Two crossover points are selected. The binary string from the beginning of parent 
one to its first crossover point and the binary string from its second crossover point to its end are copied to 
the new offspring. The rest (the first crossover point of the other parent to its second crossover point) is 
copied to the new offspring in the same fashion. See example below 
               

11 0010 10 ; 11 011111              11011110 ; 11001011 
 
Similarly, crossover types with more than two points can be used. 
 
d) Mutation 
 

The final genetic operator is that of mutation. The process involves randomly flipping a bit from 0 to 
1 or vice versa. A new strategy developed by Pham and Karaboga [21] was used in this study. In this 
strategy, the mutation probability for each bit in a chromosome depends on the fitness of the chromosome, 
the generation number and the position of the bit along the particular gene of chromosome. 

The mutation rate for bit k (k=1 to cl ) of chromosome i  is computed as follows: 
 

mutrate ( ) d
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Where 

d=(1-fit( i ))( minminmax ) mutratemutratemutrate +−  
 

=cl chromosome length, maxgen = the maximum number of optimization generation to be tried, g = 
current generation number, mutratemax = maximum mutation rate, mutratemin = minimum mutation rate, 
fit(i) = fitness of chromosome i. 

In short, genetic algorithm is a stochastic process that exhibits variable performances. To enhance the 
performance, analysis based on different combinations of various parameters such as population size, 
crossover rate/type, mutation rate and selection methods are necessary. Further details on GA were 
presented by Goldberg [22] and Michalewicz [23]. A flow chart depicting the major operations of GA is 
shown in Fig. 1. In the next section, basic formulations for a generalized non-circular surface satisfying 
both moment and force equations of the equilibrium are derived and the methodology employed to solve 
the problem using GA is described in detail. 
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Fig. 1. Flow chart for a genetic algorithm 
 

3. DERIVATION OF EQUILIBRIUM EQUATIONS FOR  
SLOPE STABILITY ANALYSIS 

 
Figure 2 shows a potential sliding mass along a trial slip surface. The sliding mass is subdivided into a 
number of vertical slices. Each slice is subjected to a general system of forces as shown in Fig. 3. 
 

 
Fig. 2. Typical  potential sliding mass Fig. 3. Forces acting on the boundaries of a single slice 

  
The thrust line connects the points of application of the interslice forces. The location of this thrust 

line is determined using a generalized method of analysis that satisfies both force and moment equations 
of equilibrium.  

The equilibrium shear stress along the shear surface is given by the equation 
 

S
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Where fτ  is the shear strength and SF  is the safety factor. 
Combining Eq. (1) with the Mohr-Coulomb failure criteria yields 
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ϕτ ′−+′= tan)([1 u
l
pc

FS
]                (2) 

where   c′= Effective cohesion value. 
            ϕ′= Effective friction angle. 
             l  = The slice base length. 
             u = Pore water pressure.  
Vertical equilibrium for a typical slice gives 
 

αα sincos mRL SPXXW +=−+               (3) 
From Eq. (3) 

αα tansec)( mRL SXXWP −−+=                        (4) 
 
By substituting Eq. (4) in Eq. (2), and after rearranging 
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Where   αm  is defined as: 

ϕααα tansin1cos
SF

m +=                                  (6) 

 
Resolving the forces acting on the slice in a tangential direction to the base of the slice 
 

αα sin)(cos)( RLRLm XXWEES −++−=                                 (7) 
 
The summation of the normal interslice forces should be zero, that is 
 

∑ =− 0)( RL EE                           (8)         
 
Substituting ( RL EE − ) from Eq. (7) into Eq. (8) yields 
 

∑ =−+− 0tan)(sec αα RLm XXWS                            (9) 
 
By inserting the value of mS  from Eq. (5) into Eq. (9), we get 
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The summation of the moments about the center of the base of each slice must be zero. Therefore, for 
infinitesimal slices 

0)(tan =−+−∑ b
htEEEX R

LRtRR α                             (11) 
 
where tα = the angle between the line of thrust on the right side of the slice and the horizontal direction 
(Fig. 3).                                                

Equations (10) and (11) are considered to be the fundamental equations which should be solved 
simultaneously to determine both the location of the thrust line for every slice and the safety factor SF .   

 
4. APPLICATION OF GA FOR SOLVING THE EQUILIBRIUM EQUATIONS 

 
In order to satisfy both the force and moment equations of equilibrium simultaneously, the following 
objective function was selected: 
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 Objective function= 22 )11.()10.( EqEq +                (12) 
 
Using a GA technique, the unknowns are subjected to the following constraints: 
 

 (lower limit) ≤≤ lastsliceRX )( (upper limit)           (13) 
 

 (lower limit) ≤≤ lastsliceRE )( (upper limit)                                   (14) 
 

 (lower limit) ≤≤ r  (upper limit)                     (15) 
 

 (lower limit) ≤≤ SF (upper limit)                   (16)   
 
where lastsliceRX )(  and lastsliceRE )( , respectively are the shear and normal forces on the side of the last 
slice , r  is a fraction of height on the right-side of each slice describing the point of application of the 
interslice forces (position of thrust line), and sF  is the safety factor for a particular slip surface.  Upon 
minimization of the objective function of the form presented, both terms (Eqs. (10) and (11)) are forced to 
approach zero, thus satisfying both moment and force equations of equilibrium altogether. The square 
power employed in Eq. (12) avoids the error of each term to be cancelled out by the other if they are of 
opposite signs. The selected range for the constraints is as follows: 
 

( RX )lastslice and ( RE )lastslice (0, 0.01), r  (1/6, 5/6) and sF  (0.1, 3) 
 
The GA was used to minimize the objective function given by Eq. (12) subjected to the constraints given 
by Eq. (13) through Eq. (16). A computer program in Delphi was developed to study the non-circular slip 
surface. The GA solves for the unknowns in expression 12. 

To examine the concept and for the sake of comparison, the following example presents the results 
obtained from the proposed method, along with those suggested using other equilibrium methods. 
 
Example 1: Figure 4 shows an example problem involving both circular and composite failure surfaces. 
The results for two cases of homogeneous soil with and without a piezometric line are presented in Table 1. 
Various methods of limit equilibrium were compared for this case by Fredlund and Krahn [2], and the 
reported values of the safety factor are given in Table 1. The GA parameters used in this example are: 
number of generations=2000, population size=50, crossover rate=1 with a single point crossover. Ten runs 
were made with different initial seeds resulting in different starting populations. 

 
Table 1. Comparison of safety factor for the example problem 

 

Method 
 

Case 1 
Simple 2:1 slope 12m high 

o20=ϕ ,c=18.86 kPa 

Case 2 
Same as 1 except with a 

piezometric line 

Ordinary 1.928 1.693 
Simplified Bishop 2.080 1.834 

Spencer 2.073 1.830 
Janbu's simplified 2.041 1.827 
Janbu's rigorous 2.008 1.776 

Morgenstern-Price 2.076 1.833 
This study 2.079 1.840 

 
Figure 5 shows the best fit in each population versus the number of generations. Although the basic 
algorithm employed for the stability analysis in the proposed method was based on Janbu’s rigorous 
method, it is interesting to note that the results yield a somewhat higher safety factor than that reported by 
Fredlund and Krahn [2],  adopting the same method of stability analysis. The reason lies in the fact that 
Fredlund and Krahn [2] assumed a thrust located at an arbitrary distance of one third from the bottom of 
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each slice. The choice of an arbitrary thrust line does not necessarily satisfy the moment equation of 
equilibrium for the “last slice” as reported by Sarma [24], unless necessary adjustments are made by a trial 
and error procedure. In the proposed approach, the problem is resolved through the necessary constraints 
applied to the last slice presented by Eqs. (13) and (14). Furthermore, the position of the thrust line is 
obtained automatically while varying within a distance of 1/6 to 5/6 from the bottom of each slice. 

Fig. 4. Cross section of slope in Example1 
 

Fig. 5. The best fit versus the number of generations in Example 1 
 

5. APPLICATION OF GA TO FIND THE CRITICAL  
NON-CIRCULAR SLIP SURFACE 

 
To search for the critical slip surface, the objective function must meet three requirements. First, it must 
satisfy the equilibrium condition by minimizing the error in the equilibrium equations (Eq. (12)). Second, 
it must find the slip surface with the minimum factor of safety, and finally, the slip surface must satisfy the 
conditions of kinematical admissibility, i.e. a failure mechanism is obtained. Therefore, the search for the 
critical slip surface is mathematically expressed as the minimization of the objective function defined by 
 

Objective function= 22 )1())12.(1ln( ψ++++ EqFs       (17) 
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Since all the terms in Eq. (17) are positive, during the optimization procedure all the terms are minimized 
simultaneously. In order to achieve this goal, the terms in the objective function must have the same order 
of magnitude. Otherwise, one term may outweigh the other, resulting in poor minimization of the term 
with a smaller order of magnitude. To achieve this goal, various forms of the objective functions were 
tested and it was concluded that the form presented by Eq. (17) could effectively meet the requirements. 
The third term in Eq. (17) is a penalty term to force the search toward kinematically admissible slip 
surfaces. This point is further discussed in subsequent paragraphs.  

To make the slip surface kinematically admissible, the segments must meet the following criteria: 
 

1321 −>>>> Nαααα K                               (18) 
 
If the above criterion is not satisfied a failure mechanism can not be attained. Furthermore, Ching and 
Fredlund [25] demonstrated what is known as “mα” problem in stability analysis. The problem is that the 
normal force at the base of a slice sometimes becomes unreasonably large due to unrealistic values 
computed for mα using Eq. (6). The difficulties associated with the magnitude of mα are mainly the result 
of an inappropriate assumed shape for the slip surface. To alleviate the problem, Ching and Fredlund [25] 
suggested limiting the inclination of the slip surface in the passive and active zones by 
 

2
45 φα −=all     For the passive zone                  (19) 

 

2
45 φα +=all      For the active zone                  (20) 

 
Based on the foregoing discussion, a penalty term was introduced in the objective function. The penalty 
function was defined as 

∑
=

−=
P

i all

i

1
)1(

α
α

ψ                                       (21) 

 
Where =iα Inclination angle of slice base for each segment as shown in Fig. 6, and P=Number of 
segments on the slip surface to be penalized. The use of the above mentioned penalty function eliminates 
the “mα-problem” discussed previously. The effectiveness of the proposed penalty function in generating a 
kinematically admissible slip surface is shown in Fig. 7. 

Fig. 6. General cross section of slope Fig. 7. Evolution of a generated slip surface toward a     
kinematically admissible slip surface 

In order to minimize Eq. (17), a computer program was written in Delphi. In this program, binary 
coding was used to represent the coordinates of points specifying the slip surface, as well as the unknowns 
used in Eq. (12). The length of the binary string depends on the required accuracy. For this study, the 
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length of the binary code was selected such that an accuracy of two decimal points could be achieved. In 
the genetic algorithm used for all the forthcoming examples, a population size=50 was selected. A 
sensitivity analysis of the GA for various crossover rates and types was carried out. The crossover rate was 
also varied at 0.5 increments from 0.8 to 1.0, while the crossover type was varied from a single-point to a 
four-point crossover with a step of 1.0. The following six examples serve to illustrate the effectiveness and 
accuracy of the GA in finding the critical non-circular slip surface and the interslice forces as well as their 
location.  
 
Example 2: Yamagami and Ueta [14] used different minimization procedures, BFGS [26-29], DFP [30, 
31], to locate the critical slip surface and its associated minimum safety factor using the Morgenstern-
Price method for the homogeneous slope shown in Fig. 8. The geotechnical parameters are: o10=ϕ , c=9.8 
kPa and 3/64.17 mkN=γ . 

Fig. 8. Cross section of slope in Example 2 
 

Similarly, Greco [11] used the Spencer method in combination with a Pattern-Search and Monte 
Carlo for the same problem. Malkawi et al. [12] employed the limit equilibrium-based methods (i.e., 
Ordinary method of slice, Bishop's method, Janbu's method, Morgenstern-Price's method and Spencer's 
method) combined with the Monte Carlo technique. Table 2 presents the results obtained with the 
proposed approach compared with the results obtained by different investigators .The GA parameters used 
in this example were as follows: number of generation=2000, population size=50, crossover rate=0.95, 
two-point crossover. The plot of the cost function versus the number of generations is shown in Fig. 9. 
Summary plots from the computer program are shown in Fig. 10. 

 
Table 2. Minimum safety factor given  for Example 2 

 
Optimization 

Method 
Limit Equilibrium 

Method 
Slip 

Surface Safety Factor Reference 

BFGS 
DFP 

Powell(1964) 
Simplex 

Morgenstern-Price Non-
Circular 

1.338 
1.338 
1.338 

1.339-1.348 

Yamagami and 
Ueta [14] 

Pattern-Search 
Monte Carlo Spencer Non-

Circular 
1.327-1.33 

1.327-1.333 Greco [11] 

Monte Carlo Ordinary Non-
Circular 1.238 Malkawi et al. 

[12] 

Genetic Algorithm Generalized Non-
Circular 1.38 This Study 
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Fig. 9. Objective function versus the number of generations for Example 2 
 

Fig. 10. Summary plots  for Example 2 
 

Example 3: A simple slope of a homogeneous soil is shown in Fig. 11. The geotechnical properties are 
o15=ϕ , kPac 7.41=  and 3/8.18 mkN=γ . Arai and Tagyo [8] used Janbu's simplified method in 

combination with the conjugate-gradient method to find the critical slip surface. 
This problem was examined by using the proposed method. Table 3 presents the safety factor 

obtained by Arai and Tagyo [8] compared with the results obtained from the proposed approach. The GA 
parameters chosen in this example were as follows: number of generation=2500, population size=50, 
crossover rate=0.95 and two-point crossover. Summary plots of the results are shown in Fig. 12. The plot 
of the objective function versus the number of generations is shown in Fig. 13.  
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Fig. 11 Cross section of slope Example 3 

 
Table 3. Minimum safety factor given  for Example3 

 
Optimization 

Method Method Slip 
Surface 

Safety 
Factor Reference 

Conjugate Gradient Simplified Janbu Non-
Circular 1.357 Arai and 

Tagyo(1985) 

Genetic Algorithm Generalized Limit 
Equil. 

Non-
Circular 1.41 This Study 

 

  
Fig. 12. Summary plot for Example 3 

 
Example 4: A multilayer slope was analyzed by Yamagami and Ueta [14]. A cross section and soil 
properties are presented in Fig. 14. Yamagami and Ueta [14] solved this example using the Morgenstern-
Price method, and also by employing different minimization procedures. Similarly, Greco [11] used the 
Spencer method in combination with a Pattern-Search and Monte Carlo technique. Malkawi et al. [12] 
employed the limit equilibrium-based methods (i.e, Ordinary method of slice, Bishop's method, Janbu's 
method, Morgenstern-Price's method and Spencer's method), combined with the Monte Carlo technique. 
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Fig. 13. Objective function versus the number of generations for Example 3 
 

 
 
 
 
 
  

Fig. 14. Cross section and geotechnical properties of Example 4 
 

The results obtained using the proposed procedure, as well as those obtained by other investigators 
are presented in Table 4. The GA parameters used in this example were as follows: number of 
generation=2000, population size=50, crossover rate=1, four-point crossover. 

 

Layer kPac =
 

)(oϕ  γ kN/
3m  

1 49 29 20.38 
2 0 30 17.64 
3 7.84 20 20.38 
4 0 30 17.64 
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Table 4. Minimum safety factor for Example 4 
 

Optimization 
Method 

Limit Equilibrium 
Method 

Slip 
Surface 

Safety 
Factor Reference 

BFGS 
DFP 

Powell(1964) 
Simplex 

Morgenstern-Price Non-
Circular 

1.423 
1.453 
1.402 
1.405 

Yamagami and 
Ueta [14] 

Pattern-Search 
Monte Carlo Spencer Non-

Circular 
1.400 
1.401 Greco [11] 

Monte Carlo Ordinary Non-
Circular 1.33 Malkawi et al. 

[12] 

Genetic Algorithm Generalized Non-
Circular 1.46 This Study 

 
The plot of the objective function versus the number of generations is shown in Fig. 15. Summary 

plots from the computer program are shown in Fig. 16. 
  

 
Fig. 15. Objective function versus the number of generations for Example 4 

 

  
Fig. 16. Summary plots  for Example 4 

 
Example 5: This example has been analyzed by Goh [18]. The soil properties and a cross section are 
presented in Fig. 17. Table 5 presents the result of Goh [18] compared with this study. Goh [18] solved 
this example using the simplified Bishop's method and employing the GA method for searching critical 
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circular slip surface. The GA parameters chosen in this example were as follows: number of 
generation=2000, population size=50, crossover rate=1 and four-point crossover. The plot of the objective 
function versus number of generations is shown in Fig. 18. Summary plots are shown in Fig. 19. 

 
Table 5. Minimum safety factor for Example 5 

 
Optimization 

Method 
Limit Equilibrium 

Method 
Slip 

Surface 
Safety 
Factor Reference 

Genetic Algorithm Simplified Bishop Circular 1.435 Goh [18] 

Genetic Algorithm Generalized Non-
Circular 1.45 This Study 

 
 
 
 

Fig. 17. Cross section and geotechnical properties of Example 5 

 
Fig. 18. Objective function versus the number of generations for Example 5 

 
Example 6: Baker [7] used a dynamic programming technique to locate the critical slip surface and its 
associated safety factor using Spencer's method for the homogeneous slope with a piezometric line as 
shown in Fig. 20. 

The geotechnical parameters are  
o20=ϕ , kPac 4.28=  and 3/8.18 mkN=γ . 

Layer kPac =  )(oϕ  γ kN/
3m  

1 30 0 18 
2 20 0 18 
3 150 0 18 
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Fig. 19. Summary plots for Example 5 

Fig. 20. Cross section of slope in Example 6 
 

Similarly, Greco [11] employed pattern-search and Monte Carlo methods to solve the same example 
and so did Malkawi et al. [12], who employed the limit equilibrium-based methods (i.e, Ordinary method 
of slice, Bishop's method, Janbu's method, Morgenstern-Price's method and Spencer's method) combined 
with the Monte Carlo technique. 

The problem was analyzed using the proposed method and the results are presented in Table 6. The 
GA parameters used in this example were as follows: number of generation=3000, population size=50, 
crossover rate=1, two-point crossover. The plot of the objective function versus number of generations is 
shown in Fig. 21. Summary plots from the computer program are shown in Fig. 22. 
 

Table 6. Minimum safety factor for Example 6 
 

Optimization 
Method 

Limit Equilibrium 
Method 

Slip 
Surface Safety Factor Reference 

Pattern-Search 
Monte Carlo Spencer Non-

Circular 
1.744-1.745 
1.744-1.751 Greco [11] 

Dynamic 
Programming Spencer Non-

Circular 1.77 Baker [17] 

Monte Carlo Ordinary Non-
Circular 1.502 Malkawi et al. 

[12] 

Genetic Algorithm Generalized Non-
Circular 1.80 This Study 
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Fig. 21. Objective function versus the number of generations for Example 6 

 

 
Fig. 22. Summary plots for Example 6 

 
Example 7: The last example (Fig. 23) investigated is a homogeneous slope with a piezometric line. This 
example has been analyzed by Arai and Tagyo [8]. They used Janbu's simplified method in combination 
with the conjugate-gradient method. The geotechnical parameters are 
 

03 15,7.41,/8.18 === φγ kPaCmkN . 
This problem was examined using the proposed method. Table 7 presents the results of Arai and 

Tagyo [8] compared with this study. The GA parameters chosen in this example were as follows: number 
of generation=2000, population size=50, crossover rate=0.95 and four-point crossover. The plot of the 
objective function versus the number of generations is shown in Fig. 24. Summary plots of results are 
shown in Fig. 25.  

Table 7. Minimum safety factor for Example7 
 

Optimization 
Method 

Limit Equilibrium 
Method 

Slip 
Surface 

Safety 
Factor Reference 

Conjugate Gradient Simplified 
Janbu 

Non-
Circular 1.071 Arai and 

Tagyo [8] 

Genetic Algorithm Generalized Non-
Circular 1.09 This Study 
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Fig. 23. Cross section of slope in Example 7 

 
Fig. 24. Objective function versus the number of generations for Example 7 

 

 
Fig. 25. Summary plot for Example 7 

 
6. DISCUSSION OF RESULTS 

 
The first example illustrated the capability of the proposed method to determine the safety factor for a 
specified non-circular slip surface. The value of the safety factor obtained was very close to the 
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Morgenstern-Price method. Examples 2-7 examined the capability of the proposed method in locating the 
critical non-circular slip surface and the results were compared with those reported by other investigators. 
From these examples, it may be concluded that the proposed method gives a relatively higher value for the 
safety factors. This may be attributed to the following: 

- It is common to obtain a relatively higher factor of safety when employing limit equilibrium 
methods that satisfy both force and moment equations of equilibrium as opposed to the methods 
that satisfy only force or moment equations of equilibrium. Therefore, it is not surprising to arrive 
at a higher factor of safety for the proposed method, which satisfies both equations of equilibrium 
compared to methods like Simplified Bishop, Simplified Janbu, and Ordinary Fellenius, which 
satisfy only force or moment equation of equilibrium. 

- The second group of limit equilibrium methods includes Morgenstern and Price, Spencer and the 
Generalized (Rigorous) Janbu method of slices, all satisfying both moment and force equations of 
equilibrium simultaneously. Therefore these methods are more accurate than the aforementioned 
methods. In the Spencer method, a constant ratio of the interslice normal to shear force is assumed 
for all the slices. In other words, the resultant interslice forces have the same direction for all 
slices. In the Morgenstern and Price method, an arbitrary function is assumed to describe the 
direction of the interslice forces. Hence, the Spencer method can be considered as a special case of 
Morgenstern and Price where a constant function is used for the interslice forces. The generalized 
Janbu method assumes an arbitrary location for the position of the thrust line. Within this group of 
limit equilibrium methods, the variation in the safety factor reflects the kind of assumption(s) 
made in each method. In the proposed approach the generalized method was adopted with no prior 
assumption regarding the location of the thrust line. The location of the thrust line was determined 
automatically through the GA process in order to satisfy the conditions of equilibrium for the last 
slice, which is a handicap of the conventional method as reported by Sarma [24]. Consequently, 
the proposed method is more robust and is believed to give a more realistic value for the factor of 
safety. 

The optimal GA parameters for cases involving a soil layer are: Pc=0.93 with two point crossover, 
population size=50, No. of generations≤2000. The same parameters for multilayer soil conditions are: 
Pc=1.0 with a four-point crossover, population size=50 and No. of generations≥2000.  

7. CONCLUSION 
 
The present paper suggests a genetic algorithm method for locating the critical non-circular slip surface in 
conjunction with the interslice forces and their position for slope stability analysis. When minimized, the 
proposed objective function yields the critical non-circular slip surface that satisfies both force and 
moment equations of equilibrium. The method does not make any assumption regarding the location of the 
interslice thrust line. In other words, the thrust line is determined so that the equilibrium equations are 
satisfied for all the slices. This procedure eliminates some of the problems associated with limit 
equilibrium methods where the location of the thrust line (or interslice forces in GLE) is fixed at the start 
of the analysis. Furthermore, the method yields surfaces that are kinematically admissible and physically 
acceptable through a suitable penalty function. The method does not require derivatives of the objective 
function. The proposed technique is simple in structure and easily programmable. In addition, some 
examples have been investigated to demonstrate the capabilities of the proposed approach. From the 
examples considered it may be concluded that a population size of 50, a crossover rate of 0.95 and 1, 
crossover mode single point and two points together with a ranking method and a variable mutation 
technique can locate the critical non-circular surface and yield the generalized interslice forces.  The 
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present approach does not require any assumption regarding the interslice forces. Based on results 
presented in this paper, the proposed method gives a somewhat higher safety factor compared to the 
results obtained by other investigators. The reasons may be any of the following: 

1. The proposed approach uses a generalized method of stability analysis, and therefore both force 
and moment equations of equilibrium are satisfied. This fact, in most cases, results in a higher 
safety factor compared with methods that satisfy only the moment equilibrium equation such as 
the simplified Bishop method. 

2. The conventional methods of slope stability make some assumptions regarding the position of 
interslice forces, their ratio, their magnitude, etc. However, the proposed approach does not make 
any assumption regarding the interslice forces. 

3. As stated before, the objective function for searching the critical non-circular slip surface consists 
of three distinct terms. The relative magnitude of each term with respect to other terms can 
influence the optimization procedure. In this study, various forms of the objective function were 
considered in order to remove this effect. However, further research in this area is encouraged. 
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