| 
		[1]     Jamaati, R., & Toroghinejad, M. R. (2010). Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process. Materials & Design , 31 (9), 4508-4513. https://doi.org/10.1016/j.matdes.2010.04.022[3]     Jamaati, R., & Toroghinejad, M. R. (2010). High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Materials & Design , 31 (10), 4816-4822. https://doi.org/10.1016/j.matdes.2010.04.048[4]     Shingu, P. H., Ishihara, K. N., Otsuki, A., & Daigo, I. (2001). Nano-scaled multi-layered bulk materials manufactured by repeated pressing and rolling in the Cu–Fe system. Materials Science and Engineering: A , 304 , 399-402. https://doi.org/10.1016/S0921-5093(00)01516-1[6]     Chino, Y., Mabuchi, M., Kishihara, R., Hosokawa, H., Yamada, Y., Cui, E. W., Shimojima, K., & Iwasaki, H. (2002). Mechanical properties and press formability at room temperature of AZ31 Mg alloy processed by single roller drive rolling. Materials Transactions , 43 (10), 2554-2560. https://doi.org/10.2320/matertrans.43.25 54[7]     Pirgazi, H., Akbarzadeh, A., Petrov, R., & Kestens, L. (2008). Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Materials Science and Engineering: A , 497 (1-2), 132-138. https://doi.org/1 0.1016/j.msea.2008.06.025[8]     Li, S., Beyerlein, I. J., Alexander, D. J., & Vogel, S. C. (2005). Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling. Acta Materialia , 53 (7), 2111-2125. https://doi.org/10.1016/j.actamat.2005.01.023[9]     Richert, M., Liu, Q., & Hansen, N. (1999). Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression. Materials Science and Engineering: A , 260 (1-2), 275-283. https://doi.org/10.1016/S0921-5093(98)00988-5[10]  Khatibi, G., Horky, J., Weiss, B., & Zehetbauer, M. J. (2010). High cycle fatigue behaviour of copper deformed by high pressure torsion. International Journal of Fatigue , 32 (2), 269-278. https://doi.org/10.1016/j.ijfatigue.2009.06.017[11]   Fattah-Alhosseini, A., Naseri, M., & Alemi, M. H. (2016). Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. Journal of Manufacturing Processes , 22 , 120-126. https://doi.org/10.1016/j.jmapro.2016.03.006[12] Duan, J. Q., Quadir, M. Z., & Ferry, M. (2017). Engineering low intensity planar textures in commercial purity nickel sheets by cross roll bonding. Materials Letters , 188 , 138-141. https://doi.org/10.1016/j.matlet.2016.11.040[13]   Zeng, L. F., Gao, R., Fang, Q. F., Wang, X. P., Xie, Z. M., Miao, S., Hao, T. & Zhang, T. (2016). High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Materialia , 110 , 341-351. https://doi.org/10.1016/j.actamat.2016.03.034[14]   Eslami, A. H., Balali, M., & Seyedkashi, S. M. (2018). Study and comparison of simple shear extrusion and accumulative roll bonding processes in improving the mechanical and structural properties of copper. Metallurgical Engineering , 21 (2), 118-128. https://doi.org/10.22076/ME.2018.82259.1174[15]   Saito, Y., Utsunomiya, H., Tsuji, N., & Sakai, T. J. A. M. (1999). Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia , 47 (2), 579-583. https://doi.org/10.1016/S1359-6454(98)00365-6[16]   Dehghan, M., Qods, F., Gerdooei, M., & Mohammadian-Semnani, H. (2021). Influence of intermediate heating in cross accumulative roll-bonding process on planar isotropy of the mechanical properties of commercial purity aluminium sheet. Metals and Materials International , 27 , 4937-4951. https://doi.org/10.1007/s12540-020-00833-3[17]   Su, L., Lu, C., Li, H., Deng, G., & Tieu, K. (2014). Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding. Materials Science and Engineering: A , 614 , 148-155. https://doi.org/10.10 16/j.msea.2014.07.032[18]   Bonnot, E., Helbert, A. L., Brisset, F., & Baudin, T. (2013). Microstructure and texture evolution during the ultra grain refinement of the Armco iron deformed by accumulative roll bonding (ARB). Materials Science and Engineering: A , 561 , 60-66. https://doi.org/10.1016/j.msea.2012.11.017[19]   Shaarbaf, M., & Toroghinejad, M. R. (2008). Nano-grained copper strip produced by accumulative roll bonding process. Materials Science and Engineering: A , 473 (1-2), 28-33. https://doi.org/10.1016/j.msea.2 007.03.065[20]  Mehr, V. Y., Toroghinejad, M. R., & Rezaeian, A. (2014). The effects of oxide film and annealing treatment on the bond strength of Al–Cu strips in cold roll bonding process. Materials & Design , 53 , 174-181. https://doi.org/10.1016/j.matdes.2013.06.028[21]   Ng, H. P., Przybilla, T., Schmidt, C., Lapovok, R., Orlov, D., Höppel, H. W., & Göken, M. (2013). Asymmetric accumulative roll bonding of aluminium–titanium composite sheets. Materials Science and Engineering: A , 576 , 306-315. https://doi.org/10.1016/j.msea.2013.04.027[22]  Gao, Y., Vini, M. H., & Daneshmand, S. (2022). Effect of nano Al2O3 particles on the mechanical and wear properties of Al/Al2O3 composites manufactured via ARB. Reviews on Advanced Materials Science , 61 (1), 734-743. https://doi.org/10.1515/rams-2022-0268[23]  Sedighi, M., Vini, M. H., & Farhadipour, P. (2016). Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding.Powder Metallurgy and Metal Ceramics , 55 , 413-418. https://doi.org/10.1 007/s11106-016-9821-0[24]  Mosleh-Shirazi, S., Akhlaghi, F., & Li, D. Y. (2016). Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites. Transactions of Nonferrous Metals Society of China , 26 (7), 1801-1808. https://doi.org/10.1016/S1003-6326(16)64294-2[25]  Mosleh-Shirazi, S., & Akhlaghi, F. (2019). Tribological behavior of Al/SiC and Al/SiC/2 vol% Gr nanocomposites containing different amounts of nano SiC particles. Materials Research Express, 6(6), 065039.
 [26]   Lee, J. M., Lee, B. R., & Kang, S. B. (2005). Control of layer continuity in metallic multilayers produced by deformation synthesis method. Materials Science and Engineering: A , 406 (1-2), 95-101. https://doi.org/10.1016/j.msea.2005.06.030[28]    Sadoun, A. M., Meselhy, A. F., & Deabs, A. W. (2020). Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075. Results in Physics , 16 , 102911. https://doi.org/10.1016/j.rinp.2019.102911[29]  Xu, R., Liang, N., Zhuang, L., Wei, D., & Zhao, Y. (2022). Microstructure and mechanical behaviors of Al/Cu laminated composites fabricated by accumulative roll bonding and intermediate annealing. Materials Science and Engineering: A , 832 , 142510. https://doi.org/10.1016/j.msea.2021.142510[30]   Sadoun, A. M., Abd El-Wadoud, F., Fathy, A., Kabeel, A. M., & Megahed, A. A. (2021). Effect of through-the-thickness position of aluminum wire mesh on the mechanical properties of GFRP/Al hybrid composites. Journal of Materials Research and Technology , 15 , 500-510. https://doi.org/10.1016/j.jmr t.2021.08.026[31]   Chen, Y., Nie, J., Wang, F., Yang, H., Wu, C., Liu, X., & Zhao, Y. (2020). Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2+ TiC) p/6063 composites prepared by accumulative roll bonding. Journal of Alloys and Compounds , 815 , 152285. https://doi.org/10.1016/j.j allcom.2019.152285[32]   Liu, C. Y., Wang, Q., Jia, Y. Z., Zhang, B., Jing, R., Ma, M. Z., Jing, Q., & Liu, R. P. (2012). Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Materials Science and Engineering: A , 547 , 120-124. https://doi.org/10.1016/j.msea.2012.03.095[33]  Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., & Hong, R. G. (1998). Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia , 39 (9), 1221-1227. https://doi.org/10.1016/S1359-6462(98)00302-9 |