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Abstract– Post incident traffic management on a freeway network depends mainly on the 
decisions of traffic managers that surface from their individual exposure to similar conditions. This 
manual approach to tackle a dynamic scenario induces uncertainty, inconsistency and inefficient 
use of rescue resources. This paper suggests a decision support scheme known as Freeway Incident 
Analysis System, (FIAS). The novel idea presented here is the use of real time data from the Toll 
Collection System (TCS) and Vehicle Detection System (VDS). This data is conjugated with the 
historical data on a microscopic simulation platform to predict traffic flows in a post-incident 
scenario. The system employs Cellular Automata for the microscopic simulation of vehicle 
movement, and we also suggest two additional rules in the modified version of the conventional 
model. This has enabled us to model the dynamic flow parameters in a post incident scenario more 
realistically. The evaluation of FIAS indicates that it yields significantly accurate post incident 
information about traffic flows for the use of traffic managers.           
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1. INTRODUCTION 
 

In the world of Intelligent Transport Systems, the Traffic Management Center (TMC) plays a pivotal role 
that is akin to the central nervous system in the human body. This role becomes even more crucial in the 
post-incident scenario when managers tackle non-recurrent congestion and have to make important 
decisions to coordinate the rescue operation [1]. In most of such scenarios, traffic managers employ their 
guesswork about the impacts of an incident on the traffic flow and make crucial decisions based on certain 
suppositions. However, these individual assumptions may vary from person to person and incident to 
incident. This induces inconsistency in the whole incident management operation and may result in the 
inefficient use of resources [2], [3]. Further, they fail to incorporate the flow pattern based on Origin and 
Destination (O/D) and driver’s behavior.  

This paper is a part of the project taken up by the Korea Highway Corporation to address the 
problems of the management staff of the TMC to tackle non-recurrent congestion on the freeway network 
in Korea. In this project, ‘FIAS’, a Freeway Incident Analysis System, is developed that exploits a micro-
simulation model to predict post-incident traffic flows. It is suggested to be a complementary part of the 
sitting Freeway Traffic Management System (FTMS)[4]. The aim of this paper is to present the functional 
architecture of FIAS and to evaluate the model by comparing its output with the real data in a post-
                                                            
∗Received by the editors July 9, 2005; final revised form January 2, 2007. 
∗∗Corresponding author 
 
 



H. Chang / et al. 
 

Iranian Journal of Science & Technology, Volume 31, Number B2                                                                                 April 2007 

156 

incident scenario. The idea presented here is the incorporation of the historical data with the real-time data 
from the Toll Collection System (TCS) and the Vehicle Detection System (VDS) to forecast post-incident 
traffic flows. The most important feature of FIAS is the use of the microscopic simulation model ‘Cellular 
Automata’ (CA) with certain adaptations in the CA model presented in [5] to accommodate the drivers’ 
behavior in the incident scenario. 
 

2. REVIEW 
 
Initial attempts towards the design of a decision support system for the incident related congestion were 
mainly based on analytical models, a knowledge based expert system and Geographic Information System 
(GIS) based tools [6-8]. According to Ritchie’s investigation [2] the Santa Monica Freeway Smart 
Corridor project was one of the very first attempts in which a full-fledged real-time knowledge based 
expert system was employed for traffic surveillance and control purposes. Zhang and Ritchie [9] proposed 
a knowledge based expert system with the name of FRED- Freeway Real-time Expert system 
Demonstration. In the later stages with the advent of faster computers and the search for an ITS solution to 
growing traffic problems, a number of simulation models have been employed. For example, Xaichen and 
Dailey [10] used a CA model for the prediction of flows using real time inductance loop data for freeway 
traffic. Another attempt was made by Hegyi et al. [11], who suggested a Fuzzy Decision Support System-
FDSS, using fuzzy logic and METANET, a macroscopic flow model. The software uses historic data for 
the prediction of traffic flows in a simulated environment that gives an idea of the performance of the 
control measure. 
 

3. FRAMEWORK 
 
There are four fundamental units of FIAS (Fig. 1) that include data accessing, manipulation, and 
simulation and output module.  
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Fig. 1.Conceptual framework of FIAS 
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a) Data accessing module  
 

FIAS uses both the real-time as well as historical data in the analytical framework. For this purpose 
the VDS and TCS data is extracted periodically from the existing FTMS database server by using the 
Open Database Connectivity (ODBC) method. For the purpose of geographic data collection and 
incorporation, the whole stretch of the freeway is divided into smaller sections based on the geometry of 
the road, the VDS location or both, and designates them as ‘links’. These links data are stored in the HGIS 
database as the ‘road network data’ along with the location of neighboring VDS stations and their unique 
identity number. 

The real time input data used in this research are the aforementioned TCS and VDS data. The TCS 
data are freeway inflow and out-flow traffic volume counted on tollgates and the VDS data are link traffic 
volume, average speed and occupancy of the section. Similarly the corresponding historical data is also 
collected from the TCS and VDS servers. These real time and historical data are amalgamated and ‘fine 
tuned’ for any correction or missing data at the data filtering stage. 
 
b) Data manipulation module  
 

This level is imperative for the simulation environment and therefore we regard it as the ‘interfacing’ 
or ‘enabling’ phase. Here the simulation network generation module tackles the geographical data 
regarding the road network at the GIS platform, along with the locations of various VDS stations. It then 
marks a corridor all along the link with the size of the corridor depending upon the roadway width. This 
corridor is represented on MS Access file format, which is the required format for the simulation platform. 
Next, in the travel pattern generation module we employ TCS data to ascertain the O/D pattern and the 
route pattern. Concurrently, filtered TCS data is used to forecast the inflow volumes. The forecasted 
volumes along with the O/D pattern and the route pattern data initiate the simulation process, which is 
described below. 
 
c) Simulation module  
 

In the simulation module, the analyzed and filtered data is assigned to various links using the initial 
volume assignment module. Simultaneously, the operator injects incident parameters in the incident 
generation module and simulation parameters in the CA microscopic simulation module. Thus the final 
route and O/D pattern data, inflow volume data and initial traffic volume assigned link data, along with 
the incident parameters are modeled in the microscopic simulation platform. This simulation model yields 
the required MOEs and individual vehicle tracing data through a vehicle movement data generation 
module.  

The CA model has several advantages such as speed of simulation run time, range and applicability in 
various geometric designs and traffic conditions. In this research, the adaptive CA model that improves 
the existing NaSch CA model is developed. The distinguishing feature of the adaptive CA is that it can 
simulate congested flows more elastically. It can also simulate breakdown on the bottleneck sections along 
with the simulation of ‘Stop’ and ‘Go’ phenomena more realistically.  
 
d) Output module  
 

This is the terminator level of the architecture where traffic managers can view simulated traffic flows 
in the pre and post-incident scenario. They can assess and monitor the computed MOEs in an animated 
environment. If they desire they can also see the individual vehicle movement in 2D vehicle animation 
and 3D CCTV animation with play and speed control options. It is anticipated that the incident analysis 
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result in this format will help traffic managers to make appropriate rescue decisions based on tangible 
information rather than the speculative approach. 
 

 
Fig.2. Functional architecture of FIAS 

 
4. MODELING TRAFFIC FLOWS WITH CELLULAR AUTOMATA 

 
Road traffic is influenced by a number of factors such as the driver’s behavior, road geometry, and the 
land use pattern of the abutting property. The depiction of such phenomena through general mathematical 
expression or models is both difficult, as well as time consuming because of the complexity, randomness 
and interdependency of the parameters [12].  

Traffic flow simulators rather than analytical models are often employed to simulate traffic on various 
spatio-temporal scales. Traffic flow models can conventionally be classified as microscopic and 
macroscopic in nature. In microscopic modeling the movement of an individual vehicle is focused so that 
it yields a more detailed description of the vehicle, whereas macroscopic modeling depicts the 
accumulative behavior of traffic flows through traffic density, mean speed and volume. The latter 
approach considers traffic flow a compressible fluid and employs fluid-dynamical partial differential 
equations to propagate flow and density between large discrete time and space sections. The use of these 
parameters in the model reduces the computation time considerably. However researchers like Xaichen 
and Dailey [10] argue that although the macroscopic traffic model reduces the computation time, it cannot 
estimate travel time, turning movement and other control parameters on a short time scale. Thus the 
macroscopic model in the incident scenario cannot be regarded as the best option, wherein short time scale 
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information becomes significantly more important in taking immediate relief measures in order to limit the 
spreading of congestion effects. 
 
 
a) Cellular automata 
 

Cellular Automata (CA) is an artificial approach in which physical quantities are transformed into a 
finite set of discrete units. Von Neumann and Ulam originally pioneered this simulation modeling 
approach in the 1960s for the representation of the biological self-reproduction phenomenon. Since then, 
CA has been regarded as a promising tool for high-speed micro simulation and is used to model a variety 
of physical scenarios [10].  

Nagel and Schreckenberg [5] employed CA to depict traffic flow on a single lane of a highway. The 
model, which is here referred to as “NaSch model”, (a term used in  [13]), proposed a simple rule-based 
approach to simulate driver behavior in free flow conditions. The car following model is a key element in 
modeling driver behavior and is also employed in the NaSch model. For an elaborate review, the model is 
briefly described for single lane traffic.  The full stretch of the road is subdivided into ‘n’ boxes (‘cells’) of 
7.5 meters in length, which can be either occupied or be empty by one vehicle at any discrete instant of 
time‘t’. The velocity v of the vehicles is an internal parameter that characterizes its state. It can take on 
only integer values, i.e., v = 0, 1, 2, . . .,vmax. The dynamics of the model is described by speed update and 
movement rules for the velocities which are given below: 
 
Speed update step 
Acceleration:   IF (vi < gi)  THEN vi+1 = min[vmax, vi +1] 
Deceleration:   IF (vi≥ gi)  THEN vi+1 = min[vi, ig ] 
Randomization: IF ( pnoise > random value) THEN  vi+1= max[vi+1-1, 0] 
 
Movement step xi+1  =  xi + vi+1 
where, ‘vi’  (0≤  vi ≤  vmax , cell/timestep) is a velocity of car at time step ‘t’, and ‘gi’ the Number of 
Unoccupied Cells (NUC) behind the leading car. ‘pnoise’ is the random noise parameter (0~1) and 
illustrates the deviation from the optimal way approach encompassed in acceleration and deceleration 
rules. Thus the stochastic nature of traffic flows is incorporated in the model which explains the phantom 
jam dynamics. Without this parameter the dynamics would be purely deterministic as the system shows 
strong dependence on the initial condition. The randomization or the movement step takes into account 
natural fluctuations in the driver’s behavior. 
 
b) Velocity dependent randomization 
 

Real traffic delivers strong hysteresis effects near the maximum flow due to the existence of meta-
stable states in certain density regimes [13, 14]. Traffic stays laminar when approaching from the low 
densities till a threshold point ‘ρ2’ and then breaks down into start-stop traffic. However, it does not 
become laminar in the reverse direction until ‘ρ1’, which is about 30% smaller than ρ2[15].  Barlovic et al. 
[13] incorporate this behavior into the NaSch model and term it the Slow-to-Start [STS] rule to more 
realistically capture the breakdown flow behavior. Also, the acceleration rate of stopped vehicles can be 
modeled by the STS rule using a different random noise parameter ‘ps’ that has higher value than NaSch’s 
employed pnoise, (ps >> pnoise ). In such scenario, drivers escaping out of a jam will hesitate so that a jam 
grows and moves backward. The STS rule is directly added to the NaSch model, and dubbed the modified 
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NaSch model. However both versions of the NaSch model have the following common shortcomings in 
view of microscopic behaviors: 
 
 (a) Unrealistic braking capability to avoid back collision in one time step (i.e., 1 second) from vmax to 0. 
(b) No distinguished drivers’ behavior between staying in a jam and escaping from it. 
 
c) Additional movement rules  
 

Two additional movement rules, the Stopping Maneuver Rule (SMR) and the Low Acceleration Rule 
(LAR), are introduced here to tackle the aforementioned two defects and to capture velocity quantities 
more realistically under heterogeneous traffic flow conditions. SMR is to describe a decelerating vehicle 
to arrive and stop in the tail of a jam, and LAR is to capture an accelerating vehicle which follows a 
stopped leading vehicle in a jam. Further, the two rules are easily and directly added into the modified 
NaSch model. 
 
1. Stopping Maneuver Rule (SMR): An approaching vehicle with the velocity vi >0 (cell/sec) to the back 
of a stopped leading vehicle needs an appropriate Stopping Distance (SD) to accomplish a smooth, safe 
stop. The distance is expressed below.  

SD = i

v

i
vi

i

+∑
=1

 for all vehicles with iv >0 

SMR incorporates SD and NUC along with random noise, ‘psm’ (pnoise ≤  psm ≤ 1) as follows. 
 
IF ((SD≥NUC or  (vi -1≥  vlead and vi ≥  gi)) and  (psm > random value) ) 
THEN vi+1 = min[vi -1, gi] 
ELSE the speed update step of the modified NaSch model 
 
2. Low Acceleration Rule (LAR): LAR is introduced to describe a low acceleration rate in a jam. In the 
modified NaSch model, noise parameter values, namely pnoise and ps, are used for both the acceleration of 
stopped vehicles in a wide moving jam (1-1/( vmax +1)<<  ρ ≤ 1) and the acceleration of an escaping 
vehicle from a jam. But an aggressive accelerating maneuver with a high acceleration rate to escape a jam 
is different from an accelerating maneuver in a jam because in a jam, an accelerating maneuver is 
physically accomplished with a low acceleration rate and drivers psychologically hesitate about 
accelerating. Let us make assumptions about the following: 
 
1. A stopped vehicle with gi =1, following a stopped vehicle, stays in a jam. 
2. A stopped vehicle with gi =1, following a running vehicle, escapes from a jam. 
 
And then LAR are modeled with random noise (pla, pnoise ≤  pla ≤ 1 or ps ≤  pla ≤ 1) as follow: 
 
IF (vi =0, gi =1, vlead =0, pla >random value) THEN vi+1= 0 
ELSE vi+1= 1 
 
SMR and LAR are directly integrated into the modified NaSch model as follows: 
 
1. Velocity update step 
 
IF ((vi >0,  SD≥NUC) or  (vi -1≥  vlead , vi ≥  gi)) THEN SMR 
ELSE the speed update step of the modified NaSch model 
 
IF (vi =0, gi =1, vlead =0) THEN LAR 
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ELSE the speed update step of the modified NaSch model 
 
2. Movement step xi+1= xi + vi+1 
 
If pnoise = ps = psm = pla, then SMR and LAR have the same function as the NaSch model, and if pnoise<< ps, 
pnoise = psm, ps = pla, then the modified results can be achieved that are shown in Fig. 3. This shows vehicle 
trajectories on a 1-lane periodic system with a parallel update. Dots in the figure represent vehicles that 
move to the right. The horizontal direction is discrete space to the right and the vertical direction 
downward is discrete time. The left box of the figures portrays a NaSch model with  pnoise=0.135 and  
vmax=5, whereas the right box represents the flow pattern with the incorporation of the SMR and LAR rules 
( pnoise=0.135, vmax=5, psm=0.8, pla=0.8 ) into the NaSch model. The full experimental results calculated by 
the integrated model are presented in [16].  
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time
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time
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time
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time
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time
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time

 
Fig. 3. Comparison of vehicle trajectories on a 1-lane periodic system with parallel update  

using NaSch model (left) and the modified model(right) 
 

5. CASE STUDY 
 
Two functions of FIAS, namely, inflow volume forecasting and MOE computation are investigated here to 
test its performance. For this purpose, 78.4 km of the Seohean line that extends southward from the West 
Seoul tollgate at a Reduced Distance (RD) of 327 km to Seosan tollgate at RD 248.6 km, is labeled as the 
“ case study section” (Fig.4). There are eight tollgates and 79 VDS stations on this section of the freeway. 
However in this experiment, inflow volume data from all eight tollgates and MOE data from only four 
VDS stations are focused for the comparative study.  The location of all tollgates is shown in Table 1.  
 

Table 1. The location of tollgates on the study section 
 

Name West 
Seoul Maesong Bibong Balan West 

Pyeongtaek Songak Dangjin Seosan 

Location 
RD (km) 327 316.9 312.8 299.2 284.9 272.6 264.6 248.6 
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West Seoul: RD# 327Km

Seosan: RD# 248.6Km

West Seoul: RD# 327Km

Seosan: RD# 248.6Km

 
Fig. 4. Study section of Seohean line near Seoul (Source: Extracted from [17]) 

 
a) Real data collection 
 

TCS real data is recorded from all tollgates of the study section after every fifteen minutes for four 
hours. Thus at every tollgate, 4 datasets per hour or 16 observations per stipulated time were registered. 
The MOE data that include link volume and average speed are captured after every five minutes, making 
12 data sets per hour from each VDS station or 24 observations per station in the stipulated time. For the 
post incident real data, an incident that occurred on 18th November, 2003 was selected. The detail incident 
parameters are shown in Table II below. Fig. 5 shows these parameters along with the location of four 
VDS stations which were selected for the VDS data collection.  
 

Table 2. Description of the selected incidents for comparative study 
 
 
 
 
 
 
 
 
 

288.3km 304.2km 308.4km 317.0km

incident

VDS Location

W est Pyeongtak IC
(284.9 km )

Balan IC
(299.2 km )

Bibong IC
(312.8 km )

M aesong IC
(316.9 km )

Incident Effect Distance: 16 km

Congestion Start Tim e: 1615 hrCongestion Clear Tim e: 1740 hr

288.3km 304.2km 308.4km 317.0km

incident

VDS Location

W est Pyeongtak IC
(284.9 km )

Balan IC
(299.2 km )

Bibong IC
(312.8 km )

M aesong IC
(316.9 km )

Incident Effect Distance: 16 km

Congestion Start Tim e: 1615 hrCongestion Clear Tim e: 1740 hr

  
Fig. 5. Location of VDS stations for data collection and actual incident point 

Description Incident 
Incident point 317.0 km 
Incident day 2003.11.18 Tuesday 
Incident hour 4:15 pm 

Incident lasting duration 30 min 
Incident effect sweeping point 16km to upstream (RD #: 303km) 

Net capacity of the incident section 460 veh/hr/lane 
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b) Experimental results 
 

Experimental results are divided into two sections with the first section comparing inflow volume 
data from eight tollgates (Fig. 6) against the predicted data by FIAS, whereas the second section compares 
the incident induced traffic flow data of the link volume (Fig. 7) and the average flow speed from the VDS 
(Fig. 8). Mean Absolute Relative Error (MARE) is employed here to translate the comparative results in 
tangible format using the following expression: 
 

1001
1

×
−

= ∑
=

n

i i

ii

x
yx

n
MARE  

Where, 

ix  real data at i th time interval; 

iy  predicted data at the i th time interval 
n  number of data sets or observation ranging from 1 to n  
 
c) Comparison of inflow volume data at tollgates 
 

The value of the mean absolute error changes in the range of 5% to 9% with an average of 7%. 
Although on very few sections (Fig 6-d) the local error does look slightly higher, nonetheless, by and 
large, the model predicts the inflow volume to the network quite accurately. 
 
d) Comparison of MOE data 
 

VDS data for volume: The analysis indicates that an average error of 9%, though it varies from 4% to 
16%. The accident happening time is indicated as section ‘1’ (1615 hrs) of Fig. 7a and VDS at RD 317.0 
km indicates a drop in the volume at the time section ‘2’ (1620 hrs). From Fig. 7 it is evident that the 
simulation data curve follows the drop and rise in the volume of the real data with significant precision, 
though it does also look at departing from some VDS stations (Fig. 7c).  This indicates the limitation of 
the model and the scope for further improvement. Nonetheless, for all practical purposes and from the 
manager’s perspective, it is more important to know the behavior of the flows and forecast the time when 
the effected section will be experiencing most retarded flows. Our model depicts that phenomenon quite 
correctly (Fig. 7a-d). 

VDS data for average speed: Fig. 8 depicts slightly higher values of the MARE between the predicted 
and the real link speed data, though it drops to 16% while taking the average of all four stations. It is 
important here to note that in the vicinity of the incident point (Fig. 8b) the real data depicts a quick 
fluctuation in the speed, whereas our proposed model is slightly lagging behind, resulting in as high as 
24% error. A bit away from the incident point (Fig. 8d), the simulation data appears to be in harmony with 
the real data with only a 6% average error. However even when the local error is 24%, our model is 
capturing, quite accurately, the disturbed flow time from time section 8 to time section 14 (i.e., 1640 hours 
to 1710 hours). The simulation data corresponding to the three VDS stations show the impacts, while at 
the next immediate station the impact is not apparent. This helps the traffic manager to identify the stretch 
of the road that may be experiencing the impacts of the incident. 
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Fig. 6. A comparative study of inflow volume in all tollgates on the study section 
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(d) VDS #4 (RD 288.3km)
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Fig. 7. Comparison of the real VDS volume data with the FIAS forecasted data 
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(a) VD S #1 (R D  317km)
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(b) VD S #2 (R D  308.4km)
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(d)  VD S # 4  (RD  2 8 8 .3 k m )
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(c)  VD S # 3  (RD  3 0 4 .2 k m )
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Fig. 8. Comparison of the VDS average speed data with the FIAS forecasted data 

 
6. CONCLUSION 

 
This study is based on the problem faced by the traffic managers at the TMC in the post incident scenario. 
It suggests a decision support system that will enable them to look into the post incidents impacts on a 
simulated platform and manage the rescue operation more efficiently. The salient features and 
characteristics of FIAS are summarized below. It can:  
 
• predict the inflow volume to the freeway based on the O/D pattern  
• predict the link traffic volume and speed correctly based on the conjugated historical and real-time 

data.  
• predict the time when the road section experiences the most retarded flows. 
• display the simulation results in both 2D animated and 3D CCTV environment as per requirements 

and convenience of the traffic management personnel. 
 

This paper also discussed the limitations of the conventional approach to tackle the post incident 
traffic flows and suggest a model which is more versatile than the existing versions of CA. The 
distinguishing feature of our proposed model is the incorporation of two additional rules to the 
conventional model so that it can simulate congested flows more elastically. It can also simulate 
breakdown on the bottleneck sections along with the simulation of Stop/Go phenomena more realistically. 
The future work may consider functions like the dynamic traffic model for providing an optimal path to 
the driver. 
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