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Abstract– In this research the Discrete Element Method is employed to determine the seismic 
three dimensional bearing capacity of rectangular foundations. A rigid but moving slip body 
resting on its base is assumed to define the failure mechanism under the footing. A soil mass 
enclosed in a three dimensional space with assumed failure surfaces is considered as several 
discrete blocks connected with Winkler springs. The geometry of the failure surface under the 
foundation is not fixed and can be altered due to all of the factors affecting the problem. This 
geometry is determined by six independent angles. The seismic loading can be applied to the soil 
mass, soil surcharge and foundation loading in a pseudo-static manner. This paper includes the 
derivation of 3D DEM formulation in a three dimensional state, and several examples solved by 
means of a developed DEM program to explain the capability of the method and to compare the 
results with the other methods.           
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1. INTRODUCTION 
 

The bearing capacity of foundations has always been one of the most interesting sources of research in 
geotechnical engineering with numerous published papers and reports. Among these, extensive studies 
have been made for two dimensional problems of strip footing which rest on a horizontal or inclined slope 
surface. In this regard, different methods of analysis are introduced. It seems that 2D theoretical 
approaches have reached a relatively satisfactory level for ordinary loading and soil conditions. However, 
three dimensional problems of bearing capacity, even in static loading conditions, still require more 
experimental and theoretical research activities.  

In static conditions, the evaluation of the 3D bearing capacity of shallow foundations is usually 
assessed by introducing experimental and empirical shape factors into the ordinary 2D equations for the 
strip footings developed by earlier researchers such as Meyerhof [1], Terzaghi and Peck [2], Hansen [3], 
de Beer [4], Vesic [5], etc. These empirical shape factors are commonly based on the test results obtained 
from the works of Golder [6] and some additional unpublished data. 

Shield and Drucker [7], for the first time, attempted a theoretical evaluation of the bearing capacity of 
rectangular foundations on homogeneous clay (φ = 0) by means of upper and lower bound solutions. Also, 
the theoretical analyses of the bearing capacity of circular footings have been done by Kötter's equation in 
the state of rigid plasticity [8, 9]. Nakase [10] used an ordinary limit equilibrium method and assumed 
cylindrical sliding surfaces in rectangular footings on normally consolidated clays, of which strength 
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increases linearly with depth. Ugai [11] presented more rigorous solutions for rectangular foundations on 
NC clays with the help of limit analysis, by improving the admissible velocity field originally proposed by 
Shield and Drucker [7] to include the effect of the roughness of the footing base. Narita and Yamaguchi 
[12] presented a three dimensional analysis of the bearing capacity of rectangular foundations by means of 
the slices method, assuming that sliding surfaces are composed of a set of log-spiral with different initial 
radii in the direction of the longer axis of the footing base. Michalowski [13] introduced a 3D analysis of 
rectangular foundations based on the limit analysis (upper-bound) approach, in which all mechanism of 
failure considered in the analysis consisted of four regions, each characterized by plane deformations. 
Michalowski and Dawson [14] then compared the results of the suggested upper bound method with the 
numerical results of the FLAC3D code. Also, Zhu and Michalowski [15] calculated the shape factors for 
square and rectangular footings which are based on the proposed upper bound method and compared them 
with finite element analysis results. Salgado et al. [16] calculated, rigorously, the bearing capacity of strip, 
square, circular and rectangular foundations in clay, based on the finite element limit analysis.  

For strip foundations (2D state), incorporating the effects of earthquake body forces, investigations 
have been performed by using the method of inclined slices [17] limit equilibrium [18], and the upper 
bound limit analysis [19-22]). Kumar and Mohan Rao [23] have computationally examined the effect of 
horizontal earthquake body forces on the bearing capacity of 2D foundations in a rigorous manner by 
employing the method of stress characteristics. Ghahramani and Berrill [24] also evaluated the seismic 
bearing capacity factors by the zero extension method, which is first proposed by Roscoe [25].  

Experimental and theoretical investigations have both clearly demonstrated that the bearing capacity 
of foundations substantially reduces during earthquakes. Unfortunately, no theoretical solution for 3D 
bearing capacity in seismic conditions have been offered so far and very limited information is available to 
predict the 3D behaviour of foundations during an earthquake.  

Different investigators have used different methods of analysis in their studies. Among these methods, 
limit equilibrium, limit analysis and continuum based methods such as finite element and finite difference 
methods are widely used. Calculations based on the limit equilibrium method for the problem of bearing 
capacity generally do not satisfy all equilibrium conditions; therefore, additional assumptions are required 
with respect to interslice forces and stresses. The finite element method or finite difference method, 
require information about the initial stress state existing in the soil, a correct constitutive model and 
correct parameters for the constitutive model. Implementation of these requirements increases the 
complexity of the analysis and the probability of uncertainty in the results. Also, such an analysis is often 
quite time consuming and achieving the convergence of results becomes a difficult task.   

The new concept of discrete element method (DEM), which falls within the framework of the limit 
equilibrium methodology, in a two dimensional state, was presented by Chang for the bearing capacity of 
foundations [26], slope stability [27] and the retaining wall [28]. In this new concept of DEM, instead of 
modeling individual particles, he considered a soil mass as several discrete blocks connected with Winkler 
springs. By developing the concept proposed by Chang [26-28], a three dimensional formulation of the 
discrete element method were presented by the authors [29, 30]. Mirghasemi and Maleki-Javan also used 
this method to analyze the Retaining Wall Earth Pressure in Static and Pseudo-Static Conditions [31]. In 
this paper, for the first time, an effort is made to determine the seismic three dimensional bearing capacity 
of rectangular foundations using DEM. Several tables and graphs are provided to demonstrate the 
applicability of this method. The computations in this research are carried out by means of a developed 
DEM program named BCAP3D, (Bearing Capacity Analysis Program in 3 Dimension), written in 
MATLAB. 
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2. DISCRETE ELEMENT MODEL 
 

To determine three dimensional bearing capacity of rectangular shallow foundations by DEM, a rigid but 
moving slip body resting on its base is assumed to define the failure mechanism under the footing. The 
soil mass enclosed in a three dimensional space with assumed failure surfaces is considered as several 
discrete blocks are connected with Winkler springs, as shown in Fig. 1. 
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W

W
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Fig. 1. Connection of adjacent blocks with Winkler springs in 3 dimensional state 
 

Each group of Winkler springs consists of three sets of springs at different orthogonal directions. One 
set of springs is located in the direction normal to the contact surface in order to simulate the normal 
stiffness, and the two other sets are placed within the contact surface perpendicular to each other to 
simulate the shear resistance on all interfaces, as shown in Fig. 2. Therefore, compared to the 2D model, 
there is one set of shear springs added in the contact surface between two adjacent blocks. 
 
 
 

 
 
 

 
 

 
 

 
Fig. 2. Winkler spring in 3 dimensional state 

 
The behaviour of the normal and tangent springs is assumed to be Elasto-Plastic. As shown in Fig. 3, 

the normal springs do not yield in compression, but in tension they would yield at the tensile capacity of 
Ft, as: 

     ϕ
ϕ

sin1
cos.2

+
=

cFt
                                                                     (1) 

 
where (c) is cohesion and (φ) is the internal friction angle of the soil. Also, based on Mohr-Coulomb 
failure criteria, the shear springs yield when the shear strength (τp) is reached, as: 
 

        τp = c + σn . tan φ                                                                (2) 
      
When stresses in the normal or shear springs exceed their final strength, springs yield. In order to reduce 
the stiffness of yielded springs, the secant method is applied. Regarding the stress-strain relationship as 
shown in Fig. 3, the initial normal stiffness (knormal) alters to secant normal stiffness (k'normal). With the 
same concept, the initial shear stiffness (kshear) is substituted by the secant normal stiffness (k'shear).  

The Newton-Rophson iterative scheme is applied for modeling nonlinearity properties in plastic 
conditions. In this iterative scheme, an approximation to the exact stress-strain curve is made based on the 
slope at the start of the increment, but using an iterative procedure in which the stiffness is updated at each 
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iteration, the approximation gets refined. The reduced stiffness is obtained using stress divided by strain at 
each iteration.  
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Fig. 3. Stress-Strain behaviour of Winkler springs, a) shear springs, b) normal springs 
 

The initial values of stiffness in the normal and shear directions between blocks can be estimated 
through their relation with the values of Young’s modulus (E) and shear modulus (G), respectively. For 
isotropic elastic materials, the ratio of (E / G) is given by 2(1+ν), in which ν is the Poission’s ratio and 
varies from 0 to 0.5 for different kinds of soils. Thus, the practical range of (knormal / kshear) is from 2 to 3. It 
is found that the results in the present method depend on the Winkler spring constants ratio  (knormal / kshear) 
rather than their individual values. Also, the values of (knormal / kshear) in the above mentioned range have an 
insignificant effect on the computed results [26]. 
 

3. FAILURE SURFACE GEOMETRY 
 
In this model, for discretizing the assumed failure surface, pentahedron wedges are used as shown in Fig. 
4. Similar to the previous bearing capacity approaches described by some authors [29, 30, 32], the failure 
mechanism contains an active zone, blow the footing (zone I), which is pushed downward into the soil 
mass and a passive wedge (zone III) moves laterally. The transition between the downward movement of 
the active zone and the lateral movement of the passive zone takes place through the radial shear zone (II). 
The shape of the failure surface of zone (II) is assumed logarithmic spiral. These three regions can be 
divided into any arbitrary number of blocks, e.g. N1, N2 and N3, respectively. The geometry of the failure 
surface is a function of the footing width (B) and length (L), internal friction angle of the underneath soil 
(φ), and the six independent angles of α1, α2, α3, α4, θ1 and θ2. 

The angles θ1 and θ2 determine the inclination of lateral failure surfaces in a three dimensional space. 
The absolute values of θ1 and θ2 are assumed identical (l θ1 l = l θ2 l). As shown in Fig. 5, if the lateral 
failure surfaces incline inward or outward, θ1 and θ2 possess negative or positive values, respectively. The 
zero value for these angles indicates that lateral failure surfaces are vertical. However, unlike the classical 
limit methods, there is no special pre-assumption in the determination of the failure surface's angles 
(including θ1 and θ2). These six angles are found by a trial and error procedure to obtain the minimum 
ultimate bearing capacity. The result of the calculation procedure for a certain shallow foundation 
indicates which mode of side surface geometry (Fig. 5) governs the problem. 

Due to the existence of six independent angles, a very extensive number of failure surfaces are 
examined to determine the minimum bearing capacity. Therefore, with more complex failure surface 
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geometry, the accuracy of the solution is improved in comparison with simpler failure surfaces geometry, 
commonly considered in classical limit equilibrium or limit analysis methods. 

 

(a)(a)

(b)(b)  
Fig. 4. Aspect of failure surface geometry, a) 2D view, b) 3D view 

 

 
                   

                   (a)                                                   (b)                                                    (c) 
 Fig. 5. The inclination of lateral failure surfaces in three dimensional space, a) zero value for θ1 and 

 θ2 (vertical), b) negative value (inclined inward), c) positive value (inclined outward) 
 

4. 3D FORMULATION 
 
To obtain the three dimensional formulation of DEM, it is assumed that each block is rigid and only 
relative displacements of adjacent blocks are taken into consideration. Also, in comparison with relative 
translation, the relative rotation of two neighbouring blocks is small. Therefore, due to the fact that the two 
adjacent blocks remain in contact and no separation occurs at contact surfaces under the relative 
displacement, the continuum theorem can be applied to show the discontinuous deformations in the 
studied media. 

In Fig. 6a, consider two blocks A and B, which are connected together in (x,y,z) space before 
displacement. After loading, two contacting blocks are moved and exaggeratedly illustrated as separate 
(Fig. 6b). 

Let Ui
a and Ui

b represent the translation and rotation of the displacement vector of blocks A and B, 
respectively (i=1,2,…,6). These vectors in (x,y,z) space contain six components, where three elements 
(U1,U2,U3) represent translations in (x,y,z) directions and the other three elements (U4,U5,U6) represent 
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rotations around this axis. Let point P be the centre of the interface surface between these two blocks. The 
displacement of block B relative to block A at point P is then expressed as follows:  

                               { ΔPx,y,z } = [ Rb
p ] { Ub } - [ Ra

p ] { Ua }                                                 (3) 
 
where [Ra

p] is the matrix joining the centroid of the block A to point P. If, however block B is fixed, the 
values of Ui

b are taken as zero. The displacement vector on the left side of Eq. (3) can be transformed from 
an (x,y,z) coordinate to the local (n,s,t) coordinate, which ni

p is an outward unit vector normal to the side 
face of block A at point P as follows: 
 

{ ΔPn,s,t } = [ T ] { ΔPx,y,z }                                                          (4) 
 
where [T] is the transformation orthogonal matrix (TT

ij = T-1
ij). Due to the relative translations and 

rotations between the two neighbouring blocks, the springs are deformed and the normal and shear stresses 
are created on the interface surfaces. Therefore, at any point P' on the interface, the springs' deformation in 
normal (ΔnP') and in shear directions (ΔsP',ΔtP') can be obtained by: 
 

ΔnP' = ΔnP + Δtw.sP' + Δsw.tP'                                                                                 (5.1) 
 

ΔsP' = ΔsP + Δnw.tP'                                                          (5.2) 
 

ΔtP' = ΔtP + Δnw.sP'                                                          (5.3) 
 
where (Δnw,Δsw,Δtw) are the relative rotational components of the displacement vector in local 
coordinates. Also, sP' and tP' are the distance of point P' from point P on the interface in s and t directions, 
respectively. That is to say, the total stress distribution on the interface surface due to relative 
displacement can be divided as: 
 

(a) Uniform normal stress distribution, due to the relative translation of the centres of the interface 
surfaces of two adjacent blocks, in the direction of n axis (ΔnP). 

(b) Triangular normal stress distribution, due to the relative rotation of two adjacent blocks, around 
the s axis Δsw.tP'). 

(c) Triangular normal stress distribution, due to the relative rotation of two adjacent blocks, around 
the t axis (Δtw.sP'). 

(d) Uniform shear stress distribution, due to the relative translation of two adjacent blocks, in the 
direction of the s axis (ΔsP). 

(e) Uniform shear stress distribution, due to the relative translation of two adjacent blocks, in the 
direction of the t axis (ΔtP). 

(f) Nonuniform shear stress distribution in the direction of the s axis, due to the relative rotation of 
two adjacent blocks, around the n axis (Δnw.tP'). 

(g) Nonuniform shear stress distribution in the direction of the t axis, due to the relative rotation of 
two adjacent blocks, around the n axis (Δnw.sP'). 

To obtain the equivalent forces (Fn,Fs,Ft) and moments (Mn,Ms,Mt) in point P, these stresses can be 
integrated on the interface surface as follows: 
 

dAwtkdAwskdAPkF sPntPnnn
p

n ⋅Δ⋅+⋅Δ⋅⋅+⋅Δ⋅= ∫∫∫∫ ∫∫ '' .                         (6.1) 
 

∫∫ ∫∫ ⋅Δ⋅+⋅Δ⋅= dAwtkdAPkF nPsss
p

s '.                                      (6.2)  
 

dAwskdAPkF nPttt
p

t ⋅Δ⋅+⋅Δ⋅= ∫∫∫∫ '.                                     (6.3) 
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( ) ( )dAswksPkdAtwktPkM PntPttPnsPss
p

n .. 2
''

2
'' ∫∫∫∫ ⋅Δ⋅+⋅Δ⋅+⋅Δ⋅+⋅Δ⋅=              (6.4) 

 
dAtwkdAtswkdAtPkM PsnPPtnPnn

p
s ⋅⋅Δ⋅+⋅⋅⋅Δ⋅+⋅⋅Δ⋅= ∫∫ ∫∫ ∫∫ 2

''''                  (6.5) 
 

dAswkdAstwkdAsPkM PtnPPsnPnn
p

t ⋅⋅Δ⋅+⋅⋅⋅Δ⋅+⋅Δ⋅= ∫∫∫∫∫∫ 2
'''' .                (6.6) 

 
where kn, ks and kt are the stiffness coefficients for a unit surface area of normal and shear springs in (n,s,t) 
directions, respectively. 
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Fig. 6. Displacement of adjacent blocks in 3 dimensional state, a) before and, b) after displacement 

 
Since the relative rotation of two adjacent blocks is considered small, it can be assumed that the 

spring’s coefficients kn, ks and kt are constant in Eq. (6). As a result, similar conditions (elastic or plastic) 
exist for all springs located at the same direction across the contact surface. The integrals of Eq. (6) can be 
obtained from ordinary surface inertial moment equations. Then, Eq. (6) can be expressed as: 
 

{ FP
n,s,t } = [ k ] { ΔPn,s,t }                                                           (7) 

 
where [k] is the stiffness matrix of the associated surface. For convenience, the interface forces in the local 
coordinate are transformed to the global coordinate by: 
 

{ FP
x,y,z } = [ T ] T { ΔFn,s,t }                                                           (8) 

 
From Eqs. (3), (4), (7) and (8), the forces acting on all (n) sides of a block should satisfy the force and 

displacement equilibrium requirement given by:  
 

{ fa } = ∑
=

n

P 1
 -[Ra

p]T [Ta
p]T [ka

p] [Ta
p] [Rb

p] {Ub} + [Ra
p]T [Ta

p]T [ka
p] [Ta

p] [Ra
p] {Ua}            (9) 

 
where {fa} is the body force vector in the centroid of block A. In contrast to the finite element method, in 
which the constraint information is given on nodes, in DEM it is given on the centres of blocks. Based on 
Eq. (9), the relationship between the forces and the displacements for all blocks can be written as follows: 
 

{ f } = [ K ] { U }                                                               (10) 
 
where [K] is the global stiffness of the system and the vectors {f} and {U} consist of body forces and 
displacements for all blocks, respectively. 

In Eq. (10), there are twelve variables for each block; the body forces vector (fa
x,fa

y,fa
z,ma

x,ma
y,ma

z) 
and the displacement vector (ua

x,ua
y,ua

z,wa
x,wa

y,wa
z). Body forces are known, thus the 6N simultaneous 

equations for a system of N blocks can be solved for 6N unknown variables. The relative displacement of 



A. R. Majidi and A. A. Mirghasemi 
 

Iranian Journal of Science & Technology, Volume 32, Number B2                                                                                 April 2008 

114 

two adjacent blocks can be determined by Eq. (3). The normal and shear forces between blocks can be 
obtained from Eqs. (4) and (7). Also, the local (L.F.S) and overall (O.F.S) factors of safety can be 
evaluated by the ratio of shear strength force to shear force on local and overall failure surface, 
respectively from: 
 

( ) ( ) A

A.
S.F.L

2
t

2
s

p

τ+τ

τ
=                                                      (11.1) 

 

( ) ( ) i
2

ti
2

si

ipi

A

A.
S.F.O

τ+τ∑

τ∑
=                                                     (11.2) 

 
where τsi, τti and τpi are the shear stresses on the failure surface in the directions of s and t and shear 
strength, respectively. 
 

5. SEISMIC LOADING 
 
Considering the effect of earthquakes horizontal acceleration on vertical center loads is a usual way in 
limit state methods for evaluating the bearing capacity of foundations. In this way the effects of the 
inclination of the loads are simply included in the computation procedure.  

Pseudo-static dynamic analysis provides an easy way to estimate the bearing resistance of foundations 
for any imposed earthquake acceleration. In such a methodology the earthquake body forces are 
incorporated into gravity forces. Here, as a  pseudo-static manner, the effects of the earthquake horizontal 
acceleration (kh) are applied to the soil weight, soil surcharge and the foundation vertical load, 
simultaneously.  

One of the important advantages of DEM is that the different loading and soil parameters can be 
simultaneously applied in a single analysis to find the critical failure surface that offers the minimum 
bearing capacity. The loading system may consist of soil weight, soil surcharge, foundation vertical load 
and the effect of seismic loading. Therefore, the unique critical failure surface related to all of these 
parameters is obtained and the accuracy of the solution is improved in comparison with conventional 
methods, in which the method of superposition is used. In the superposition method, e.g. Terzaghi method 
[33], the critical failure surfaces related to each parameter are obtained separately. 

 
6. RESULTS 

 
a) Comparison with other methods 
 
Bearing capacity estimation is generally based on the superposition method proposed by Terzaghi [33], in 
which the contribution of different loading and soil parameters including self weight (γ), internal friction 
angle (φ), surface surcharge (q), and cohesion (c), are expressed in the form of non-dimensional bearing 
capacity coefficients as follows: 

                                              qult. = 0.5BγN'γ + qN'q + cN'c                                                      (12) 
 
where three dimensional bearing capacity coefficients (N'γ, N'q and N'c related to soil weight, surcharge 
and cohesion, respectively) include the related shape factors (sγ, sq, sc) in the form of: 
 

                                                             N'γ = sγ Nγ                                                                 (13.1)  
 

                                                             N'q = sq Nq                                                                (13.2)   
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                                                             N'c = sc Nc                                                                 (13.3)  
 

in which Nγ, Nq and Nc are the ultimate bearing capacity coefficients for a strip foundation in a 2D state.  
In classical limit methods, the exact values of surcharge and cohesion bearing capacity coefficients 

are often obtained by assumption or by derivation and usually fixed at (α1 = α2 = π/4 + φ/2), (α3 = π/2) 
and (α4 = π/2 + φ) from:  

 

)tgexp()
24

(tgN 2
q ϕπ

ϕ
+

π
=                                                   (14)                         

   

)
1

(
ϕtg

N
N q

c

−
=                                                              (15)                         

 
However, in the present method these critical angles are not predefined and are found by a trial and 

error procedure. To compute the cohesion coefficient (N'c or Nc) in DEM, the unit weight of the soil and 
the load surcharge are set to zero and c = 9.81 kPa. By assuming γ = 0, c = 0 and q = 9.81 kPa, the N'q or 
Nq are calculated. On the other hand, by assuming c = 0, q = 0 and γ = 19.61 kN/m3, the N'γ or Nγ are 
obtained. The width of footing (B) and the Winkler spring constant ratio (E/G) are assumed 1 m and 2.7, 
respectively. Also, for obtaining greater accuracy, the number of blocks in zones (I), (II) and (III) is 
chosen to be 1, 25 and 1, respectively in all computations. In order to make the 3D DEM results 
comparable to the 2D available solutions, the footing aspect ratio (L/B) was set equal to 1000. 

In Figs. 7 and 8, the values of Nq and Nc, obtained respectively by Eqs. (14) and (15), are compared 
with the results of 3D DEM in two conditions of classical failure with an assumption of (α1 = α2 = π/4 + 
φ/2), (α3 = π/2) and (α4 = π/2 + φ), and a critical failure surface corresponding to the minimum bearing 
capacity. As can be seen, the Nq and Nc values obtained from Eqs. (14) and (15) are almost identical to the 
DEM results with a classical failure surface assumed. However, the critical values of Nq and Nc in DEM, 
corresponding to the critical failure surface, are obviously less than the classical exact values for φ greater 
than 30º. The reason is that in a limit equilibrium method, we are always looking for the most critical 
failure surface to get the least bearing capacity. 

On the other hand, the values of Nγ obtained from various methods and 3D DEM are compared in Fig. 
9. From this comparison, it is concluded that the values of Nγ  obtained by 3D DEM are very close to the 
results of the Vesic [5] method. These differences in various methods are not surprising. For instance, 
Bowles [34] suggests that for φ = 40°, Nγ varies between 38 and 192 in different 2D methods. 

As previously described, no theoretical solutions for 3D bearing capacity under seismic conditions 
were found in the literature. Therefore, here the comparisons are made with the other methods only for 2D 
state and 3D static loading conditions. For more validation, the results of DEM in static loading conditions 
in 2D and 3D states can be found elsewhere [26, 29, 32].  

To compare the statically 3D bearing capacity coefficients (N'γ, N'q, N'c) resulting from other methods 
with DEM, the result of two classic semi-empirical methods which are extensively used for the shape 
factors, namely presented by Meyerhof [1] and Hansen [3], and two latest solutions of 3D bearing capacity 
of foundations obtained by the slices method (Narita and Yamaguchi [12]) and the upper-bound approach 
of limit analysis (Michalowski [13]) are presented in Figs. 10 to 12 for φ = 30º. The proposed method 
gives results which are more in accordance with classical semi-empirical 3D bearing capacity coefficients 
such as Meyerhof [1] and Hansen [3], which are based on the test results carried out by Golder [6] and 
some additional unpublished data. 
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In Fig. 13, the comparison of the seismic 2D bearing capacity coefficients related to soil weight 
(Nγ,dyn.) with those obtained from the other methods for φ = 30º are presented. In addition, comparison of 
the seismic 2D bearing capacity coefficients related to soil surcharge (Nq,dyn.) and cohesion (Nc,dyn.) are 
respectively presented in Figs. 14 and 15. As can be seen from these figures, the values obtained by DEM 
are comparatively smaller than other methods. Moreover, the relationship between the seismic 2D bearing 
capacity coefficients with earthquake horizontal acceleration can be approximately expressed by a linear 
function. 
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Fig. 7. Comparison of exact mathematical values of Nq and 3D DEM in 2D state 
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Fig. 8. Comparison of exact mathematical values of Nc and 3D DEM in 2D state 
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Fig. 9. Comparison of Nγ obtained from conventional methods and 3D DEM in 2D state 
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Fig. 10. Comparison of N'γ obtained from various methods for φ = 30º 
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Fig. 11. Comparison of N'q obtained from various methods for φ = 30º 
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Fig. 12. Comparison of N'c obtained from various methods for φ = 30º 
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Fig. 13. Comparison of seismic 2D bearing capacity coefficients related to  

soil weight (Nγ,dyn.) in various methods (φ = 30º ) 
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Fig. 14. Comparison of seismic 2D bearing capacity coefficients related to  

soil surcharge (Nq,dyn.) in various methods (φ = 30º ) 

Nc, dyn.

0

10

20

30

40

0 0.1 0.2 0.3 0.4
kh

3D DEM

Sarma & Iossifelis (1990)

Richards et al. (1993)

Budhu & Al-Karni (1993)

Kumar & Mohan Rao (2002)

φ = 30º

 
Fig. 15. Comparison of seismic 2D bearing capacity coefficients related to soil  

cohesion (Nc,dyn.) in various methods (φ = 30º ) 
 

b) Pseudo-static 3D bearing capacity coefficients 
 

In Fig. 16, the values of static 3D bearing capacity coefficients related to soil weight (N'γ) for various 
soil internal friction angles and footing aspect ratios obtained by DEM are presented. Also, in Fig. 17 the 
values of seismic 3D bearing capacity coefficients related to soil weight (N'γ,dyn.) for various φ and L/B 
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ratios with an assumption of kh = 0.3g are shown. As can be seen, the values of N'γ,dyn. considerably 
decrease by increasing the earthquake horizontal acceleration and smoothly decrease by increasing the 
foundation aspect ratio. Due to linear variations of N'γ,dyn. with earthquake horizontal acceleration, only the 
graphs related to kh = 0 and kh = 0.3g are presented and the values of N'γ,dyn. related to the other earthquake 
horizontal accelerations can be simply estimated by interpolation. It is worth mentioning that, in the 
presentation of these graphs the small values of bearing capacity coefficients (e.g. smaller than 1) are 
waived. 
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Fig. 16. Static 3D bearing capacity coefficients related to soil weight (N'γ) for 

 various φ and L/B ratio obtained by DEM (kh = 0) 
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Fig. 17. Seismic 3D bearing capacity coefficients related to soil weight (N'γ,dyn.) for  

various φ and L/B ratio obtained by DEM (kh = 0.3g) 
 
In Figs. 18 to 21, the values of static 3D bearing capacity coefficients related to soil surcharge for 

various φ, L/B ratio and kh obtained by DEM are presented. As can be seen, the curves pertaining to values 
of N'q,dyn. behave differently for φ = 30º, kh equal to 0.3g and 0.4g, and for φ = 40º and kh equal to 0.2g to 
0.4g. It is observed that, for kh greater than about 0.2g and φ greater than about 20º the values of N'q,dyn. 
increase, first with increasing the L/B up to 2 and then decrease by increasing L/B. In general, the values 
of bearing capacity coefficients increase with decreasing L/B due to the increase of the contribution of 
side failure surfaces with respect to overall failure surface. On the other hand, the values of bearing 
capacity coefficients decrease with increasing kh. As observed in Figs. 20 and 21, the reduction effects of 
kh prevail with respect to increasing the effects of L/B in high values of φ and kh in square footing 
(L/B=1). 
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Fig. 18. Static 3D bearing capacity coefficients related to soil surcharge (N'q) for  

various φ and L/B ratio obtained by DEM (kh = 0) 
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Fig. 19. Seismic 3D bearing capacity coefficients related to soil surcharge (N'q,dyn.) 

 for various φ and L/B ratio obtained by DEM (kh = 0.1g) 
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Fig. 20. Seismic 3D bearing capacity coefficients related to soil surcharge (N'q,dyn.)  

for various φ and L/B ratio obtained by DEM (kh = 0.2g) 
 

In Fig. 22, the values of static 3D bearing capacity coefficients related to soil cohesion (N'c) for 
various soil internal friction angles and footing aspect ratios obtained by DEM are presented. Also, in Fig. 
23 the values of seismic 3D bearing capacity coefficients related to soil cohesion (N'c,dyn.) for various φ and 
L/B ratio are obtained with an assumption of kh = 0.4g. As described previously, the values of N'c,dyn. 
related to other earthquake horizontal accelerations can be estimated by interpolation. Similar to values of 
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N'γ,dyn., the values of N'c,dyn. considerably decrease by increasing the earthquake horizontal acceleration, 
while smoothly decreasing as the foundation aspect ratio is increased. 
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Fig. 21. Seismic 3D bearing capacity coefficients related to soil surcharge (N'q,dyn.) for 

various φ and L/B ratio obtained by DEM (kh = 0.3g & 0.4g) 
 

N'c

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
L/B

φ = 40º

kh = 0 (Static state)

φ : 0º to 40º every 10º

φ = 0º

 
Fig. 22. Static 3D bearing capacity coefficients related to soil cohesion (N'c)  

for various φ and L/B ratio obtained by DEM (kh = 0) 
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Fig. 23. Seismic 3D bearing capacity coefficients related to soil cohesion (N'c,dyn.)  

for various φ and L/B ratio obtained by DEM (kh = 0.4g) 
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7. CONCLUSION 
 

In this research, an analysis based on the discrete element method (DEM) is carried out for determining 
the pseudo-static three dimensional bearing capacity of shallow foundations. The soil mass in the assumed 
three dimensional failure surface is considered as several discrete blocks connected with Winkler springs. 
Using an iteration method, the six angles defining the failure surface geometry are independently varied in 
order to obtain the most critical failure mechanism corresponding to the minimum bearing capacity. The 
formulation of the method is explained and the pseudo-static bearing capacity coefficients for various 
internal friction angles and footing aspect ratios are presented. Also, the results are compared with other 
methods in a 2D state.  

The present method is theoretically more rigorous than classical limit equilibrium analyses; it offers 
more ability in solving bearing capacity problems in complex geometry and loading conditions. The 
results obtained from the present study can be summarised as follows: 

 
1. The bearing capacity coefficients obtained by DEM are highly dependent on the internal friction 

of the soil, especially for φ amounts greater than 30º. 
 
2. For large internal friction angles the bearing capacity coefficients rapidly increase when the 

foundation aspect ratio (L/B) drops to 1, whereas for small internal friction angles the amount of 
increase is much smaller. 

 
3. The Nq and Nc values obtained from exact classical limit solutions are almost identical to DEM 

results which are obtained with an assumption of classical failure surface angles.  
 

4. The critical values of Nq and Nc in DEM are obviously less than classical exact values for φ 
greater than 30º. 

 
5. The seismic 2D bearing capacity coefficients related to soil weight (Nγ,dyn.), soil surcharge (Nq,dyn.), 

and soil cohesion (Nc,dyn.) obtained by DEM are comparatively smaller than those of the other 
methods.  

 
6. The relationship between the seismic 2D bearing capacity coefficients with earthquake horizontal 

acceleration can be expressed by a linear function. 
 

7. In general, the values of seismic 3D bearing capacity coefficients related to soil weight (N'γ,dyn.), 
soil surcharge (N'q,dyn.) and soil cohesion (N'c,dyn.) obtained by DEM, considerably decrease by 
increasing the earthquake horizontal acceleration and smoothly decrease by increasing the 
foundation aspect ratio, with the exception of the N'q,dyn., which increases first with increasing L/B 
for kh greater than about 0.2g and φ greater than about 20º.   
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