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Abstract— Hydrological forecasting is one the most important issues in water resources systems
which helps in dealing with the real time operation, flood and drought warning, and irrigation
scheduling. Recent studies have suggested that the use of data fusion approach instead of using a
single forecast approach may improve the hydrological forecast skill. This paper presents a
comparative assessment of five different methods of data fusions including simple and weighted
averaging; relying on the user’s experience; artificial neural networks; and error analysis, by
applying them in two real case studies. Multiple linear regression, non-parametric K-nearest
neighbour regression, conventional multilayer perceptron, and an artificial neural network
improved for extreme value forecasting are used as individual forecasting methods at each case
study. Conventional data fusing methods as well as a new proposed statistical method based on the
non-parametric K- nearest neighbor model are used for hydrological forecasting. Results of data
fusion approach in two contrasting case studies are thoroughly analyzed and discussed. The results
demonstrate that the use of data fusion could significantly improve forecasts in comparison with
the use of singe models. As a result of this study, it is concluded that time-varying combining
methods which benefit from the use of real-time predictors in their fusion procedure could be more
promising than others. Also, data fusion by K-NN method outperforms conventional methods by
improving forecasts through decreasing the bandwidth of ensemble forecast and error of point
forecast in both case studies.
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1. INTRODUCTION

Data fusion is an emerging area of research that covers a broad spectrum of application areas ranging from
ocean surveillance, strategic warning, and medical diagnosis [1]. The principal objective of data fusion,
which is the process of combining or amalgamating information from multiple sensors and/or data
sources, is to provide a solution that is either more accurate according to some measure of evaluation, or
allows one to make additional inferences above and beyond those that could be achieved through the use
of single source data alone [2]. Data fusion provides new modeling opportunities in the water resources
and hydrology fields. Operational hydrological forecasting, in particular, might benefit from the ability to
combine information derived from multiple sources, such as the individual outputs from different
forecasting models. Data fusion researches are divided into two board groups. The first takes the view that
data fusion is the amalgamation of raw information to produce an output, while the second advocate a
more generalized view of data fusion in which both raw and processed information can be fused into
useful outputs including higher level decision.

Recently, researches such as See and Abrahart [3], Abrahart and See [4], and Shu and Burn [5] have
used model-fusion approaches in hydrological engineering. See and Abrahart [3] used data fusion
approach for continuous river level forecasting where data fusion was the amalgamation of information
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from multiple sensors and different data sources. Abrahart and See [4] evaluated six data fusion strategies
and found that data fusion by an Artificial Neural Network (ANN) model provided the best solution. Shu
and Burn [5] applied artificial neural network ensembles in pooled flood frequency analysis for estimating
the index flood and the 10-year flood quintiles. The data fusion method was used to combine individual
ANN models in order to enhance the final estimation.

This paper provides a comparative assessment of five general methods of data fusion in hydrological
forecasting. Furthermore, a new statistical method based on the non-parametric K-nearest neighbour (K-
NN) simulation is proposed for the purpose of data fusion. Application of these methods is tested in two
contrasting case studies of long-term and short-term hydrological forecasting.

Data fusion is an emerging area of research that covers a broad spectrum of application areas ranging
from ocean surveillance, strategic warning, and medical diagnosis [1]. The principal objective of data
fusion, which is the process of combining or amalgamating information from multiple sensors and/or data
sources, is to provide a solution that is either more accurate according to some measure of evaluation, or
allows one to make additional inferences above and beyond those that could be achieved through the use
of single source data alone [2]. Data fusion provides new modeling opportunities in the water resources
and hydrology fields. Operational hydrological forecasting, in particular, might benefit from the ability to
combine information derived from multiple sources, such as the individual outputs from different
forecasting models. Data fusion researches are divided into two board groups. The first takes the view that
data fusion is the amalgamation of raw information to produce an output, while the second advocate a
more generalized view of data fusion in which both raw and processed information can be fused into
useful outputs including higher level decision.

Recently, researches such as See and Abrahart [3], Abrahart and See [4], and Shu and Burn [5] have
used model-fusion approaches in hydrological engineering. See and Abrahart [3] used data fusion
approach for continuous river level forecasting where data fusion was the amalgamation of information
from multiple sensors and different data sources. Abrahart and See [4] evaluated six data fusion strategies
and found that data fusion by an Artificial Neural Network (ANN) model provided the best solution. Shu
and Burn [5] applied artificial neural network ensembles in pooled flood frequency analysis for estimating
the index flood and the 10-year flood quintiles. The data fusion method was used to combine individual
ANN models in order to enhance the final estimation.

This paper provides a comparative assessment of five general methods of data fusion in hydrological
forecasting. Furthermore, a new statistical method based on the non-parametric K-nearest neighbour (K-
NN) simulation is proposed for the purpose of data fusion. Application of these methods is tested in two
contrasting case studies of long-term and short-term hydrological forecasting.

2. DATA FUSION METHODS
The general equation of a hydrological event forecasting model is
v, =f(X)+e, i=l-,n (1)

where X = vector of predictors, J = forecast variable, £=model error and » = number of observation
data. In the case of using multiple models to forecast y , and considering similar predictors, Eq. (1) is
changed to the following matrix form

Va S(X) €
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where m = number of forecast models used to estimate y., [17 L = matrix of estimations of y provided by
different individual models. Using the data fusion approach, |Y| is sum up to a unique estimation of J .
The following paragraphs describe some of the general methods of data fusion, presented and
implemented by different researchers.

a) Simple and weighted averaging methods (MD1 and MD2)

Linear combination of the outputs of ensemble members is one of the most popular approaches for
combining different outputs. A single output can be created from the combination of the outputs of a set of
models via simple averaging, or a weighted average method that considers the relative performance of
each model. Combining using simple average is defined as:

P, =1mCQ ;) i=l-n 3)
J=

Despite its simplicity, the simple averaging method suffers from the problem of considering equal
weights for individual models. Obviously, the difference in the reliability of individual models is not
considered in simple averaging as all of them are assigned by similar weights in this data fusion method.
To overcome this shortcoming, the method of weighted averaging also known as stacking might be used.
This method is presented by the following equation:

P=>.c, i=ln (4)
j=1

where, ¢ = the weight of each individual model. Under “stacking” an additional attempt is used to learn
how to combine the models by tuning the ¢ weights over the calibration data. To derive ¢ weights, Shu and
Burn [5] suggested minimizing the following function:

m 2
WY ZC./JA/U'
w=y|— | >0 5)
i Yi

The stacking method uses constant weights over the time period of the calibration data set which reduces
the flexibility of the method in facing different hydroclimatological situations that a system might
experience during its operation.

b) Relying on the user's experience (MD3)

In this method, at each step of decision making, instead of combining outputs of different models the
result of just one model is selected, relying on the experience of the last step. Obviously this method is
limited to cases of time series forecasting where predictors are well-correlated. Using this method might
not be suitable for event forecasting.

¢) Using empirical models such as artificial neural networks (MD4)

Empirical models, particularly artificial neural networks (ANNSs) are known as powerful tools for
function mapping. See and Abrahart [3] have suggested the use of ANNSs as a data fusion method. The
general form of this method is
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Where g is a non-linear function which maps outputs of different individual forecast models to a single
output of J, using an ANN model. Like most empirical methods, this method suffers from the lack of
statistical sense in the mechanism of data processing.

d) Method of error analysis (MD35)

In this method, the historical forecasting error of individual models is analyzed to enhance the current
forecast error. A common form of this method is presented as the following equation:

€
~ €| .
Y=y t8(E) [E]= - i=1-,n (7

e.

m

where, e,,=the error of mth model in ith forecast, £ = set of errors of different models and g = a
mapping function such as an ANN model. Performance of this method is limited to the ability of function
mapping by g model.

3. DATA FUSION USING K-NN METHOD

The recognition of the nonlinearity of the underlying dynamics of hydrological processes has spurred the
growth of nonparametric methods in testing streamflow characteristics [6] as well as hydrological
forecasting. Nonparametric estimation of probability densities and regression functions are pursued
through weighted local averages of the dependent variable. This is the foundation for nearest neighbor
methods. K-Nearest Neighbour (K- NN) methods use the similarity (neighbourhood) between observations
of predictors and similar sets of historical observations (successors) to obtain the best estimate for a
dependent variable.

For each instant ¢, let [X j.J (=1,2,3,..., number of observed data) be a P-dimensional feature vector
of past records. A feature vector is a vector that summarizes the past history in a smaller-dimension vector
of observations that contains most of the information relevant to the forecast. To estimate the dependent
variable in time #, y,, the K-NN method imposes a metric on feature vectors to find the set of K past
nearest neighbors of [X _].J .

The K vectors of past observations having the minimum norm among all candidates are obtained. The
distance between the current and historical condition is calculated by the Euclidian [7] or Mahalanobis
distance [8], between current and historical predictors. The most widely used metric to identify neighbors
is the Euclidean norm, which, for a P-dimensional feature vector, is calculated as

. 2 2 2
Dis,, :\/wl(xl,—xu) AW, (X5, =%, ) AW, (X, =X ) ®)

where, w = the weight of predictors in calculating the distance between the current value of predictors and
the neighbors. The forecast is then obtained as a weighted average of the nearest neighbors, such that
greater weight is assigned to the nearer neighbors. A kernel function proposed by Lall &Sharma [9]
defines the weights, leading to a K-NN regression estimate of:

>y,
y, = ©)
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where 7 is the order of the nearest neighbors in which the nearest have the lowest order (i=1 to K) , and y;
is the magnitude of nearest neighbor i. The weights and the number of the neighbors that produce the
lowest mean square error of the forecasting are found by computing the error for all combinations of
weights and K values (from 1 to #-1) through Generalized Cross Validation (GCV) of the calibration data
set, which is defined as [9]:

ief/n

GCV =—*= (10)

2
K
(1—1/21/]}
J=l

where e is the error between observed and predicted data, » is the number of data, and j is the order of the

nearest neighbors based on their distance from the current condition in which the nearest have the lowest
order. The GCV score function is used to choose both K and the weights of the predictors. The weights of
each predictor control the distance between the successors and the current condition and subsequently the
error of forecasting. Parameter K and the weights that provide the minimum GCV are selected.

Using the concept of K-NN, an algorithmic procedure is proposed for data fusion as follows (MD6):

1. Use m individual forecast models to produce #n x m forecasts, where # is the number of observed
data used for calibration.

2. Evaluate individual forecasting models in all » forecast experiences. Compute the matrix of

[A]= [a].j Jmm, where a, =1 if mth model results in the best forecast during ith experience;
otherwise a, =0.
3. At the present time, #, compute m forecasts of y,, using m individual forecast models and develop
Vi
=)t

Vim
/
4. Compute [F] = [A]x [};]: f2

L

5. Use equation 8 to find the distance between present time predictors, [X ,], and the historical
predictors, lX ]J Determine the nearest neighbors from # sets of observed data, such that the
smaller distance is assigned to the nearest neighbour.

6. Forecast the dependent variable by the following equation

A 1 &

Y=g 2 WD, (1n
>/
i=1

where /= the order of the nearest neighbors in which the nearest have the lowest order (i=1 to K), K=

number of nearest neighbours obtained through the generalized cross validation (GCV), and f,= the
magnitude of nearest neighbor i.
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4. DEVELOPMENT OF INDIVIDUAL FORECASTING MODELS
a) Linear multiple regression and K-NN regression models (LMR, and K-NN)

Linear Multiple Regression (MLR) is a multivariate method of forecasting which estimates unknown
coefficients of predictors by performing a least squares fit. In this study, the linear multiple regression is
applied as a forecasting method in the following form:

y=axtax,+---+a,x +c (12)

where, x,70x ,= p predictors of dependent variable y , a,foa, = coefficients of predictors, and c=
constant of the model. Furthermore, a non-parametric regression model, K-NN, is used as described in the
previous section by equations 8 to 10.

b) Conventional and enhanced multilayer perceptron model (MLP and MLP-E)

The application of the artificial neural networks in hydrology has grown rapidly in recent years. The
ANN approach is an effective and efficient way to model forecasting problems. Three- layer feed-forward
networks are known as the networks that are capable of approximating any continuous input-output
mapping. The multi-layer feed-forward network uses supervised training procedure that consists of
providing input-output examples to the network and minimizing the error function £, which is expressed
as follows;

E=1/2>(y,-»,) (13)
p=I
where 7 is the number of input/output data sets, and )A/ , and y, are the observed and forecasted output of
the pth set respectively. In the back propagation (BP) training method, £ is minimized using the steepest
descent method.
Coulibaly et al [10] applied a different form of performance function known as peak flow/low flow
criterion (PLC) to improve the ability of the model in extreme value forecasting. The PLC for an input set
k is specified as

PLC =P, xL, (14)

where Py is the peak flow criterion given by

" 0.25
|:Z (Qpi - Qpi )2 QZ,m :|

i=1

T
(300"

(15)

where 7, is the number of peak flows greater than one-third of the mean peak flow observed, QO ,and Q »
are respectively the observed and the computed flows, and Z; is the low flow criterion, which is given by

0.25
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where »; is the number of low flows lower than one-third of the mean low flow observed, and O and Q,,
are the observed and the computed flows, respectively. The py provides a more accurate measure of the
model performance than the Eq. (14) for the peak flow periods, whereas the Ly is a better performance
indictor for the low flow period. Three-layer feedforward networks trained by Eqs. (13) and (14) are used
in this study.

The schematic of the procedure for data fusion, individual models used in the procedure, and the
methods of data fusion are shown in Fig. 1.

L MD1 | Forecast 1

MLR  (»| Output 1 > MD2  p»{ Forecast2
KNN  |»] output2 | [ MD3  [# Forecast3
Hydroclimatological
Predictors 1
MLP || outputz | [® MD4  [w Forecast4
r—————= I
E-MLP P Output4 [— MD5 Forecast 5

! |
[ ia
! |
: |
Ly MD6 + Forecast 6
! |

Fig. 1. The schematic of the procedure used in this study
5. CASE STUDY I: SEASONAL STREAMFLOW FORECASTING

a) Study area and data

Zayandeh-rud River is the main surface resource for irrigation demands in the central part of Iran,
especially the Isfahan metropolitan area [11]. The Zayandeh-rud reservoir controls the streamflow
upstream of Isfahan. It is the largest surface reservoir on the river with a volume of 1470 million cubic
meters. The location of the Zayandeh-rud reservoir is shown in Fig. 2. Total annual average inflow to the
Zayandeh-rud reservoir is about 1600 million cubic meters, of which, an average annual flow of 600
million cubic meters is transferred from the adjacent Karoon River basin. Seasonal inflow data to the
Zayandeh-rud reservoir for a 32-year period from 1969 to 2001 are used in this study. Streamflow from
April to September (spring and summer streamflow), which is result of the winter snow pack is used as a
predicted variable in this study. Recently, the effect of large scale climate signals such as ENSO and NAO
have been considered as the forcing factors on the climate of Iran [12]. The North Atlantic Oscillation
climate signal, NAO, which seems to be effective for predicting climate variations of the central and
southern parts of Iran, is considered as a predictor of Zayandeh-rud River streamflow [13]. The North
Atlantic Oscillation (NAO) involves a negative correlation in winter months between sea-level pressures
in the subtropical Atlantic high and the Icelandic low. It index is the difference between normalized sea
level pressure over the Azores and Iceland. The usual index is given by the December to March average of
this measure [14]. There is a significant relationship between averaged December to March NAO and
spring (April to June) streamflow. In this study NAO as well as snow budget and winter streamflow, are
used as predictors of spring and summer streamflow.
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Fig. 2. The location map of Zayandeh-rud river and Zayandeh-rud reservoir
b) The results of forecasting in case study 1

The results of applying individual models as well as the data fusion methods are shown in Table 1 and
Table 2, respectively, in cross validation analysis for testing the models on data not used in the calibration.
As shown in Table 1, MLP has resulted in the best point forecast as it has provided forecasts with
minimum root mean square error (RMSE), percent of volume error (%VE), and maximum linear
correlation between the observed and forecast data (CORR). This means that, although MLP-E is a better
model in extreme value forecasting, MLP outperforms the other models according to the overall forecast
of normal and extreme values. MLP has resulted in RMSE, %VE, and CORR, equal to 40, 15.7, and 0.8
respectively.

Data fusion methods have improved the results of individual models as demonstrated in Table 2. The
best forecast is obtained by MD6 as it has resulted in RMSE, %VE, and CORR equal to 37, 14, and 0.95.
It means that the data fusion approach has improved the accuracy of point forecast by 7.5, 11, and 19
percent, according to RMSE, %VE, and CORR statistics, respectively.

Maximum and minimum seasonal streamflow volume in the first study are 1576 MCM and 536
MCM, which have been observed in years 1993, and 2001, respectively. MLP has forecasted dependent
variables in those years as 1853 and 537 MCM. The seasonal streamflow volumes at the same years are
forecasted as 1827 MCM and 765MCM using data fusion approach. This shows that in the first study,
individual models were more successful than data fusion methods in the case of forecasting extreme
values.

Methods of MD6 and MD5 have resulted in the best forecasts among others. MD6 and MD5 benefit
from using current-time predictors in addition to the output of single models as well as timely dynamic
weighting of the single models in their fusion procedure. These benefits are most likely the reasons for the
supremacy of these two methods.

Table 1. The cross validation results of forecasting Zayandeh-rud streamflow using individual models

Models Cross validation
RMSE %VE CORR
MLR 53 37.0 0.34
K-NN 43 15.0 0.74
MLP 40 15.7 0.80
MLP-E 49 18.4 0.70
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Table 2. The result of data fusion in forecasting Zayandeh-rud streamflow using different methods

Cross validation
Methods RMSE %VE CORR
MDI1 41 21 0.80
MD2 37 16 0.89
MD3 39 11 0.84
MD4 38 15 0.90
MD5 29 16 0.92
MD6 37 14 0.95

Furthermore, the maximum and the minimum estimation of the predicted variable developed by MD6 as
well as what is developed by the other methods are shown in Fig. 3. The difference between the maximum
and the minimum estimations, which is the bandwidth of the estimated variables, gives us scenes of
reliability in operational forecasts. As shown in Fig. 3, the bandwidth of forecast developed by MD6 is
narrower than what is provided by the other methods. The average statistic of (j’max_j’mm (where

espeéitivel ;and y is
the observed value of the dependent variable) is calculated as 39.5 percent using the MD6 method. Also,
using the MD6 method, 3 out of 11 observed data are out of the range of the bandwidth provided in Fig.
3b. The same statistic for the MD1 to MDS5 methods is 75.7 percent. Using MD1 and MD5 methods, 2 out

of'the 11 observed data are out of the range of forecasts as shown in Fig. 3a. The results indicate that MD6

V..cand P . are the maximum and the minimum estimations of dependent variable,

is a better model in providing ensemble forecasts with narrower bands, resulting in more reliable
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Fig. 3. The bandwidth of the forecasts developed by MD1 to MD5 (a), and MD6 (b) in case study |
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Where methods of MD1 to MD5 could not make a preference between individual models in real time
forecasting, MDG6 is able to apply a selective choice among the individual models by assessing the
experience of previous forecasts. It should be noticed that in contrast with the MD3 method, MD6
considers not only the forecast experienced in the previous time step, but also the forecasts experienced in
the history of application of the individual models. This is the reason for the supremacy of MD6 in
providing ensemble forecasts with a minimum bias and narrower-band.

6. CASE STUDY II: FLOOD PEAK DISCHARGE FORECASTING

Flooding of the Red River in Manitoba, Canada, typically results from snowmelt, often in combination
with spring precipitation events. The nature of the red river, with its headwater in the USA, results in
considerable warning of pending flood events within the Canadian portion of the watershed [15]. The low
slope of the red river channel, and the consequent low water velocities, facilitates advanced warning of
flood conditions. Major flood events in the Red River valley occurred in 1950, 1979 and 1996, in addition
to the 1997 flood. In 1997, the red river experienced a major flood, which has increased the need for flood
forecasting in the region.

Major casual parameters of the red river flood, based on previous flood studies, are [16]: 1) index of
soil moisture at freeze-up the previous autumn, based on weighted basin precipitation from May to
October; 2) Average degree-days per day at Grand Forks during the active melt period; 3) Total basin
precipitation from 1 November of the previous year to the start of active melt during the flood year; 4)
Total basin precipitation from the start of active spring melts to the date of the spring crest at the Emerson;
and 5) the Index of the south-north time phasing of the runoff based on the percentage of tributary peaks
experienced on the date of the mainstream peak at specific points from Halstad to the City of Winnipeg
(percent of worst possible). The 40 years of annual peak discharge data from 1940 to 1979 are used for
model calibration and 20 years of data from 1980 to 1999 are used for model validation.

a) The results of forecasting in case study Il

Results of flood forecasting in the Red River using the individual models are shown in Table 3. The
results are shown in both calibration and validation. As it is demonstrated in the table, conventional MLP
and enhanced MLP (MLP-E) models have resulted in the best forecasts as they provided forecasts with
minimum RMSE and %VE and maximum CORR. Conventional MLP is better than MLP-E in calibration,
whereas MLP-E is a better model in validation. Minimum RMSE and % VE, and maximum CORR in the
validation data set are obtained by MLP-E, which are 7, 18, and 0.9, respectively. This might be because
of extreme values occurring in the validation period of the flood data.

Table 3. The results of forecasting the Red river floods using individual models

Models Calibration Validation
RMSE %VE CORR RMSE %VE CORR
MLR 11 27.1 0.78 9 30.1 0.84
K-NN 26 43.1 0.48 23 28.5 0.68
MLP 6.2 14.0 0.85 9 43.0 0.86
MLP-E 6.4 17.5 0.84 7 18 0.90

Results of data fusion using 6 different methods are shown in Table 4. As demonstrated in this table, the
overall accuracy of the forecast has been significantly improved. The results of MD6 are better than others
as it provides forecast with minimum RMSE and %VE, and Maximum CORR. MD6 resulted in RMSE,
%VE, and CORR equal to 7, 16, and 0.92. This means that the data fusion approach has improved the
accuracy of point forecast by 11 and 2 percent, according to % VE, and CORR statistics, respectively.

The bandwidth of forecasts using MD1 through MD35 as well as MD®6 is shown in Fig. 4. The average
statistic of [);max —)A/m,»nj (as discussed in a previous case study) is calculated as 72.8 percent using the

Y
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MD6 method. Using MD6 method, 1 out of 20 observed data are out of range of the bandwidth provided
in Fig. 4b. The same statistic for the MD1 to MD5 methods is 108.5 percent. Using MD1 to MD5
methods, 4 out of 20 observed data are out of the range of forecasts as shown in Fig. 4b. The results
indicate that MD®6 is a better model in providing ensemble forecasts with narrower bands.

Table 4. The result of data fusion methods for flood forecasting in the Red river

Methods Calibration Validation
RMSE %VE CORR RMSE %VE CORR
MD1 7.7 20.1 0.88 7.8 25.8 0.90
MD2 6.5 13.5 0.90 7 17 0.91
MD3 7.6 18.8 0.78 9 19.8 0.84
MD4 2.1 7.4 0.91 12 36.9 0.88
MD5 0.2 0.1 0.90 9 494 0.86
MD6 ———- -———= -———= 7 16 0.92
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Fig. 4. The bandwidth of the forecasts developed by MD1 to MDS5 (a), and MD®6 (b) in case study II.

7. SUMMARY AND CONCLUSION

This paper investigated the application of multi-data fusion approach into the hydrological forecasting
using six methods, including a new method based on the K-nearest neighbour algorithm. Two statistical
and two empirical models were used to forecast seasonal inflow to the Zyandeh-rud reservoir in Iran and
flood discharge in the Red River, Canada. Multiple linear regression, non-parametric K-nearest neighbour
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regression, conventional multilayer perceptron, and an artificial neural network improved for extreme
value forecasting was used for this purpose. The improved accuracy of forecasts resulted by data fusion
methods confirmed that the combined forecasts outperform forecasts of individual models in both case
studies. Another aim of the paper was to examine the ability of the proposed K-NN-based method in
comparison with the other methods. The results demonstrated that the proposed method outperforms other
methods in both cases. Also, the method based on the analysis of previous forecast errors was
distinguished as another good method in data fusion. It is concluded that time-varying combining methods
which benefit from the use of real-time predictors in their fusion procedure could be more promising than
others. Furthermore, K-NN improved the reliability of real time forecasts by decreasing the bandwidth of
the ensemble forecast in both cases. The proposed K-NN-based method has the potential to sum up
individual models in a probabilistic manner, which could be considered in future studies.
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