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Abstract— In this paper a method for the vibration analysis of proportional asymmetric shear wall
structures is presented. The whole structure is assumed as an equivalent bending-warping torsion
beam in this method. The governing differential equations of equivalent bending-warping torsion
beam are formulated using the continuum approach and are posed in the form of a simple storey
transfer matrix. By using the storey transfer matrices and point transfer matrices, which take into
account the inertial forces, the system transfer matrix is obtained. Natural frequencies can be
calculated by applying the boundary conditions. The structural properties of the building may
change in the proposed method. A numerical example has been solved and presented at the end of
the study by means of a program written in MATLAB to verify the method that is being proposed.
The results of this example display the agreement between the proposed method and the other
valid method given in the literature.
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1. INTRODUCTION

A number of methods, such as finite element method, have been developed for the analyses of buildings.
The continuum model is a very simple and efficient method used in the static and dynamic analysis of
shear wall-frame buildings.

There are numerous studies [1-43] in the literature regarding the continuum method.

Rosman [1] proposed a continuum medium method for a pair of high rise coupled shear walls.
Heidebrecht and Stafford Smith [2] derived the differential equations of a system for buildings with
uniform stiffness along their height and then obtained closed-form solutions for uniform and triangular
static lateral load distributions.

Zalka [18] derived simplified expressions for the circular frequency of wall-frame buildings. Kuang
and Ng [14] considered the problem of doubly asymmetric structures, in which the motion is dominated
by shear walls. For the analysis, the structure was replaced by an equivalent uniform cantilever whose
deformation was coupled in flexure and warping torsion. An approximation method for estimating floor
acceleration demands in multistory buildings subjected to earthquake ground motions has been developed
in a recent study by Miranda and Taghavi [30]. The dynamic properties of multistory buildings were
approximated using the equivalent continuum model consisting of a flexural cantilever beam and a shear
cantilever beam that were assumed to be connected by an infinite number of axially rigid members in the
proposed method. The dimensionless parameter, which controls the degree of overall flexural and overall
shear deformations, was presented in the simplified model of buildings. In a companion paper [32], the
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accuracy of the methodology was evaluated by comparing the results of the approximation method with
the computed response by using detailed finite element analyses for two generic buildings; and then the
results were compared to the recorded accelerations for the case of the four instrumented buildings.

Rafezy et al. [35] proposed a global approach to the calculation of natural frequencies of doubly
asymmetric, three dimensional, multi-bay, and multi-storey frame structures. It was assumed that the
primary frames of the original structure ran in two original directions and that their properties may have
varied in a step-wise fashion at one or more storey levels. The structure was therefore divided naturally
into uniform segments according to changes in section properties.

A typical segment was then replaced by an equivalent shear-flexure-torsion coupled beam, whose
governing differential equations were formulated using the continuum approach and being posed in the
form of a dynamic member stiffness matrix.

Kuang and Ng [42] derived the governing equation and the corresponding eigenvalue problem of
asymmetric frame structures using the continuum assumption. A method for a theoretical solution was
proposed and a general solution to the eigenvalue equation of the problem was presented for determining
the coupled natural frequencies and associated mode shapes based on the theory of differential equations.

Bozdogan [44] proposed the Transfer Matrix method for lateral static and dynamic analyses of wall-
frame buildings. Step changes of properties along the height of the structure were not allowed in any of
the studies with the exception of Rafezy and Howson’s and Bozdogan’s work.

A method for the vibration analysis of proportional asymmetric shear wall structures is suggested in
this study. The following assumptions are made in this study; the behavior of the material is linear elastic,
small displacement theory is valid, P-delta effects are negligible, the flexural rigidity and geometric center
at each floor is assumed to lie on a vertical line through the height of the structures, the shear deformations
of walls are negligible and the floor system is rigid in its plane.

2. ANALYSIS
a) Transfer matrix method

As the number of constants to be determined by the use of boundary conditions increases in various
engineering problems, the computations become more tedious and the possibility of making errors
increases. Therefore, ways of reducing the number of constants to a minimum number is required and the
transfer matrix method makes this possible. The main principle of this theory, which is applied to
problems with one variable, is to convert all the boundary value problems into problems of initial values.
Thus new constants that may result from the use of intermediate condition are eliminated. Therefore, it can
be stated as a method of expressing the equations in terms of the initial constants and that this method
makes no distinction between the so-called determinate and indeterminate problems of elastomechanics
[45]. The transfer matrix method is an efficient and easily computerized method and it also provides a fast
and practical solution since the dimensions of the matrix for elements and the system never change [46].

b) Physical model

Figures 1 and 2 show a typical floor plan of asymmetric, three dimensional shear wall structures and
deformations of flexural center [14]. If shear deformations are ignored, shear wall structures demonstrate
the bending-warping torsional beam behavior. The differential equation of this equivalent bending —
warping torsional beam can be initially written.
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Fig. 1. Typical floor plan of asymmetric frame structures [14]

Fig. 2. Coupled translational-torsional vibration of the structure
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¢) Storey transfer Matrices

Under the horizontal loads governing equations of the ith storey can be written as:

d4ui
(&N K 0 (M
d4vi
D,y =0 @
1
d49i
Dy 3

where u; and v; are the lateral deflections of the flexural center, respectively, 6; is the torsional rotation of
the floor plan about flexural rigidity at the given height, and z is the vertical axis of each storey (Fig. 2).
(ED)« and (El)y; are the equivalent flexural rigidity of the storey for wall structures in x and y directions
and can be calculated as follows [14, 41]:

El, = Z El,, El, = Z El,, “)
J J

Where j is the number of the bent .
(EDy, are the warping stiffness of ith storey and can be calculated as follows [14];

(D) = %][(y 0 ED = x,) (ED),, ] (5)

where v, and «x  are the coordinates at the location of the center of flexural rigidity of the jth bent at
o

ith storey in a coordinate system ( y Iy ).
J

v, and x are the coordinate of the flexural center and can be calculated as follows [14]:
o

>y, (ED),
Y TS ED, ©
_ z ;Cf (EI )y/
NS D, v

J
When Egs. (1), (2) and (3) are solved with respect to the z, ui(z) and vi(z) and 8;(z) can be obtained as
follows:

3 2
u(z;)=c,z; +¢z, +eo,z, +¢ (®)
3 2
vi(z,)=cyz +c,z7 ez, +cs )
3 2
0,(z,) =z, +¢,2 +¢0z; T ¢ (10)
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where ¢y, ¢, €3, C4, Cs, Cg,C7, Cs, Co, C10, C11, €12 are integral constants. By using Egs. (8), (9) and (10), the
rotation angles in x and y direction (u;’,v;’) , the rate of twist (6;”), bending moments in x and y directions
(Myi, My;) and bi-moment (M,), shear forces in x and y directions (Vy;,V,i) and torque (T; ) for ith storey
can be obtained as follows:

! 2
u (z,)=3c,z, +2¢,z, +c, (11)
! 2
v, (z,) =3¢z, +2¢,z, + ¢, (12)
' 2
0i(z;)=3c,z;” +2¢,,z, + ¢ (13)
dzu_
M = (EI L-(ED) (2c_+6
xi(zi) ( )xi 2 ( )xi( “ c4zi) (14)
dz .
1
dzv_
M = (EI L—(ED) (2c_ +6c
yi(zl.) ( )yid 5 ( )yi( ; 8zl.) (15)
%
d2e.
M (z)=(EI L-(E) (2¢. +6c z
Wi = ED 2 (ED 26y 6657 (16)
dz .
1
d3u,
1
V o(z)=(El) . = (EI) 6¢ (17)
xi i Xi xi 4
dz.
l
d3v.
1
Vo(z)=(ED . = (EI) 6c (18)
yii Vi yvi 8
dz .
1
d39i
T =(EI = (EI 6
i(zl.) ( )Wl. ( )Wl. €10 (19)
dz .
1
Equation (20) shows the matrix form of the Egs. (8)-(19):
1= 22 3 00 0 o0 00 0 o0
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At the starting point of the storey for z=0, Eq. (20) can be written as:

- u0)
v.(0) g
0.0) c,
u; (0) G
v/0) “
\ %
50 =40 ¢ 1)
Mxi(o) ¢
MO 3
Mw1(0) %
O [qa]
The vector in the right-hand side of Eq. (21) can be shown as follows:
t
C{cl €2 %3 €4 %5 %7 8% 10 ‘11 12 J (22)

When vector ¢ is solved by implementing Eq. (21) and then substituted in Eq. (20), Eq. (23) is obtained.

[ u(z) i i u(0) 1 T (0) i
Vi(zi) Vl.(O) Vl.(o)
o) 50 | | 90
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Vi) v || o
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Xl 1 X1l Xl
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T; represents the storey transfer matrix for z=h; in Eq. (23).
The storey transfer matrices obtained from Eq. (23) can be used for the dynamic analysis of the
proportional asymmetric wall structures.
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Fig. 3. Free body diagram for a typical floor

When considering the inertial forces in the storey levels (Fig. 3), the relationship between the shear forces
of under the floor and above the floor can be written as;

vy Ry b mo?w -y 0) (24)
X1 X1 1 1 C 1
vV _R =V .L +m.a)2(v_ +x 0) (25)
yi yi i i ci

Rl 2mole (26)

1 1 m 1 1

Bending moments in x and y directions (Myi, My;), bi-moment (M,;) are the same in both sides of the
floor.
By continuity, the displacement and the slope on both sides of the floor must be the same:

uR = uL 27
1 1
v.R = v.L (28)
1 1
0 ~o" (29)
ROL
ujp =u;j (30)
R L
Vi =V (€2))
R L
0; =6 (32)

Therefore, when considering the inertial forces in the storey levels, the relationship between the ith and the
(i+1)th stories can be shown by the following matrix equation;
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uh) 4 0)
() 1 0 0 0000000000 | ¢
o) 0 1 0 000000000 | 50
i 0 0 1 000000000 4
u; (h,) 0 0 0 100000000 u; (0)
) 0 0 0 010000000 | ‘¢
P 0 0 0 001000000 !
6.(h) |_ 6.(0
A G ) 0 0 OOOlOOOOOTi’() 33)
M () 0 0 0 000010000| [M(O

M _(h) 0 0 0 000001000[ |M(©0)
o *m 0 —aPmy 000000100 -

M (h) i e M (0)
v (h) 0 m &mx 000000010| |V
Xl 1 1 1 C Xl
Pk ~Pmy oPmx oPmr 2 000000001 V0

C 1 C Im
) 70

where m; is the mass of the ith storey and o are the natural frequencies of the system and r,,” is the inertial
radius of gyration, and can be calculated as [14, 41];

2 2
L+ B
SRR SN S (34)

m 12 c c

y.and X, are the dimensions of the location of the geometric center and can be calculated as follows:

Y.TYe Vo (35)

X = xe—xg (36)

c

where the coordinate (y,, x ) is the location of the geometric center C in the coordinate system (y,
C

x ). y,and x, is the location of the flexural center O in the coordinate system (y, x ).

Dynamic transfer matrix can be shown as Ty; .

o 0 0 00000000 O]
0 1 0 000000000
0 0 I 000000000
0 0 0 100000000
0 0 0 010000000
0 0 0 001000000
| o 0 0 000100000|p
di 0 0 0 0000100001 (37)
0 0 0 000001000
a)zml, 0 —a)zmly000000100
0 a)zml. a)zmGCOOOOOOOIO
—Pmy oPmx Pmr> 000000001
L e ic im _
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The displacements - internal forces relationship between the base and the top of the structure can be found
as follows:

_ ut _ i .
op u
Vt base
0,
t9t P Vbase
' op base
Utop Upase
Vtop Vbase
9t0p =T *T * T *...... " *T Obase
dn dn-1) di a2 dil M
xtop xbase
. " (38)
Jtop ybase
wtop Vwbase
V xbase
xtop
|14
V ybase
ytop
T L base |
| top |

The boundary conditions of the bending- warping beam are:

1) ubase=0 2) Vbase=0 3) 6basezo 4) uIbasezo 5) VIbasezo 6) erasezo
7) Mytop=0  8) Myiopy=0 9) Mytop=0 10) Vyop=0 11) Vy4o,=0 12) Tyo,=0
When boundary conditions are considered for equation (38) for the nontrivial solution of
t, =T T, Ty Ty - €quation (39) can be attained:
dn

[4(7,7)  1(7.8) 1(7.9) «(7,10) «(711) (7,12) ]
t(8,7) (88 (89 #810) @811 1(8,12)
t9,7)  1(9.8) 19.9) t(9,10) (9.11) #(9,12) (39)
1(10,7) £(10,8) #(10,9) #(10,10) #(10,11) #(10,12)
t(11,7) t(118) #(119) ¢(11,10) ¢(ALI1) ¢(11,12)
11(12,7) 1(12,8) #(12,9) 1(12,10) #(12,11) #(12,12)]

The values of ®, which set the determinant to zero, are natural frequencies of the asymmetric wall
building.

3. PROCESS OF COMPUTATION

The process of the computation for the transfer matrix method is presented below:

1. The equivalent rigidities of each storey are calculated using the geometric and the material properties of
the structure.

2. Storey transfer matrices are calculated for each storey by using the equivalent rigidities.

3. System transfer matrix (equation 38) is obtained with the help of storey transfer matrices and inertia
forces effecting the storey levels with the procedure specified in section 3.

4) The nontrivial equation is obtained using Eq. (39) as a result of the application of the boundary
conditions.
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5) The angular frequencies and relevant periods are found with the help of a method obtained from
numerical analysis (Newton-Raphson, Regula Falsi etc.).

6) The modes are found with the help of the angular frequency and the equation (33).

7) The effective mass ratio (M) and participation factor (I') can be found as,

& 2 & 2
[X (mo. )] [X (mo. )]
=1 1 Ixn iz i ixn
M = = (40) M = = (41)
S 2 2 S 2 2
igl(mi‘bixn e T o0 igl(mi‘bixn e T o0
N N
m® m®
; (mi ixn) ; (mi z'yn)
ro- i= 2 r - i= (43)
S A 2 2 moE 2 2 2
L m @yt ) ; e P n M i)

1

= i

Where N is the number of storey @ is the mod shape.

8) With the help of the acceleration and the displacement spectrums, obtained from an earthquake record
or design spectrum from codes, the displacement and internal forces are found using the effective mass
and the participation factor.

4. ANUMERICAL EXAMPLE

A numerical example has been solved by a program written in MATLAB to verify the proposed method in
this part of the study. The results are then compared with those given in the literature.

Example 1. A typical asymmetric shear-wall system (Fig 1) is analyzed as an example. The general multi-
bent is considered as an asymmetric reinforced concrete shear-wall building (Fig.1). The structure has 25
storeys with total height H=75 m, and floor dimensions L.=24 m and B=24 m. The structure consists of
eight walls 0.25-m thick and 6 m long (a=6 m). An elastic modulus is E=20*10° kN/m” and the density of
the floor slabs is p=2.350 kg/m’. The structural properties are given in Table 1. The natural frequencies
calculated by this method are compared with the results in the reference [14]. The results are presented in
Table 2.

Table 1. Structural properties of asymmetric shear wall structures

Structural properties of asymmetric frame structures
(EI), 990.70*10° kNm’
(ED), 574.53%10° KNm”
(ED)y 136.66*10° kNm"
Xe 4.463 m
Yo -7.631 m
m 202.980 kNsn’/m
I 13.1966 m
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Table 2. Comparison of natural frequencies in Example 1

Natural frequencies of the first three modes )
Proposed Method Kuang and Ng ETABS (Kuang and Ng)
Mode 0] ®, ;3 0] ®, ;3 0] ®, ;3
1 1.560 1.927 3.696 1.622 2.004 3.843 1.592 1.963 3.753
2 9.782 12.085 23.180 10.163 12.556 24.083 9.794 12.207 22.906
3 27.411 33.864 53.757 28.457 35.156 67.432 27.292 33.395 63.724
5

B Proposed Method

BETABS

W Kuang ve Ng

Fig. 4. Comparison of natural frequencies of the first mode

30

M Proposed Method

5 mETABS

0 m Kuang ve Ng

Fig. 5. Comparison of natural frequencies of the second mode

80 -
60 -
40 B Proposed Method
20 HETABS
0- H Kuang ve Ng

Fig. 6. Comparison of natural frequencies of the third mode
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5. CONCLUSION

This paper presents a method for the vibration analysis of proportional asymmetric shear wall structures.
The whole structure is assumed as an equivalent bending —warping torsion beam in this method. The
governing differential equations of equivalent bending-warping torsion beam are formulated using the
continuum approach and are posed in the form of the simple storey transfer matrix. By using the storey
transfer matrices and the point transfer matrices which take into account the inertial forces, the system
transfer matrix is obtained. Natural frequencies can be calculated by applying the boundary conditions.
The example solved in this study shows that the results obtained from the proposed method are in close
agreement with the solution that was developed in the literature. In the proposed method the structural
properties of a building may change and different numerical examples can also be solved. The proposed
method is simple and accurate enough to be used both at the concept design stage and for final analyses.
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