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The high temperature flow behavior of additively manufactured 316L stainless steel was 

investigated in this study by hot compression tests at the temperatures of 973, 1073, 1173 and 

1273 K and strain rates of 0.001-0.1 s-1. Constitutive models consisting of Johnson-Cook and 

Arrhenius-type were employed. The results indicated that the Arrhenius-type constitutive 

equation had higher accuracy than the Johnson-Cook model, but these constitutive models could 

not predict (i) the strength levels at all temperatures and strain rates, and (ii) the flow 

hardening/softening behavior, accurately. Therefore, an artificial neural network with a feed-

forward back propagation learning algorithm has been established to predict the high temperature 

flow behavior of additively manufactured 316L stainless steel. This model includes three layers 

namely the input layer, the hidden layer (with 20 neurons), and the output layer. The input data 

consisted of true strain (ε), strain rate (ε̇), and deformation temperature (T) while the predicted 

flow stress (σ) was the output data. In order to evaluate the performance of employed models, 

standard statistical parameters such as the average absolute relative error (AARE), root mean 

square error (RMSE) and correlation coefficients (R) were used. The results showed that the 

artificial neural network model was more accurate than the constitutive equations in predicting 

the high temperature flow behavior of additively manufactured 316L stainless steel. 
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1. Introduction 

 

Additive manufacturing (AM) capable of building 

parts from 3D computer-aided-design (CAD) data [1, 2] 

has been developed significantly in the past two decades. 

In this method, a wide range of materials including 

polymers, ceramics and metals can be produced [3]. 

Additive manufacturing is popular due to its particular 

properties, such as production of complex geometry 
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components, lower material wastage and reduction or 

elimination of post-processes [4]. One of the most 

important powder bed additive manufacturing 

technologies is selective laser melting (SLM) which uses 

a focused laser beam to bind powders together in a layer 

under a protective atmosphere and this process is 

repeated for each layer until the final part is completed 

[5-7]. The high cooling rates (103-108 K/s) of SLM leads 

to fine microstructure which enhances strength and 
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ductility [8, 9]. The 316L stainless steel is a popular alloy 

that has been widely used in several applications such as 

marine, biomedical and the petrochemical industry [10, 

11] due to its mechanical properties and excellent 

corrosion resistance [2]. 

Mathematical simulation and modeling of high 

temperature flow stress are very important in optimizing 

the hot working processes [12, 13]. Various constitutive 

equations, consisting of phenomenological and physical-

based models, have been developed to predict the flow 

behavior of different materials [14]. The capability of 

constitutive models has been investigated for different 

types of steels by many researchers [15-18]. The 

Johnson-Cook model [19] is one of the famous 

phenomenological constitutive models, the capability of 

which has been assessed in the case of magnesium alloys 

[20, 21], aluminum alloys [22, 23], various grades of 

steels [24-28] and titanium alloys [29, 30]. The Johnson-

Cook model expresses the dependence of flow stress on 

imposed strain, strain rate and deformation temperature 

[14]. Another phenomenological constitutive model is 

hyperbolic sine Arrhenius-type [31] which has been 

successfully utilized in predicting the hot flow behavior 

of materials [32]. Abbasi-Bani et al. [20] applied the 

Johnson-Cook and Arrhenius-type models for flow 

stress prediction of the Mg-6Al-Zn alloy, the results of 

which showed that Arrhenius-type equation is more 

accurate than Johnson-Cook model. 

The parameters affecting flow stress have a non-

linear relationship. Therefore, an accurate model is 

needed to predict the flow behavior of materials during 

hot deformation [33]. Artificial neural network (ANN) is 

an artificial intelligence method that is appropriate to 

extract non-linear and complex relationships. ANN 

learns from training data and recognizes patterns without 

any physical knowledge about deformation parameters. 

The main advantage of the ANN model is that there is 

no need to postulate any mathematical models [34-37]. 

ANN has been successfully utilized in accurately 

predicting hot deformation behavior of materials [38-

40]. Yang et al. [41] used a feed-forward back 

propagation ANN model to predict the high temperature 

flow behavior of 7075 Aluminum alloy. Rezaei-Ashtiani 

et al. [32] predicted the hot deformation behavior of Al-

Cu-Mg-Pb alloy through the Johnson-Cook, Arrhenius-

type and ANN models, and the results indicated that the 

ANN model is more accurate than the phenomenological 

constitutive models. 

The present study has compared the capability of 

phenomenological constitutive models (Johnson-Cook 

and Arrhenius-type) and an artificial neural network 

model with a back propagation learning algorithm to 

predict the hot flow behavior of SLMed 316L stainless 

steel. The predictability of these models was evaluated 

by using standard statistical parameters. The outcomes 

are expected to increase knowledge regarding the post-

processing routes and servicing capability of additively 

manufactured steels. 

 

2. Experimental Procedure 
 

In this study, the NOURA M100 SLM machine was 

employed to fabricate the specimens. The SLM process 

parameters such as scanning speed, maximum laser 

power, hatch spacing and layer thickness are shown in 

Table 1. The process was carried out under the protective 

atmosphere of argon gas. The manufactured specimens 

were formed in a 8 mm by 12 mm cylindrical shape 

(according to the ASTM-E209 standard [42]). Gas-

atomized 316L stainless steel powders with spherical 

morphology and average diameter of 45 μm were 

utilized as the starting material of SLM process. The 

chemical composition of 316L stainless steel powder is 

given in Table 2. 

 
Table 1. The SLM process parameters 

Scanning speed(mm/s) Maximum laser power(w) Hatch spacing(μm) Layer thickness(μm) No. of Layer 

750 300 75 30 402 

 
Table 2. The chemical composition of gas-atomized 316L powders 

Element Cr Ni Mo Mn Si C P Fe 

wt.% 17.13 11.1 2.4 1.4 0.45 0.03 0.029 Balance 
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The hot compression tests were conducted at the 

temperatures of 973-1273 K under the strain rates of 

0.001, 0.01 and 0.1 s-1. The cylindrical specimens were 

preheated at deformation temperatures and were held for 

5 min to eliminate the temperature gradient. Thin mica 

sheets were utilized to reduce the friction effects. The 

specimens deformed up to the true strain of 0.6 and after 

deformation, they were immediately quenched into 

water. 

 
3. Results and Discussion 

 
3.1. High temperature flow stress curves 

The true stress-true strain curves of SLMed 316L 

stainless steel gained from the hot compression tests at 

the temperatures of 973-1273 K and strain rates of 0.001, 

0.01 and 0.1 s-1 are shown in Fig. 1. It can be seen that 

the flow stress decreases by increasing temperature and 

decreasing strain rate. In the initial process of 

deformation, dislocation multiplication causes the work 

hardening and then flow stress increases to a peak point 

which indicates the occurrence of dynamic 

recrystallization (DRX). The flow, curves without an 

obvious peak point with a steady state regime, which 

generally illustrates the dynamic recovery (DRV) [43, 

44]. As is observed in Fig. 1(a), the flow stress decreases 

by increasing the strain rate. This anomalous behavior 

indicates the dynamic strain aging (DSA) phenomenon 

[45]. Due to DSA, the negative strain rate sensitivity has 

been seen at the temperature of 973 K. The (i) negative 

strain rate sensitivity and (ii) serrated flow curve are 

considered as the main clues for the occurrence of 

dynamic strain ageing. In some cases, the serration may 

be too fine to be observed at specified thermomechanical 

conditions [46, 47]. 

 
3.2. Johnson-Cook model 

The Johnson-Cook equation shows the imapct of 

deformation temperature (𝑇), strain rate (𝜀̇) and strain (𝜀) 

on flow stress (𝜎) as follows: 

 
𝜎 = (𝐴 + 𝐵𝜀)(1 + 𝐶ln𝜀̇∗)(1 − 𝑇∗) (1) 

 

where A is the yield stress at reference strain rate and 

 
Fig. 1. The high temperature flow behavior of SLMed 316L 
stainless steel at the temperature of (a) 973 K, (b) 1073 K,  

(c) 1173 K, and (d) 1273 K. 
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reference temperature (A=136.173 MPa), B is strain 

hardening coefficient, n is strain hardening exponent, C 

is strain rate hardening coefficient, and m is thermal 

softening exponent. Additionally, 𝜀̇∗ = 𝜀̇/𝜀̇ is 

dimensionless strain rate and 𝜀̇ is the reference strain 

rate while 𝑇∗ = (𝑇 − 𝑇)/(𝑇 − 𝑇)  represents 

homologous temperature with 𝑇 being the reference 

temperature, and 𝑇 the melting temperature (1659 K for 

the experimental alloy). In this investigation, 0.001 s-1 

(lowest strain rate) and 973 K (lowest temperature) are 

taken as reference strain rates (𝜀̇) and reference 

temperatures (𝑇), respectively. At the reference 

temperature and strain rate, Eq. (1) can be simplified as: 

 
𝜎 = 𝐴 + 𝐵𝜀 (2) 

 

Taking the natural logarithm on both sides of Eq. (2) 

gives: 

 
ln(𝜎 − 𝐴) = ln𝐵 + 𝑛ln𝜀 (3) 

 

In order to calculate the constants n and B, the 

relationship between ln(𝜎 − 𝐴)  and ln𝜀 is plotted in 

Fig. 2. Constants n and B can be gained from the slope 

and intercept of the fitting line in the ln(𝜎 − 𝐴) - ln𝜀 

plot. Accordingly, n and B are calculated to be 0.144 and 

296.397 MPa, respectively. When the temperature is 973 K, 

Eq. (1) can be written as follows: 

 
𝜎

𝐴 + 𝐵𝜀
= 1 + 𝐶ln𝜀̇∗ (4) 

 

The relationship between 𝜎/(𝐴 + 𝐵𝜀) and ln𝜀̇∗ for 

series of strains (0.1-0.5) is shown in Fig. 3. The value 

of C is obtained from the slope of the fitting line in Fig. 3, 

which is equal to -0.015. When the strain rate is 0.001 s-1, 

Eq. (1) can be expressed as: 

 
𝜎

𝐴 + 𝐵𝜀
= 1 − 𝑇∗ (5) 

 

Taking the natural logarithm on both sides of Eq. (5) 

results in: 
 

ln ቂ1 −
𝜎

𝐴 + 𝐵𝜀ቃ = 𝑚ln𝑇∗ (6) 

 
Fig. 2. The relationship between ln(𝜎 − 𝐴)  and ln𝜀 at the 

reference temperature and reference strain rate. 
 

Fig. 3. The relationship between 𝜎/(𝐴 + 𝐵𝜀) and ln𝜀̇∗ at the 
reference temperature (973 K). 

 

By substituting the values of flow stresses at different 

strains under deformation temperatures (973, 1073, 

1173, and 1273 K) into Eq. (6), the relationship between 

ln[1 − 𝜎/(𝐴 + 𝐵𝜀)] and ln𝑇∗ is plotted in Fig. 4. The 

material constant m is calculated as 0.806 by linear 

fitting method. After determining the constants of the 

Johnson-Cook model, Eq. (1) can be summarized as: 

 
𝜎 = (136.173 + 296.397𝜀.ଵସସ଼) 

         (1 + (−0.0159)ln𝜀̇∗)(1 − 𝑇∗.଼) 
(7) 

 

The comparisons between the experimental and 

predicted flow stress values by the Johnson-Cook model 

are shown in Fig. 5. As observed, this model is incapable 

of accurately predicting the flow stress over the whole  
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Fig. 4. The relationship between ln[1 − 𝜎/(𝐴 + 𝐵𝜀)]  and 
ln𝑇∗ at the reference strain rate (0.001 s-1). 

 

temperatures and strain rates. Prediction can only be 

acceptable in reference temperature and strain rates. 

Furthermore, the Johnson-Cook model cannot predict 

the flow softening behavior of materials. 

 
3.3. Arrhenius-type model 

The influence of temperature (𝑇) and strain rate (𝜀̇) 

on flow stress (𝜎) can be represented by the Arrhenius-

type model as follows: 

 

𝜀̇ = 𝐴ଵ𝜎భ exp ൬−
𝑄

𝑅𝑇
൰                  (𝛼𝜎 < 0.8) (8) 

𝜀̇ = 𝐴ଶ exp(𝛽𝜎) exp ൬−
𝑄

𝑅𝑇
൰        (𝛼𝜎 > 1.2) (9) 

𝜀̇ = 𝐴[sinh (𝛼𝜎)] exp ൬−
𝑄

𝑅𝑇
൰  (𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎)  (10) 

 

where Q is the activation energy (kJ/mol), R is the 

universal gas constant (8.314 J/mol.K) and A1, A2, A, n1, 

n, β, and α are the material constants. 

In addition, the Zener-Hollomon parameter (Z) can 

be used to describe the relationship between 

temperature, strain rate and deformation behaviors as 

shown in Eq. (11). 

 

𝑍 = 𝜀̇ exp ൬
𝑄

𝑅𝑇
൰    (11) 

 

In order to determine the material constants, the strain 

of 0.2 and corresponding flow stress values were chosen  

 
Fig. 5. The comparisons between the experimental and 

predicted flow stress values by the Johnson-Cook model 
under the strain rate of (a) 0.001s-1, (b) 0.01 s-1, and (c) 0.1 s-1. 

 

at different strain rates and deformation temperatures. 

Taking the natural logarithm on both sides of Eq. (8) and 

Eq. (9), leads to: 
 

ln𝜀̇ = ln𝐴ଵ + 𝑛ଵln𝜎 − ൬
𝑄

𝑅𝑇
൰ (12) 
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ln𝜀̇ = ln𝐴ଶ + 𝛽𝜎 − ൬
𝑄

𝑅𝑇
൰ (13) 

 

The values of n1 and β can be obtained from the mean 

slopes of fitting lines in the ln𝜀-̇ ln𝜎 and ln𝜀 -̇ 𝜎 plots, 

respectively in Fig. 6. As is shown in Fig. 6, the negative 

slope of 973 K indicates the dynamic strain aging (DSA) 

phenomenon. Therefore, in order to avoid errors in the 

slope averaging process, the values of 973 K were 

omitted. Material constants n1 and β are calculated to be 

13.968 and 0.067 MPa-1, respectively. Moreover, α (α = 

β/ n1) is determined as 0.0048 MPa-1. 

For all the stress levels, taking the natural logarithm 

on both sides of Eq. (10), Eq. (14) can be expressed as: 

 

ln𝜀̇ = ln𝐴 + 𝑛ln[sinh (𝛼𝜎)] − ൬
𝑄

𝑅𝑇
൰ (14) 

 
The relationship between ln𝜀 ̇ and ln[sinh (𝛼𝜎)] 

 

 
Fig. 6. The relationship between (a) ln𝜀 ̇and ln𝜎,  

(b) ln𝜀̇ and 𝜎. 

under deformation temperatures of 1073, 1173, and 1273 

K is plotted in Fig. 7. The value of n is determined to be 

10.095 from the mean slopes of fitting lines in Fig. 7. By 

rearranging Eq. (14), the activation energy (Q) can be 

obtained from the following equation: 

 

𝑄 = 𝑛𝑅 
𝜕ln[sinh (𝛼𝜎)]

𝜕(
1
𝑇

)
 (15) 

 

For this purpose, the relationship between 

ln[sinh (𝛼𝜎)] and 1/𝑇 is plotted in Fig. 8. The Q value 

is found to be 619.564 kJ/mol. Comparatively, the 

activation energy for conventionally fabricated 316LN 

and 316L under the same thermomechanical condition 

were extracted from the previous works, which were 

found to be 487-549 kJ/mol [48] and 100-200 kJ/mol [49], 

 

Fig. 7. The relationship between ln𝜀̇ and ln[sinh (𝛼𝜎)]. 
 

Fig. 8. The relationship between ln[sinh (𝛼𝜎)] and 1/𝑇. 



68                                                                                                                                        A. Esmaeilpour & H.R. Abedi 
 

July 2022                                                                                   IJMF, Iranian Journal of Materials Forming, Volume 9, Number 3 

respectively. Consequently, SLMed 316L stainless steel 

possesses higher activation energy than those 

manufactured through conventional methods. According 

to Eq. (10) and Eq. (11), the following equation can be 

expressed as: 

 
𝑍 = 𝐴[sinh (𝛼𝜎)] (16) 

 

Taking the natural logarithm on both sides of Eq. (16) 

gives: 

 
ln𝑍 = ln𝐴 + 𝑛ln[sinh (𝛼𝜎)] (17) 

 

ln𝐴 can be gained from the intercept of fitting lines 

in the ln𝑍- ln[sinh (𝛼𝜎)] plot in Fig. 9. In the next step, 

the material constant A is calculated as 1.874×1025. The 

n-value can be more precisely recalculated from the of 

fitting line’s slope in Fig. 9, where the temperature, 

strain rate and stress has been correlated through 

introducing the Z-parameter. Consequently, the n-value 

was determined to be 9.850. 

After determining the material constants, the 

Arrhenius-type equation and Zener-Hollomon parameter 

can be expressed as follows: 

 
𝜀̇ = 1.874 × 10ଶହ[sinh(0.00481 ×  𝜎)]ଽ.଼ହ  

        exp ൬−
619546 

𝑅𝑇
൰ 

 𝑍 = �̇� exp ቆ
619546

𝑅𝑇
ቇ   

(18) 

 

Fig. 9. The relationship between ln𝑍 and ln[sinh (𝛼𝜎)]. 

The comparisons between the experimental and 

predicted data by the Arrhenius-type model for all 

experimental temperatures and without temperature of 

973 K are shown in Fig. 10, respectively. As is seen, by 

removing the temperature of 973 K, the accuracy of the 

Arrhenius-type model increases. 

 
3.4. Artificial neural network model 

The ANN model is an artificial intelligence approach 

which is capable of mimicing complicate relationships 

by using neurons as processing units [50]. In this study, 

a multilayer perceptron (MLP) with feed-forward back 

propagation learning algorithm has been employed to 

predict the high temperature flow behavior of SLMed 

316L stainless steel. The MLP consists of an input layer, 

one or more hidden layers and an output layer which are 

connected with neurons. The input layer variables are 

true strain (𝜀), strain rate (𝜀̇) and deformation 

temperature (𝑇). The flow stress (𝜎) is considered as the  

 

 
Fig. 10. Comparisons between the experimental and predicted 

flow stresses by Arrhenius-type model (a) all experimental 
temperatures, (b) without temperature of 973 K. 
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output data. The number of hidden layers and the 

neurons inside them can be the variable. In this respect, 

the ANN model has been trained for different numbers 

of hidden layers and neurons. As is shown in Fig. 11, the 

network with one hidden layer and 20 neurons has the 

optimal performance and the least mean square error 

(MSE). The structure of back propagation of the ANN 

model is depicted in Fig. 12. 

Before training, the network, input and output values 

were normalized between 0 and 1 by the following 

equation: 

 

XN=0.1+0.8(
X-Xmin

Xmax-Xmin

) (19) 

 

where X is the normalized data, X is the original data, 

X୫୧୬ is the minimum value of X and X୫ୟ୶ is the 

maximum value of X. The Levenberg-Marquardt 

algorithm is utilized to train the network. In the current 

ANN model, 420 experimental data sets have been 

selected from the true stress-true strain curves in the strain  

 

Fig. 11. The effect of various numbers of neurons on the 
performance of ANN model. 

 

Fig. 12. The structure of back propagation ANN architecture. 

range of 0.01-0.6 with an interval of 0.02. 315 data sets 

have been utilized to train the network, and the rest of 

the data sets (105 data) have been employed for testing 

the model. 

Fig. 13 shows the comparisons between the 

experimental and predicted values by the ANN model. 

As is observed, the predicted data can well track both the 

hardening and softening behavior of material during hot 

deformation. 

 

 
Fig. 13. The comparisons between the experimental and 

predicted flow stress values by the ANN model under the 
strain rate of (a) 0.1 s-1, (b) 0.01 s-1, and (c) 0.001 s-1. 
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3.5. Comparison between the employed models 

To evaluate the prediction accuracy of the Johnson-

Cook model, Arrhenius-type equation and ANN model, 

standard statistical parameters such as correlation 

coefficient (R), root mean square error (RMSE), and 

average absolute relative error (AARE) were employed 

as follows: 

 

𝑅 =
∑ (𝐸 − 𝐸ത)(𝑃 − 𝑃ത)ே

ୀଵ

ට∑ (𝐸 − 𝐸ത)ଶ ∑ (𝑃 − 𝑃ത)ଶே
ୀଵ

ே
ୀଵ

 
(20) 

𝑅𝑀𝑆𝐸 = ඨ
1

𝑁
 (𝐸 − 𝑃)ଶ

ே

ୀଵ
 (21) 

𝐴𝐴𝑅𝐸(%) =
1

𝑁
 ฬ

𝐸 − 𝑃

𝐸

ฬ

ே

ୀଵ

× 100 (22) 

 

where 𝐸 is the experimental data, 𝑃  is the predicted 

value, 𝐸ത and 𝑃ത are the mean values of 𝐸  and 𝑃 , 

respectively. 𝑁 is the total number of data that have been 

employed in the investigation. The correlation 

coefficient (R) shows the strength of the linear 

relationship between the experimental and predicted 

values. In addition, RMSE and AARE have been utilized 

to verify the predictability of employed models as 

unbiased statistical parameters [51]. The corresponding 

values of R, RMSE, and AARE have been listed in 

Table 3. The results indicate that the Arrhenius-type 

equation has performed better than the Johnson-Cook 

model. Additionally, with the removal of 973 K data, the 

accuracy of the Arrhenius-type model has increased. 

Among these models, the ANN model has the best R, 

RMSE, and AARE. 

 
Table 3. The values of R, RMSE and AARE for the 

constitutive models and ANN model 
Model R RMSE AARE (%) 

Johnson-Cook 0.964 73.171 47.988 

Arrhenius-type 0.960 27.236 7.706 

Arrhenius-type 

(without 973 K) 
0.992 8.838 3.734 

ANN 0.9997 1.51 2.82 

 

4. Conclusion 
 

The hot flow behavior of 316L stainless steel 

manufactured by the selective laser melting (SLM) 

process, was investigated through the phenomenological 

constitutive models and the ANN model at the 

temperatures of 973, 1073, 1173, and 1273 K under the 

strain rates of 0.001, 0.01, and 0.1 s-1. The Johnson-Cook 

model showed a poor prediction only acceptable in 

reference conditions. Although the Arrhenius-type 

model performed better than the Johnson-Cook model, it 

could not predict the dynamic strain aging (DSA) effect 

at the temperature of 973 K. In addition, the significant 

effect of imposed strain was not considered in the 

Arrhenius-type equation. The activation energy (Q) was 

calculated to be 619.564 kJ/mol. The ANN model with 

20 neurons in one hidden layer accurately predicted the 

flow stress. Interestingly, the ANN model predicts both 

the hardening and softening regions over the whole 

temperatures and strain rates. The predictability of 

employed models was evaluated through the standard 

statistical parameters. The results showed that the ANN 

model can predict hot flow behavior better than 

constitutive models. R, RMSE, and AARE for the ANN 

model were found to be 0.9997, 1.51, and 2.82%, 

respectively. 
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