1JST, Transactions of Civil and Environmental Engineering, Vol. 35, No. C1, pp 51-62
Printed in The Islamic Republic of Iran, 2011
© Shiraz University

MODIFIED LINEAR VISCOELASTIC MODEL OF EARTHQUAKE-INDUCED
STRUCTURAL POUNDING

S. MAHMOUD" AND R. JANKOWSKI?™

'Faculty of Eng. at Mataria, Helwan University, 11718 Cairo, Egypt
*Gdansk University of Technology, Faculty of Civil and Environmental Engineering,
ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Email:jankowr@pg.gda.pl

Abstract— In recent times, earthquake-induced structural pounding has been intensively studied
through the use of different impact force models. The numerical results obtained from the previous
studies indicate that the linear viscoelastic model is relatively simple and accurate in modeling
pounding-involved behavior of structures during earthquakes. The only shortcoming of the model
is a negative value of the pounding force occurring just before separation, which has no physical
explanation. The aim of the present paper is to verify the effectiveness of the modified linear
viscoelastic model, in which the damping term is activated only during the approach period of
collision, therefore overcoming this disadvantage. First, the analytical formula between the impact
damping ratio and the coefficient of restitution is reassessed in order to satisfy the relation between
the post-impact and the prior-impact relative velocities. Then, the performance of the model is
checked in a number of comparative analyses, including numerical simulation of pounding-
involved response, as well as comparison with the results of the impact experiment and shaking
table experiments concerning pounding between two steel towers excited by harmonic waves. The
final outcome of this study demonstrates that the results obtained through the modified linear
viscoelastic model without the tension force are comparably similar to those found by using the
linear viscoelastic model.
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1. INTRODUCTION

Interactions between adjacent buildings or bridge elements, known as structural pounding, have often been
observed during earthquakes. The main reason of pounding is usually related to the difference in dynamic
characteristics between adjacent structures [1, 2] and concerns, in particular, these structures, which
induce relatively large drifts under earthquake excitation [3].

Structural pounding during earthquakes has recently been intensively studied using different models
of collisions applied to different types of structures. The fundamental study on pounding between
buildings in series, using the linear viscoelastic model of pounding force, was conducted by
Anagnostopoulos [1]. Jankowski et al. [4] used the same model to study pounding of adjacent
superstructure segments in elevated bridges. Other models of pounding force during impact, such as the
linear elastic model [5, 6], the nonlinear elastic model [7, 8], the nonlinear viscoelastic model [9] and the
Hertzdamp model [10], have also been implemented in the analyses.

It has been verified through the experiments [9] that the linear viscoelastic model is one of the most
accurate among the above models. In this model, the pounding force F during impact is defined as [1]
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F=kd+co (D

where 0, S , k., and ¢, denote the deformation of colliding structures with masses m,, m,, their
relative velocity, the impact stiffness coefficient and the impact damping coefficient, which accounts for
the energy dissipation during contact and which can be obtained from the formula [1]

m,m,

¢, =28 |k, @)

m, +m,
where & is an impact damping ratio related to a well-known coefficient of restitution e by equation [11]

|
R ®
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Accounting for the energy dissipation during contact, which can result from plastic deformations, local
cracking, friction, etc., makes the linear viscoelastic model very attractive in simulating more plastic
impacts. Moreover, the model is relatively simple, and therefore can be easily applied in most of the
computer codes. However, the linear viscoelastic model has a major shortcoming related to the negative
impact force observed just before separation of colliding structures [9], which does not have any physical
explanation [12,13]. This behavior results from the fact that the linear damping term in the model is
activated during the whole time of contact (Eq. (1)) assuming a uniform dissipation of energy. Meanwhile,
the results of experiments indicate that most of the energy is dissipated during the first phase of contact
(approach period) and the second phase (restitution period) is mainly attributed to the elastic behavior
where the accumulated elastic strain energy is released with minor energy loss due to friction [14].

In order to overcome the above drawback of the linear viscoelastic model, Valles and Reinhorn [15]
proposed a variation of the model, in which the damping term is only active for positive velocities

1 1)
. where ¢ =—tan'(—~

) is the time of
20, a,

allowing the masses to release at time fy, =t + i
maximum deformation. Hence, the equivalent coefficient of restitution e¢ can be described as
e=sin(w,t,, )exp(-¢w,t,, ), where @, and @ is the damped and undamped circular frequency,

respectively. However, no numerical analysis has been conducted to investigate the performance of the
proposed model of pounding force during impact.

C lm ax

The aim of the present paper is to verify the effectiveness of the modified linear viscoelastic model, in
which the damping term is activated only during the approach period of collision. First, the analytical
formula between the impact damping ratio and the coefficient of restitution is reassessed in order to satisfy
the relation between the post-impact and the prior-impact relative velocities. In order to verify the
performance of the model, a number of numerical comparative analyses are conducted. The acceleration
time history corresponding to the 1940 El Centro earthquake is first applied to two adjacent structures with
an insufficient gap distance modeled as two single degree of freedom (SDOF) systems. The second and
third numerical comparative analyses use the results of the impact experiment as well as the results of the
shaking table experiments on pounding between two steel towers excited by harmonic wave.

2. ANALYTICAL RELATIONS

a) Force reformulation

The activation of the damping term during the whole time of collision results in a negative tensile force
just before separation of the colliding structures. To overcome this disadvantage of the linear viscoelastic
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model, the damping term is considered to be activated only during the approach period of collision, in
which most of the energy is dissipated [14]. The pounding force F during impact in the modified linear
viscoelastic model can be expressed as (compare Eq. (1))

F=ko+ ck5 for s >0 (approach period of collision)

4
F=ko for 8 <0 (restitution period of collision) @)

b) Derivation of the relations between £ and e

The relation between the impact damping ratio and the coefficient of restitution (3) is no longer valid
due to the activation of the damping term in the approach period only. A reassessment of the relation
between & and e, based on the reformulation of the pounding force (Eq. (4)), can be derived using a
methodology based on the energy methods [14, 16] as follows:

Let v, be the prior-impact (approaching) velocity of the colliding structure with mass m, (i=1,2). The
loss in kinetic energy after impact can be expressed in terms of the coefficient of restitution e and the
relative prior-impact velocity 50 =v, —V, as[14]

1 mm,

AE = (1 e )(6,) (5)

2m1

In the modified linear viscoelastic model, the dissipated energy by the damping term follows the relation

AE = [™¢,8d6 =2¢& /kk (—"“1"“2 ] " 3ds 6)
m, + m,

where & and 0., denote the relative velocity between the colliding structures during the approach
period (5 > () and the maximum deformation, respectively.

An expression for the relative velocity ) during the approach period, in terms of the deformation o
has to be obtained to evaluate the integral in Eq. (6). For simplicity, we first obtain a formula for the
relative velocity S during the restitution period (5 <0), which is considered to be the fully elastic period
Eq. (4). Then, based on the assumed approximating functions, the relative velocity S during the approach
period (5 > 0) can be obtained in terms of the deformation & .

Equating the accumulated elastic strain energy at the beginning of the restitution period (i.e. at the

point of maximum deformation J__ ) with the kinetic energy at the time of separation yields

max

1 mm,

fm“ Fds = [™k6d5 = @, e

m, +m,

where 5 ; is the post-impact (final) relative velocity. Solving Eq. (7) for 0., yields

: m.m
Sy =8, [T ®)
! (my +m, )kk

Due to the energy transfer from the elastic strain energy to kinetic energy, the following condition holds in
the restitution period

1 mm, 1 mm,

[ kods +- "3y =

m, +m, 2ml+m2

6, ©)

Solving Eq. (9) allows us to determine the formula for the relative velocity 5 during the restitution period
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(5S0)as

m,m,

5=—$@Y—@[@iﬁﬂ52 (10)

Let us now consider two different approximating functions [17] to obtain two different expressions for the
relative velocity 0 during the approach period of collision (& > 0).

1. Expression 1: Taking into consideration Eq. (10) and assuming that the formula , :ﬁf‘, defining the
relation between the post-impact and prior-impact relative velocities [14], is also valid for all values of
deformation during the approach period of collision, the formula for the relative velocity 5 during the

approach period (5 > () can be expressed as

5:1\/(§'f)2_kk [MJ@‘Z (11
e : m,m,
After substituting Eq. (11) into Eq. (6) we obtain
AE:2£ kk(M] £$vvme(5f)2_kk(M]62d5 (12)
e m, +m, : \m,

Substituting the formula for 5 , obtained from Eq. (8) into Eq. (12) and simplifying the resulting

expression leads to
AE=2ﬁf"“2/5;ax—52d5 (13)
e

Integrating Eq. (13) leads to

2
AE = Z KO (14)
2 e
Equating Eq. (14) and Eq. (5) yields
k.52 1 ;
2 KO L (1 2,y (15)
2 e 2m +m,
Substituting Eq. (8) into Eq. (15) and solving for & gives
1-¢%) (6,)
coe=e) 3’ -
T (d,)
5
Making use of the formula e = u by substituting it into Eq. (16) allows us to describe the relation

between the coefficient of restitution and the impact damping ratio for the modified linear viscoelastic

model according to the formula
1-¢°

1
e

¢= an

2. Expression 2: In the second approximation let us consider the formula for the relative velocity &
during the approach period (5 > () as a sum of two expressions [17]. The first expression is identical to
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Eq. (10), except for the sign change, whereas the second one increases the velocity in order to satisfy the

relation , = |5,f ‘, assuming that the loss of difference of velocities 50— | 5/ | is uniform during the whole

0 .
approach period. If so, then we can express the formula for the relative velocity ¢ during the approach

period (& > 0) as

S= \/(Sf)2 —k, (—m' Rl J52 0710, (O =9) (18)

UL )

max

Substituting Eq. (18) into Eq. (6) yields

AE = 2§\/kk (%J Jj \/@)2 —k, {%Jyda (19)
2

1 17°%2

S=16. NS5 —8)
+2§,/kk[ o ]( =10/ DG =9) (S — 6)dS
m1+m2 5max

Simplifying the above formula by making use of the derivation of Eq. (14) leads to

/ S.—|o
AE:ngkéjm—i-Zg” k,(( i ]( 019, " (8, —0)dS (20)
2 ml + m2 5max

Integrating the second term in Eq. (20) allows the equation to take the following form

AE=Z ko2 +& |k, {MJ (Bo=18; )6, Q1)
2 m, +m,

Equating Eq. (21) and Eq. (5) yields

m,m,

(1 - 62 )(50 )2 = %é:kkgniax + é: kk [

1 m,m : :
A — (50_ ‘ 5f ’)5max (22)
2m +m my +m, ‘
Substituting Eq. (8) into Eq. (22) and solving for & relates the impact damping ratio as a function of the
coefficient of restitution as

1-¢°

S e _2)22) (25

The relations between the coefficient of restitution and the impact damping ratio for both the linear and
modified linear viscoelastic models are shown in Fig. 1.

3. NUMERICAL STUDY

Using Eq. (23) we assess the performance of the modified linear viscoelastic model in capturing the
earthquake-induced pounding compared with the linear viscoelastic model [1] and the nonlinear
viscoelastic model [9], through three different procedures of comparison. The first one is based on
simulation using the El Centro earthquake of 1940. Two single degree of freedom (SDOF) systems shown
in Fig. 2, as models of two structures with equal masses and different natural periods, are used in the
study. The second procedure is based on the impact experiment. The third uses the shaking table
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experiments on pounding between two steel towers. The accuracy of each model in the second and the
third procedure is assessed by calculating the normalized error NE to indicate the difference between the
experimental and numerical results

o -1

-100% (24)
| H ||

where H is the response time history obtained experimentally, H is the response time history obtained
numerically, and || - || is the Euclidean norm. || H — H || and || H ||, in the case of the time histories given
in a discrete form, can be calculated as

\H-H|= > - ) 1H = > 8 (25)
i=1 i=l

where » is a number of values in the time history record.

1

\ Relation (3)
091N ——— Relation (17) |1
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Fig. 1. Relations between the coefficient of restitution and damping ratio for the linear
viscoelastic model and the modified linear viscoelastic model

a) Comparative analysis 1 — comparison based on numerical results

The El Centro earthquake of 1940 is applied to two SDOF models (Fig. 2), with the parameters
described in [18], using three different pounding force models. The peak values of displacement, velocity,
acceleration and pounding force for each model are obtained. For i = 1,2 let m; be the masses, ¢; be the
viscous damping coefficients, and ; be the stiffness for SDOF 1 and SDOF 2, respectively. The coupling
equation of motion for two adjacent structures subjected to horizontal ground motion u& has the following
form

myiiy + ¢y + kg + F = —myii,

y . . (26)
myiiy + ¢yt + ko, — F = —myii,

where u,, u, and u, represent the displacement, velocity and acceleration of the system, respectively,
whereas F stands for the pounding force. The values of structural stiffness and damping coefficients: &, c;
can be calculated from the formulas [19]
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2
k, = 47;217’5 > 6= 2§i\lkimi 27)

1

where 7;, & (i = 1, 2) denote the natural structural vibration period and structural damping ratio,
respectively. We have solved the coupled equation of motion (26) for the El Centro earthquake record.
The structural responses obtained for the three different pounding force models are shown in Figs. 3-5.
The differences between the peak values of the responses for the linear viscoelastic model and its modified
version have been calculated as equal to: 0.4-1.6% for the peak displacements, 0.1-0.8% for the peak
velocities, 1.5-2.6% for the peak accelerations and 6.8% for the peak pounding forces. Larger differences
have been observed between the results obtained for the modified linear viscoelastic model and the
nonlinear viscoelastic model (compare Fig. 4 with Fig. 5).

b) Comparative analysis 2 - comparison based on impact experiment

Van Mier et al. [20] carried out an experiment on collisions between a prestressed concrete pile and a
concrete striker for different contact surface geometries, striker mass and impact velocity values. The
dynamic equation of motion for pounding between a striker of mass m; and a prestressed fixed pile can be
written as (see free body diagram in Fig. 6)

mii, + %ul +F=0 (28)

where u,, i, [ are the displacement, acceleration and length of the pendulum striker, respectively, F is
the pounding force and g stands for the acceleration of gravity. The results from the numerical simulations
as well as the results of two experimental tests for the impact of a spherical concrete pendulum striker of
mass 570 kg (concrete strength 38.2 N/mm?) with an impact velocity 0.5 m/s [20] are shown in Fig. 7. The
following impact stiffness parameters have been used in the numerical analysis: & = 9.35 x 10’ N/m for
the linear viscoelastic model, ; = 9.29 x 10’ N/m for the modified linear viscoelastic model and k; = 2.75
x 10° N/m*? for the nonlinear viscoelastic model [9]. These values have been found through an iterative
procedure in order to keep the maximum pounding force in the numerical analysis equal to the maximum
pounding force of the experiment (102.5 kN). For all models, the coefficient of restitution e = 0.65 has
been used. It has been found that the normalized error is equal to 23.8% for the linear viscoelastic model,
32.6% for the modified linear viscoelastic model and 22.9% for the nonlinear viscoelastic model.

w1

7 ST

Fig. 2. Model idealization of adjacent structures
¢) Comparative analysis 3 - comparison based on shaking table experiments

Chau et al. [21] carried out the shaking table tests to investigate the pounding phenomenon between
two steel towers of different natural frequencies and damping ratios subjected to different combinations of
stand-of distance and seismic excitations. Two single degree of freedom (SDOF) systems shown in Fig. 2,
as models of two structures, are used in the numerical simulations. The dynamic equation of motion for
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given by Eq. (26). We have solved the equation of motion (26) for the harmonic waves as

excitations and three different models of pounding force considered herein. Chau ef al. [21] performed a
series of shaking table experiments for » = 1 (1 pounding per cycle) and #» = 2 (1 pounding per 2 cycles)
using various harmonic waves as excitations for two SDOF. Experimental, numerical and analytical
results of the relative impact velocity versus the excitation frequency have been computed for the
comparison purposes between experiments and theories.
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Fig. 6. Free body diagram for pounding between a concrete pendulum
striker and prestressed concrete pile
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Fig. 7. Pounding force time histories during impact between a concrete
pendulum striker and prestressed concrete pile
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In this paper, the results of two different sinusoidal loads, as input excitations, are presented. First, we
have considered the input shaking table of the form i, =2.68in(27 f,f) as an excitation acting on SDOF
1 and SDOF 2 with the following dynamic characteristics: m; = 98.0 kg, fi = 5.04 Hz, & = 7.2%, m, =
146.4 kg, f, = 2.76 Hz, &, = 1.5% and a separation distance of 19.8 mm [21]. The numerical solutions for
the steady state relative impact velocity using all three pounding force models have been compared with
the experimental results [21] which are the average of 10 cycles in the steady state. The results from the
numerical analysis and the experiment are shown in Fig. 8. The simulation errors for the numerically
obtained impact velocity values compared with the experimental results for » = 1 and n = 2 are: 24.65%
and 40.24% for the linear viscoelastic model, 26.78% and 43.19% for the modified linear viscoelastic
model, 31.66% and 51.26% for the nonlinear viscoelastic model.

As a second input excitation, we have considered the harmonic excitation #, =1.9 sin(2z fgt)
applied to the SDOF 1 and SDOF 2 with the same dynamic characteristics and separation distance as used
before. The results from the numerical analysis and the experiment are shown in Fig. 9. The simulation
errors for the numerically obtained impact velocity values compared with the experimental results for n =
1 and » = 2 are: 27.64% and 69.08% for the linear viscoelastic model, 30.63% and 71.34% for the
modified linear viscoelastic model, 33.75% and 59.80% for the nonlinear viscoelastic model.
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Fig. 8. The steady state relative impact velocity versus the excitation frequency under the input
shaking table excitation i, = 2.6sin(27f 1)
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Fig. 9. The steady state relative impact velocity versus the excitation frequency under the
input shaking table excitation i, =1.9sin(27f )
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4. CONCLUSION

An improved version of the linear viscoelastic model of the earthquake-induced structural pounding,
which overcomes the disadvantage of the tension force appearing just before separation between colliding
structures, has been considered in this paper. In the modified linear viscoelastic model the minor energy
loss during the restitution period is neglected and the damping term is activated only during the approach
period of collision. Two analytical formulas relating the impact damping ratio and the coefficient of
restitution have been derived based on the approximating functions. In order to verify the validity of the
modified linear viscoelastic model, a number of comparative analyses have been carried out.

The results of the study presented in this paper indicate that the use of the modified linear viscoelastic
model leads to very similar pounding-involved responses as in the case of the linear viscoelastic model.
The comparison between the results of numerical simulations and experiments show that the linear
viscoelastic model is more accurate than its modified version in all the cases considered. On the other
hand, the modified linear viscoelastic model has been found to be more accurate than the nonlinear
viscoelastic model in a few cases. Anyway, the results of the study indicate that the modification
introduced in the linear viscoelastic model, in order to overcome the drawback which does not have a
physical explanation, does not really lead to the improvement of the accuracy of the model. Therefore, the
standard version of the linear viscoelastic model, being aware of its shortcoming, is recommended for the
purposes of numerical simulations of the earthquake-induced structural pounding in future studies.

5. REMARK

The differential Egs. (26) and (28) can be written in a uniform version

dp(u)
A 120 (29)
u(0) = u,,

where u € R, p : R — R" is a continuously differentiable function and f': R”? — R” is a continuous
function but not necessarily differentiable. Problem (29) is called a system of nonsmooth ordinary
differential equations of the first order. In order to solve it efficiently we use the implicit Runge-Kutta
(IRK) method [22-24] with various coefficients, such as coefficients of Gauss, Radau IA, Radau IIA,
Lobatto IIIA, Burrage, etc. [22].
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