- Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med 2020;29:4674235.
- Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603-661.
- Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Advances 2017;7:51789-51800.
- Koutsogiannou M, Drougka E, Liakopoulos A, Jelastopulu E, Petinaki E, Anastassiou ED, Spiliopoulou I, Christofidou M. Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital. J Clinic Microbiol 2013;51:665-668.
- Osmon S, Ward S, Fraser VJ, Kollef MH. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 2004;125:607-616.
- Alarcon B, Vicedo B, Aznar R. PCR‐based procedures for detection and quantification of Staphylococcus aureus and their application in food. J Appl Microbiol 2006;100:352-364.
- Al-Ahmadi GJ, Roodsari RZ. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR. Ann Burns Fire Disasters 2016;29:264-267.
- Priyanka B, Patil RK, Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J Med Res 2016;144:327-338.
- Chang CC, Chen CC, Wei SC, Lu HH, Liang YH, Lin CW. Diagnostic devices for isothermal nucleic acid amplification. Sensors 2012;12:8319-8337.
- Zhong J, Zhao X. Isothermal amplification technologies for the detection of foodborne pathogens. Food Analytical Methods 2018;11:1543-1560.
- Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol 2006;4:e204.
- Gao W, Huang H, Zhang Y, Zhu P, Yan X, Fan J, Chen X. Recombinase polymerase amplification-based assay for rapid detection of Listeria monocytogenes in food samples. Food Analytical Methods 2017;10:1972-1981.
- Liu Hb, Zang YX, Du Xj, Li P, Wang S. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria. J Dairy Sci 2017;100:7016-7025.
- Hu J, Wang Y, Su H, Ding H, Sun X, Gao H, Geng Y, Wang Z. Rapid analysis of Escherichia coli O157: H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes. Mol Cell Probes 2020;50:101501.
- Ahn H, Batule BS, Seok Y, Kim MG. Single-step recombinase polymerase amplification assay based on a paper chip for simultaneous detection of multiple foodborne pathogens. Anal Chem 2018;90:10211-10216.
- Li J, Macdonald J, von Stetten F. A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2018;144:31-67.
- Xia S, Chen X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT–RPA. Cell Discov 2020;6:37.
- Lau YL, Ismail Ib, Mustapa NIb, Lai MY, Tuan Soh TS, Haji Hassan A, Peariasamy KM, Lee YL, Abdul Kahar MKB, Chong J, Goh PP. Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). PLOS One 2021;16:e0245164.
- Geng Y, Liu S, Wang J, Nan H, Liu L, Sun X, Li D, Liu M, Wang J, Tan K. Rapid detection of Staphylococcus aureus in food using a recombinase polymerase amplification-based assay. Food Analytical Methods 2018;11:2847-2856.
- Jin XJ, Gong YL, Yang L, Mo BH, Peng YZ, He P, Zhao JN, Li XL. Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa. Chinese J Burns 2018;34:233-239.
- Minas K, McEwan NR, Newbold CJ, Scott KP. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett 2011;325:162-169.
- Choi G, Jung JH, Park BH, Oh SJ, Seo JH, Choi JS, Kim DH, Seo TS. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria. Lab Chip 2016;16:2309-2316.
- Affhan S, Dachang W, Xin Y, Shang D. Lactic acid bacteria protect human intestinal epithelial cells from Staphylococcus aureus and Pseudomonas aeruginosa infections. Genet Mol Res 2015;14:17044-17058.
- de Ávila BE-F, Pedrero M, Campuzano S, Escamilla-Gómez V, Pingarrón JM. Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus. Anal Bioanal Chem 2012;403:917-925.
- Paniel N, Noguer T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods 2019;8:371.
- Fratamico PM, Bagi LK, Cray Jr WC, Narang N, Yan X, Medina M, Liu Y. Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin–producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathog Dis 2011;8:601-607.
- Obande GA, Singh KKB. Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections. Infect Drug Resist 2020;13:455-483.
- Bhat AI, Rao GP. Characterization of Plant Viruses: Methods and Protocols. Springer 2020.
- Crannell ZA, Rohrman B, Richards-Kortum R. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 2014;9:e112146.
- Wu H, Zhao P, Yang X, Li J, Zhang J, Zhang X, Zeng Z, Dong J, Gao S, Lu C. A recombinase polymerase amplification and lateral flow strip combined method that detects Salmonella enterica serotype typhimurium with no worry of primer-dependent artifacts. Front Microbiol 2020;11:1015.
|