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The uncertainty on the values of the measured residual stresses in hole-drilling integral method, 

the most widely used technique for measuring residual stress, will be called hereinafter as residual 

stress noises, which initiate high sensitivity of stress to strain measurement errors due to ill-

conditioning of inverse integral equations. This study aimed to investigate the use of Chebyshev 

points to decrease residual stress noises in the hole drilling method. The Chebyshev points were 

extended to hole-drilling increments from surface to specified interior depth. The bending of an 

aluminum beam was used to validate the extended method, and the results were compared with 

the standard reduction noises technique, Tikhonov-Morozov, and optimum steps technique. The 

result obtained from the extended method was shown to lead not only an accurate determination 

of de-noised residual stress, but also a simple calculation procedure in comparison with the 

Tikhonov-Morozov and optimal steps method. The results indicate that the use of modified 

Chebyshev points decreased the mean absolute error of residual stress to 8.17 MPa from 14 MPa 

in Tikhonov-Morozov and 10.52 MPa in optimum steps methods. 
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1. Introduction 
 

The impacts of residual stresses on the integrity, 

properties, and performance of materials are of 

significant concern for most industrial applications. The 

residual stresses are produced because of non-uniform 

plastic deformation or phase change in the fabrication 

process [1]. The crucial issue about them is that they play 

an essential role in the strength of materials and combine 

with in-service stresses. This combination affects the 

fatigue life of components, dimensional instability and 

causes stress corrosion cracking initiation [2]. For the 
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components to avoid failure and to maintain dimensional 

stability, the amount of the residual stresses should be 

determined beforehand and reduced as much as possible 

[3]. To this end, there has been extensive research 

regarding the selection of a measurement technique, 

which offers a significant increase in measurement 

accuracy of residual stress and reducing stress-evaluated 

uncertainty. 

   The hole-drilling method, introduced in 1932 by 

Mathar [4], is the most widely appropriate method for 

measuring residual stress due to the fertility and rich 
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potential of this technique [1-3]. In this method, residual 

stresses are measured near surfaces, and it has been 

considered the only standardized method [5]. It involves 

applying a unique rosette strain gauge in the desired 

position and drilling a hole in small shallow depth 

increments [6]. Hence, the stresses in the hole location 

can be evaluated by some inverse mathematical 

equations and specific calibration data. These 

mathematical equations are based on the linear elastic 

principle and typically carry out the integral method [7-

9]. However, in this method, while the number of 

increments increase, the measurement errors will 

accumulate. Besides, by increasing the distance from 

measurement surface, the relieved strain becomes 

insensitive to deep interior stresses due to the Saint 

Venant’s principle. Due to these facts, the associated 

matrix of inverse mathematical integral equations comes 

to be ill-conditioned. So, the impact of measurement 

errors on residual stress results significantly grows, and 

the profile of residual stress becomes noisy.  

   Numerous investigations have established that the 

residual stress noises in the hole drilling method depend 

on the maximum depth value and the total number of 

increments [8-10]. As early as 1994, Vangi [11] 

introduced the concept of limiting the number of hole 

depth steps to a small number, just four or five, or 

choosing hole depth steps that initially are small and then 

increasing them in size to reduce the sensitivity to strain 

data errors. However, limiting the amount of strain data 

available for calculation have been largely unsuccessful 

in illustrating the trend in data more clearly. Zuccarello 

[10] revealed that by optimizing the step distribution, 

one could minimize the influence of experimental errors 

on computed stress. Using optimal steps, less error 

amplifications were reported with lower sensitivity to 

the measurement errors than equally value steps or 

constant ones [10]. Although some details have been lost 

in the related literature [10], it appears to be clear that 

finding the optimum step is based on a numerical try and 

error procedure by utilizing the finite element or 

boundary element method.  

   By using the Tikhonov regularization method, it 

became possible to use data rich strain sets measured at 

many small hole-drilling steps and for the regularized 

calculations to extract the stress results without 

substantial sensitivity to noise [12]. However, the 

regularization parameter is an essential element in 

stabilizing reliable results since excessive regularization 

causes the function of stress solution to remain unclear. 

On the other hand, low regularization causes calculated 

stress to remain very close to the original ill-posed 

problem [12]. Thus, it is difficult to make a convincing 

decision to choose the appropriate regularization 

parameter that balances these two tendencies, 

minimizing extra smoothing while removing most 

noises. Schajer [12, 13] used the Morozov Discrepancy 

Principle [14, 15] to determine the value of the 

regularization parameter in the hole-drilling method that 

combines the integral method with the Tikhonov-

Morozov regularization, and was recommended in 

ASTM E837-13a standard [5]. Jun and Korsunsky [16] 

proposed an inverse semi-empirical approach to residual 

stress analysis, called the eigenstrain reconstruction 

method. Faghidian [17] developed a regularized inverse 

eigenstrain method for reconstruction of residual stress 

field solution by Tikhonov-Morozov and the gradient 

iterative method. Wang et al. [18] used the generalized 

cross-validation (GCV) method to determine the 

regularization parameter to estimate the completed 

surface residual stresses by using a Fourier series 

bivariate polynomial as an Airy stress function. Naskar 

and Banerjee [19] proposed and numerically explored a 

linear inverse problem to reconstruct full field residual 

stress while the regularization term was selected based 

on a modified L-curve approach described in [20]. Liu et 

al. [21] proposed a termination criterion in Tikhonov 

regularization for the hole-drilling method based on 

restricting the strain misfit values to 1% of the 

corresponding measured strains to determine the 

appropriate value of the regularization parameter. 

Unfortunately, these methods do not always guarantee to 

find suitable regularization parameters in discrete ill-

posed problems due to their limitation and weakness.    

   By performing the Monte Carlo uncertainty 

examination, Peral et al. [22] confirmed that the hole 

depth is the most important uncertainty source in the 
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hole drilling method. The objective of this paper is to 

seek a method to reduce the effect of the measurement 

noise and relate it to depth increments, which improve 

the benefits of the Tikhonov regularization and the 

optimum step methods, without the necessity of 

complicated and time-consuming calculations. 

Consequently, in this paper, a novel method, which 

implements the procedure of using Chebyshev points, is 

first reported, and then compared with the Tikhonov-

Morozov and optimized step techniques by de-noising 

the residual stress of a four-point bent beam. 

 

2. Theory 
 
2.1. The hole-drilling integral method 

The integral method proposes the through depth 

profile of three in-plane stress components. 

Theoretically, in the integral method, a relation between 

residual stress and the relieving strain can be represented 

in the form of inverse matrix equation as [23]: 
 
𝐴𝑋 = 𝑏 (1) 
 

Eq. (1) is a linear system of equations that widely 

appears in science and engineering. We can consider 𝑏 

as the vector of the recorded elastic strains after each 

increment, 𝑋 as the vector of stress components through 

the hole depth, and 𝐴 as the matrix that relates to the 

stress components of the relaxed strains. In hole-drilling, 

generally, strain is measured in 3 directions, for three-

element strain gauge rosette (𝜀ଵ, 𝜀ଶ, 𝜀ଷ) along the rosette 

axis (0°,90°, 135°). The residual stress can be interpreted 

in three in-plane components (𝜎௫ , 𝜎௬ , 𝜏௫௬). If the 

elements of Eq. (1) are written in terms of the 

transformed stress and strain variables of the Eqs. (2) and 

(3), then Eq. (4) is achieved as [7-9]: 
 

𝑃 =
𝜎௫ + 𝜎௬

2
, 𝑄 =

𝜎௫ − 𝜎௬

2
, 𝑇 = 𝜏௫௬ 

 

(2) 

 

𝑝 =
(𝜀ଵ + 𝜀ଷ)

2
, 𝑞 =

𝜀ଵ − 𝜀ଷ

2
, 𝑡 =

𝜀ଵ + 𝜀ଷ − 2𝜀ଶ

2
 

 

(3) 

 

൤
1 + 𝜗

𝐸
൨ 𝐴̅𝑃 = 𝑝, ൤

1

𝐸
൨ 𝐵ത𝑄 = 𝑞, [

1

𝐸
]𝐵ത𝑇 = 𝑡 (4) 

In Eqs. (2) to (4), 𝐸 and 𝜗 denote Young’s modulus 

and Poisson’s ratio, respectively. 𝑃 is hydrostatic stress, 

𝑄 is 45° shear stress, 𝑇 is x-y shear stress, and 𝑝 , 𝑞, 𝑡 are 

corresponding strains, respectively [8]. 𝐴̅ and 𝐵ത  are 

lower triangular calibration coefficient matrices. By 

calculating the transformed stress, the principal stresses 

and principal direction, 𝛽, have been calculated using [7-

9]: 

 

𝜎௠௔௫,௠௜௡ = 𝑃 ±  ඥ𝑄ଶ + 𝑇ଶ 

 
(5) 

𝛽 = arctan (
𝑇

𝑄
) (6) 

 
2.2. Extended Chebyshev points method 

Pafnuty Chebyshev originally introduced the 

Chebyshev polynomials of the first kind in 1853 [26] as: 

 
𝑇௡(𝑥) = cos [𝑛 arccos 𝑥 ] (7) 
                                     𝑛 = 0,1,2, … , 𝑥 ∈ [−1,1]  

 

In 1859 [27], Pafnuty Chebyshev conducted the best 

approximation procedure by using the zeros of these 

polynomials that are called Chebyshev points of the first 

kind, Chebyshev nodes, or, more formally, Chebyshev–

Gauss points [28]. These zeroes can be obtained by Eq. 

(8) [29]: 

 

𝑥௞ାଵ = cos ൬
2𝑘 + 1

2𝑛
𝜋൰       𝑘 = 0,1, … , 𝑛 − 1 (8) 

 

These points’ projections onto the horizontal or 

vertical axis are symmetric about the real axes. These 

points are beneficial in many areas of numerical 

analysis, such as function approximation [29]. Suppose 

𝑓(௫) is a continuous function on [-1, 1] as: 

 
𝑓(௫) = 𝑃௫ + 

          
𝑓௡ାଵ൫𝜉(𝑥)൯

(𝑛 + 1)!
(𝑥 − 𝑥଴)(𝑥 − 𝑥ଵ) … (𝑥 − 𝑥௡) 

                           for some 𝜉(𝑥) ∈ [−1,1]                           

(9) 

 

𝑓 is the function that we are approximating in the 

interval [−1,1] with the use of interpolation points, 𝑥⃗ =

(𝑥଴, 𝑥ଵ, … . , 𝑥௡), and interpolant 𝑃௫ . It is proved that by 
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selecting Chebyshev points as interpolation points, the 

maximum value of product term or |(𝑥 − 𝑥଴)(𝑥 −

𝑥ଵ) … (𝑥 − 𝑥௡)| will effectively minimize allowing the 

establishing of the best approximation of 𝑓 [28, 29]. In 

the hole-drilling method, there is no information about 

residual stress function or P, and the integral methods 

must be defined for the approximation of functions on 

specified hole depth increments [7-9]. Surprisingly 

however, if we have a free choice of hole depth 

increments, it is not necessarily a good idea to select 

them in equally spaced form. 

In the present paper, a method to construct residual 

stress approximations in the integral method which were 

used to reduce interpolation error and then keep adequate 

resolution of final solution was conducted. A simple idea 

for improving the accuracy of approximate solutions of 

residual stress function is to use the Chebyshev points as 

interpolation points or hole drilling increments [28, 29].  

Firstly, the Chebyshev points 𝑥௞ in the interval [-1, 1] 

were changed to 𝑥̅௞  in the interval [0, h], by Eq. (10) as: 

 

𝑥̅௞ =
1

2
[(ℎ) × 𝑥௞ + ℎ] (10) 

 

After that, the intervals were split into n subintervals 

of size ∆(ℎ)௞ as hole-drilling increments: 

 
∆(ℎ)௞ = 𝑥̅௞ାଵ − 𝑥̅௞                        𝑘 = 1, … , 𝑛 (11) 

 

where each increment equals to the differences between 

the two consecutive points at an interval from the surface 

up to the desired interior depth. In this case, the desired 

depth was selected to be 2.6 mm according to the 

experimental procedure reported in reference [10]. In 

addition, the number of increments selected equals to 10. 

It should, however, be noted that in 10 Chebyshev 

increments up to 2.6 mm, the first and last increments 

have a small value near zero. Due to this, it is impractical 

to have appropriate and corrected measured strains at 

these intervals with such small amounts, which would 

probably result in a lot of noise. In order to overcome 

this limitation, we extended the value of first and last 

increments by increasing the number of Chebyshev 

points and using ten midpoints as the hole-drilling steps 

to promote computational stability. Fig. 1 represents 

physical interpretation of this procedure. Because there 

was no prediction about how many Chebyshev points are 

more satisfying to reduce residual stress noises, four 

groups of the number of Chebyshev points were 

determined, consisting of 18, 20, 22, and 24 points, and 

10 of the midpoints were selected as depth increments. 

Selecting these values was based on having reasonable 

lengths of near-surface and interior increments. Table 1 

shows various step distributions in 10 increments 

obtained for Chebyshev points with different numbers, 

optimized steps as well as constant equal steps made 

with the Tikhonov-Morozov regularization procedure 

that is used in this study. After determining the value of 

each step in different methods, the corresponding strain 

data has been derived from Fig. 6 in reference [10] by 

interpolating curves. 

 
3. Finite Element Simulation 

 

The obtained hole-drilling calibration coefficients 

for 0.2 mm increments length, 3.1 mm hole diameter, 

and 5.12 mm mean gauge radius that was used in this 

study is not directly provided in ASTM-E837-13A [5]. 

Therefore, in this paper, the calibration matrixes 𝐴̅ and 

𝐵ത  were evaluated from three-dimensional finite 

element modeling (FEM) of the hole-drilling process. 

The same procedure for evaluating calibration coefficients  
 

Fig. 1. Physical interpretation of Chebyshev points into hole-
drilling steps, A: implementing 14 Chebyshev points as hole 
drilling step, and B: modifying Chebyshev points to 10 with 

removing two early and final steps. 
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Table 1. Dimension of each step for different de-noising methods 

Step type ∆𝒉𝟏 ∆𝒉𝟐 ∆𝒉𝟑 ∆𝒉𝟒 ∆𝒉𝟓 ∆𝒉𝟔 ∆𝒉𝟕 ∆𝒉𝟖 ∆𝒉𝟗 ∆𝒉𝟏𝟎 

18 Chebyshev Points 0.38 0.17 0.19 0.21 0.22 0.22 0.22 0.21 0.19 0.54 
20 Chebyshev Points 0.45 0.16 0.18 0.19 0.20 0.20 0.20 0.19 0.18 0.61 
22 Chebyshev Points 0.52 0.15 0.16 0.17 0.18 0.18 0.18 0.17 0.16 0.67 
24 Chebyshev Points 0.57 0.14 0.15 0.16 0.16 0.17 0.16 0.16 0.15 0.72 
Tikhonov-Morozov 

Regularization 
0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

Optimum step [10] 0.16 0.11 0.12 0.13 0.14 0.15 0.18 0.25 0.37 0.91 
 

has already been used by many others [7-9, 10]. 

It is worth mentioning that an initial simulation of 

other standardized calibration coefficients of ASTM-

E837-13A [5] has been performed to validate the 

procedure of FEM analysis to confirm whether the 

simulation was functionally correct. To this aim, these 

calibration coefficients obtained from numerical 

analysis were compared with those conducted by 

Schajer’s polynomial [36]. This continuous polynomial 

provides calibration coefficients of ASTM-E837-13A 

[5] with average assurance within 1% [36].  

The simulation was conducted utilizing a 

commercial FEM software [30]. To enable less 

computational economy, only one quarter of the model 

was simulated due to symmetry in geometry, boundary 

condition, and loading. The model’s geometry was based 

on the specimen in the experimental procedure reported 

in reference [10]. In the experimental procedure, a 

bending moment of 132.5 N.m at four-points bending 

beam using a hydraulic testing machine was applied on 

an aluminum beam with a length of 400 mm, a thickness 

of 5 mm and width of 100 mm with Young’s modulus of 

100900 MPa, elastic-plastic modulus equals to 700 MPa, 

Poisson's ratio of 0.31 and yield strength of 211 MPa 

[10].  

The spatial resolution of the FEM mesh was such that 

the element sizes are 0.05 mm for inner hole surface, 0.2 

mm for gauge area and 0.1 mm between gauge and the 

hole alongside 16 elements in the hoop direction. A 

schematic of the developed mesh is shown in Fig. 2. The 

models with finer mesh were examined, but the results 

were practically unaffected at any point of the mode. 

Additionally, the relevant displacement and rotation 

constraint along the two planes of symmetry and 

complete fixity at the end of the beam (i.e., all 

displacement and rotations are set to zero there) were 

imposed in the case of boundary condition followed by 

an experimental procedure. For the three intermediate 

restraint setups, displacements of bottom nodes in z-

direction were suppressed as well (see Fig. 3). 

The simulation of drilling procedures was performed 

in the middle region of the specimen between the two 

loading points as reported in the experimental procedure 

of reference [10], using depth increments of 0.1 mm until 

a depth of 2.6 mm was achieved. The distance between 

the two inner and outer loading noses of the fixture was 

250 mm, and 400 mm, respectively in line with reference 

[10]. In simulation, a rosette with a dimension of 5.12 

mm mean gauge radius and 3.1 mm hole diameter was 

modeled following the experimental procedure of 

reference [10]. 

To determine  the  𝑎௜௝  components of 𝐴̅, a unit 

pressure (𝑃 = 𝜎௫ = 𝜎௬ = 𝜎) was applied to the inside of 

the surface in layer 𝑗 during hole-drilling in step 𝑖 . The 

pressure in other layers is set to be zero where 𝑗 ≤

𝑖 .  Then, the radial displacement of the initial and final 

points of the central axes of the strain gauge on the 

surface was measured, and 𝐴̅ was obtained by Eq. (12) 

as [31]: 
 

Fig. 2. Schematics of spatial resolution of mesh used in the 
model of hole-drilling method. 
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Fig. 3. The boundary condition applied on the simulation 
model. 

 
 

𝐴̅ =
𝐸

1 + 𝜗
×

𝑈ଶ(௫) − 𝑈ଵ(௫) + 𝑈ଶ(௬) − 𝑈ଵ(௬)

𝐺𝐿
 (12) 

 
where 𝐺𝐿 refers to the gauge length, 𝑈ଶ(௫) refers to 

the displacement of the final point of strain gauge 

aligned in the x-direction, and 𝑈ଵ(௫) refers to the 

displacement of the initial point as well as for 𝑈ଶ(௬) and 

𝑈ଵ(௬) in y-direction. Similarly, the  𝑏௜௝  of 𝐵ത  was 

determined by applying the shear stress field (𝜎 =

𝑃 × cos  (2𝜃) , 𝜏 = −𝑃 × sin (2𝜃)) inside the surface of 

the hole in each direction as Eq. (13) [31]: 

 

𝐵ത =
𝐸

1
×

𝑈ଶ(௫) − 𝑈ଵ(௫) − (𝑈ଶ(௬) − 𝑈ଵ(௬))

𝐺𝐿
 (13) 

 

In the interpretation of 𝐴̅ or 𝐵ത  matrices, it is 

necessary to drive their components using the repetitive 

solution. This procedure was conducted in ABAQUS 

scripting interface by removing elements with the model 

change tool, applying specified load inside of the hole, 

and calculating strain in the surface. An algorithm was 

written, and a series of routines were coded in Python as 

shown in Fig. 4. So, 𝐴̅ and 𝐵ത coefficients were obtained 

in each step. It must be noted that the gauge wide effect 

was neglected in simulation because it was recognized 

that it does not have a significant effect on the results. 

However, if there is a tendency to embed gauge wide 

effect, some of the authors consider it in their 

simulations [32-35]. 

Initial validation of FEM analysis was performed to 

confirm whether the simulation was functionally 

corrected. The number and the length of each step are 

assumed 10 and 0.2 mm, respectively. the dimension of 

hole was based on Table 5 in ASTM-E837-13A [5]. A 

Fig. 4. Calculation procedure of components of the 𝑎୧୨ matrix. 

 

comparison between the calculated coefficients of 

simulation results and the values obtained by the 

Schajer’s polynomial [36] are shown in Figs. 5 and 6 for 

𝐴̅ and 𝐵ത  calibration coefficients. This comparison was 

performed to ensure the obtained calibration coefficients 

as accurate and reliable. As can be seen, the differences 

are in the order of a few percentage points up to 6.57% 

for 𝐴̅ and 7.59% for 𝐵ത  which are consistent with 

simulation results obtained in previous studies [35, 37] 

and 2-D and 3-D simulations [38,39]. In these studies, it 

was shown that the differences between the calibration 

coefficients obtained from simulation with standard 

reference [5] variate between 3% to 5%, depending on 

the geometry of strain gauge, hole radius and the type of 

simulation 2-D or 3-D or boundary conditions. 

Therefore, in the presence of corresponding measured 

strains and calibration coefficients, the transformed 

stresses were calculated using Eqs. (2) to (4)  in different 

methods. Consequently, principal residual stresses were 

calculated easily utilizing Eq. (5). 

 

Fig. 5. Percentage of relative differences between coefficients 
of 𝐴̅ obtained from simulation and Schajer’s polynomial.  
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Fig. 6. Percentage of relative differences between coefficients 
of 𝐵ത  obtained from simulation and Schajer’s polynomial. 

 

4. Results and Discussion 

 

Fig. 7 to 10 show the comparison between actual 

maximum principal residual stresses with those 

calculated by the optimum step, the proposed Chebyshev 

points with different numbers and the Tikhonov-

Morozov regularization methods. The residual stresses 

close to the specimen surface are compressive. The 

magnitude of the compressive residual stresses reduced 

by increasing depth so that at a depth of 0.8 mm the 

residual stresses changed from compressive to tensile 

and then decreased to zero at a depth of 2.6 mm. 

Table 2 shows the absolute error in each increment 

as well as mean absolute error (MAE) in each method, 

separately. From Fig. 7, it can be seen that in early 

increments, the 18 Chebyshev points proposed approach 

has relatively lower noises than the Tikhonov-Morozov 

and optimum step method. However, in deeper 

thickness, the results of 18 Chebyshev points proposed 

method were not consistent with actual stress, while the 

optimum step and Tikhonov-Morozov regularization 

methods managed to diminish the errors and provided 

stabilized results better than the 18 Chebyshev points 

method. This is consistent with the results obtained in 

Table 2, where the MAE of the stress estimation by the 

modified 18 Chebyshev points, Tikhonov-Morozov, and 

optimum step methods, in comparison with the actual 

stress are equal to 17.67 MPa, 14 MPa and 10.52 MPa, 

respectively. From Table 1 and 2 it can be concluded that 

the final increments of 18 Chebyshev points are not big  

Fig. 7. Comparison of maximum principal residual stresses 
between 18 Chebyshev points, Tikhonov-Morozov 

regularization and optimum steps method with actual values 
versus hole depth. 

 

Fig. 8. Comparison of maximum principal residual stresses 
between 20 Chebyshev points, Tikhonov-Morozov 

regularization and optimum steps method with actual values 
versus hole depth. 

 

Fig. 9. Comparison of maximum principal residual stresses 
between 22 Chebyshev points, Tikhonov-Morozov 

regularization and optimum steps method with actual values 
versus hole depth. 

 

Fig. 10. Comparison of maximum principal residual stresses 
between 24 Chebyshev points, Tikhonov-Morozov 

regularization and optimum steps method with actual values 
versus hole depth.
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Table 2. Absolute error corresponding to different methods (MPa) 

Step Number 1 2 3 4 5  

Tikhonov-Morozov Regularization 16.78 9.48 1.63 9.37 4.69  

18 Chebyshev Points 9.27 4.06 7.07 13.26 0.41  

20 Chebyshev Points 6.82 2.23 8.27 14.13 1.14  

22 Chebyshev Points 4.17 1.49 3.82 11.77 3.16  

24 Chebyshev Points 3.81 8.96 18.94 9.20 1.10  

Optimum steps 26.83 5.07 13.12 3.46 4.40  

Step Number 6 7 8 9 10 MAE 

Tikhonov-Morozov Regularization 17.10 17.88 5.64 15.62 41.77 14.00 

18 Chebyshev Points 8.09 19.32 11.39 67.79 36.03 17.67 

20 Chebyshev Points 7.73 19.18 11.28 17.21 20.80 10.88 

22 Chebyshev Points 7.13 19.94 12.21 9.44 8.527 8.17 

24 Chebyshev Points 10.56 17.15 14.17 12.09 6.77 10.28 

Optimum step 14.19 3.81 13.39 15.73 5.21 10.52 

 
 

enough to reduce the uncertainty of the calculated 

residual stress to a minimum value. Therefore, the 18 

Chebyshev points method slightly deteriorates the 

reference stresses for the interior depths, although the 

difference between the 18 Chebyshev points and 

reference values was within the small error magnitude at 

the early and middle steps. 

By increasing Chebyshev points to 20, the obtained 

stress data in Fig. 8 indicates a more proper fitting with 

the actual stress. It can be observed from Fig. 8 that 

there was only minimal noise enhancement in deeper 

thickness in comparison with 18 points (Fig. 7), and the 

MAE reduces to 10.88 MPa from 17.67 MPa. Although 

it can be seen from Table 2 that the value of MAE in 

20 Chebyshev points method is approximately similar 

to the other methods, inspection of Fig. 8 indicates that 

there remained a slight amplification of noises in 

deeper thickness. It can be seen from Table 1 and 2 that 

the MAE in steps 8 to 10 of 20 Chebyshev points 

method has been amplified due to the small size of 

these steps. To eliminate drawback of this limitation 

and find the optimum number of Chebyshev points in 

order to minimize the noises, the Chebyshev points 

have been increased to 22. The results were depicted in 

Fig. 9. As can be seen, it is evident that the 22 

Chebyshev points result obtained are in excellent 

agreement with actual results, and MAE decreased to 

8.17 MPa in comparison with 10.52 MPa for the 

optimized step and 14 MPa for regularized steps. In 

particular, using 22 points of Chebyshev no longer has 

the high error sensitivity in interior and near-surface 

depths, where the sensitivity to measurement errors is 

high. It is seen that the 22 Chebyshev points method 

tends to give prediction that is in exceptionally good 

agreement with the trend of the actual four-points 

bending stress, especially up to 0.75 mm, fitted well with 

the actual values contrary to the Tikhonov-Morozov 

regularization and the optimum step methods. However, 

only in the middle range, 22 Chebyshev points have 

negligible noise due to the small value of each increment 

in comparison with other methods as can be seen from 

Table 1. These noises are tiny, but for assurance of 

probable existence of the better condition of Chebyshev 

points, we increased the number to 24. Fig. 10 illustrates 

the findings of 24 Chebyshev points method and 

compares it with other methods. Comparing Figs. 9 and 

10 shows that the error sensitivity developed in near-

surface steps after increasing the number of Chebyshev 

points to 24 and MAE increased to 10.28 MPa. By 

increasing the number of Chebyshev points from 22 to 

24, the results will slightly deteriorate in the second and 

third steps. However, the magnitude of the residual stress 

noises in the first and last steps were lower than other 

methods. 
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5. Conclusion 
 

Results from three methods of de-nosing residual 

stress were presented and the results illustrated that in 

virtually all cases of different numbers of the Chebyshev 

points technique can accurately reduce the residual stress 

noises with a simple calculation method. In addition, it 

was found that by optimizing the number of Chebyshev 

points, the minimum value of residual stress noises can 

be reachable in comparison with other methods. This 

finding confirmed that the modified Chebyshev points 

method used as hole-drilling increments tends to 

produce more simple calculation and more precisely 

obtained residual stress in line with those obtained from 

four-points bending in comparison with cases where the 

Tikhonov-Morozov regularization and optimum step 

methods were used. 

In addition, the improvements noted in this study 

were unrelated to the geometry of hole or gauge, type of 

calibration coefficient, the shape of residual stress 

function, and regularization parameter, unlike the 

Tikhonov-Morozov and optimum step method. This 

study, therefore, indicates that this method not only 

decreased the amount of the residual stress error 

amplification, but also succeeded in diminishing the 

value of uncertainty. Our result provides compelling 

evidence for a simple approach to calculate residual 

stress with such noises and suggests that this approach 

appears to be effective in another semi destructive or 

destructive residual stress calculation method that may 

contain uncertainties, such as ring-core, slitting and deep 

hole-drilling. However, some limitations are worth-

nothing. Although the modified Chebyshev method can 

reduce noises of results, there is a specific optimum 

number of points that significantly stabilize the results. 

Future study should, therefore, include follow-up work 

designed to evaluate whether the highly accurate number 

of Chebyshev points are needed and also whether they 

continue to be used to improve another semi destructive 

residual stress measurement errors. 
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