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In this paper, by considering the temperature, time, and process pressure, as the most important 

factors in producing the thermoplastic composites, an experimental design was performed. An 

adaptive neuro-fuzzy inference system (ANFIS) was utilized to estimate the important 

characteristics containing flexural strength, porosity volume ratio, fiber volume ratio, and flexural 

modulus. Then, the parameters of the ANFIS network were optimized by the teaching-learning-

based optimization (TLBO) algorithm. For the purpose of modeling material behavior in the 

process, the experimental results were utilized for the training and validation of the adaptive 

inference system. The accuracy of the obtained model has been investigated by using different 

graphs, based on the statistical criteria of the mean absolute error, correlation coefficient, mean 

square error, and the percentage of mean absolute error. Based on the obtained results, the TLBO-

ANFIS approach has been very effective in estimating the above-mentioned properties in the 

production process. The network error for estimating flexural strength, porosity volume ratio, 

fiber volume ratio, and flexural modulus in the teaching section was equal to 0.159%, 0.0003%, 

1.074%, and 0.0001%, and the corresponding values were equal to 0.852%, 42.413%, 33.95%, 

and 4.894% in the testing section. 
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1. Introduction 

 

Due to the great specific strength and stiffness of 

composite materials compared to other engineering 

materials like metals, many industries such as 

automobile, aerospace, and the military are focused on 

applying composite materials with the intention of 

producing lighter structures, mechanisms, and parts. 

Product weight plays a vital role in the success of their 

missions. It also reduces energy consumption, which has 
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a special place in the transportation industry [1]. 

Moreover, one of the challenges of using composite 

materials is the production method of the desired shape. 

Conventional forming processes are commonly used in 

a variety of products due to their high speed, excellent 

output, and low cost, but there are challenges to using 

these methods to make composite products [2]. 

Therefore, process investigation of composite forming is 

essential due to the intricate mechanical performance of 

composite materials, especially in different layers. 
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Composite materials with polymer matrices are 

allocated into two main clusters, each containing 

thermoset and thermoplastic matrices. Although the 

making and applying of thermoplastic-based composite 

materials are restricted due to the production 

complications and high production costs, many 

industries are more interested in these advanced 

materials because of their higher quality 

characterization, including impact strength, formability 

at high temperatures, environmental resistance, fracture 

toughness, recyclability, and indefinite storage life [3-5]. 

Since thermoplastic polymers’ viscosity is usually 

greater than that of thermoset polymers, in most cases 

their wetting process is very complicated and 

impregnation is not satisfactory [6]. The impregnation of 

fiber and the quality of bonding will result in better 

reliability and more suitable mechanical properties. This 

will be achieved due to the fact that better impregnation 

creates higher mechanical characteristics in such 

advanced structural materials, and regulates the 

allowable force and the quality of stress arrangement in 

manufactured goods [7]. Many investigations with 

different methods have been carried out to develop the 

impregnation feature of thermoplastic composites. The 

PEEK/carbon fiber composites impregnation is 

investigated by Ye et al. [8] and the effects of different 

parameters of the production such as pressure, 

temperature, and time are studied on the mechanical 

characteristics of the specimen. Macro and micro 

impregnation in the glass and carbon fibers are studied 

by Mayer et al. [9] while liquefied thermoplastic nylon 

6.6 is utilized in an unceasing production method. Han 

et al. [10] was able to improve the mechanical 

characteristics by improving the quality of impregnation 

of the investigated thermoplastic composites through 

sizing the fibers. Thermoplastic composite 

characteristics such as physical and mechanical ones of 

glass fibers with different sizes have been investigated 

by Ferreira et al. [11]. Jonoobi et al. [12] studied the 

mechanical characteristics and impregnation excellence 

of some bio-based/nanofiber thermoplastic composite 

materials. Zal et al. [13-16] investigated the field of the 

main parameter effects on properties such as flexural 

strength and modulus of a thermoplastic-based 

laminated composites and investigated the failure 

mechanisms and impregnation quality. The most 

important factors in designing a composite structure are 

the materials selection and structural pattern. The 

material selection and the arrangement of reinforced 

fibers are often determined by mechanical properties. 

The process selection and structural concepts are 

dominated by a set of financial and operational concerns. 

So far, a lot of research has been done on the design of 

composites and the effects of different materials and 

different arrangements of reinforced fibers on the 

structure of composites have been investigated [17]. 

Maciel et al. [18] investigated the manufacturing of 

advanced composites including nano-engineered poly 

vinylidene fluoride (PVDF) with the fibers which were 

aligned and accidentally oriented fibers. Köbler et al. 

used mathematical methods to analyze short fiber 

reinforced composite parts with different arrangements 

[19]. 

By utilizing an artificial neural network (ANN), we 

can transfer existing knowledge and rules into the 

network structure that it is processing. ANN has a very 

high learning capability. This method is a very 

convenient choice, especially when integrated with a 

fuzzy logic system. By incorporating artificial neural 

networks and fuzzy systems, an efficient approach was 

developed to model different systems. Each of these 

methods can overcome the weakness of the other, which 

leads to an increase in the efficiency of the fuzzy-neuro 

system. In recent years, many researchers have used the 

ANFIS system to model different engineering processes 

[20-21]. Yaghoobi et al. [22] used the neural network 

method and the GA for optimization of the hydroforming 

process. Based on the simulation of neuro-fuzzy 

inference system results, they made a matching, and 

analyzed the impact of pressure on the maximum 

thinning of the critical areas of products. Dadgar Asl et 

al. [23] optimized the parameters of the flexible roll 

forming process according to the bending angle based on 

longitudinal bow and wrinkling by using the ANN-based 
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Genetic Algorithm. 

In this paper, for the first time, an ANFIS network is 

utilized to model the effect of important parameters in 

the production process (i.e., temperature, time, and 

pressure) to predict the flexural modulus, flexural 

strength, void volume fraction and fiber volume fraction. 

So far, this method has not been used to study the 

behavior and predict the mentioned outputs in the 

production process. For this purpose, the results of 

experiments performed to train and test the fuzzy 

inference system have been used. In addition, to achieve 

the optimal structure of the ANFIS system, the teaching 

and learning optimization algorithm has been utilized. 

 

2. Experimental Method 
 

In this research, the efficacies of the production 

factors comprising pressure, temperature, and time on 

the final product features of laminated fiberglass/PVC 

composites were assessed using the experimental data of 

the paper by Zal et al. [13]. The applied production 

methods in the experiments such as stacking and hot 

pressing, which have been utilized to make the 

PVC/fiberglass composite laminates, were filmed, 

different patterns and orientations with [0/90]10 layups 

have been set, and finally the 3 mm products were 

exerted. According to the standard of ASTM D790, the 

basic mechanical characteristics of the specimens were 

assessed by applying a three-point bending test. Finally, 

using microscopic images, the impregnation quality has 

been evaluated. One of the most important aims of this 

paper is the investigation into predicting the 

impregnation quality of PVC/fiberglass composite 

materials as well as finding the appropriate processing 

factors condition. To achieve this goal, PVC/woven 

fiberglass composite materials have been manufactured. 

Then key production factors such as, temperature, 

pressure and time of the process have been altered and 

their effects on the main parameters including flexural 

modulus and strength of the specimens were examined. 

The quality of the impregnation and bonding in the 

middle of the fiber layer and matrix, as well as the 

specimen failure mechanisms were investigated. Safari 

et al. [24] analyzed the effects of the main factors in the 

creep forming production method, including 

temperature and time, on the spring-back of shaped fiber 

metal laminate.  

As mentioned, one of the most common tests to 

assess inner-laminar properties and the quality of the 

impregnation of the laminated composites is three-point 

bending [25-27]. Consequently, this technique was 

utilized in this study and repeated three times to assess 

the specimens. The outcomes of these tests demonstrate 

dissimilar deflection performance for the specimens 

because of the difference in bonding strength between 

the matrix and fibers as well as the impregnation quality. 

The outcomes in the diagram of load and displacement 

for several of the testers and the used three-point bending 

test setup are illustrated in Fig. 1 [13]. 
 

 
Fig. 1. (a) Load-displacement curves of several specimens, 

(b) the setup of three-point bending test [13]. 
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As shown in Fig. 2, if the process temperatures are 

lower than 220°C, any rise in temperature will increase 

the flexural strength, but two other factors change the 

strength as well. For specimens manufactured at 220°C, 

the effect of production process time is extreme and any 

difference in the production time meaningfully changes 

the strength. The temperature effect on the specimens’ 

flexural strength in different settings of the production 

process time and pressure is depicted in Fig. 2. 

In Table 1 [13], the intended inputs are provided with 

the test results. The values of the output variables for 

each of the 18 experiments are given. 

The difference in mechanical characteristics in the 

final specimens is mostly determined by the quality of 

impregnation and the diffusion of the matrix between 

fiber layers. To describe the parameters’ effects on the 

mechanical features, as illustrated in Fig. 3, specimen’s 

SEM pictures of diverse process settings are illustrated. 

As understood from Fig. 3(a), the matrix diffusion 

among yarns does not take place in the specimen which 

has a treating temperature of about 160°C; consequently, 

the materials have been stuck together as discrete films. 

While the PVC layers are softer near 160°C to bind to 

the fibers than to create a combined piece, the stickiness 

Fig. 2. The effect of temperature in the production process on 
the flexural strength of the specimens (N, shows the total 

measured specimens, and range means outcomes deviation), 
the 200°C manufactured specimens have the minimum 

reliance on the other factors [13]. 

 

is not suitable enough to create a final uniform specimen. 

Consequently, the layers slip over each other through 

stacking because of weak connections between them. As 

it is shown in Fig. 3(b), small progress in the 

impregnation happened where the process temperature 

was 180°C; but the stickiness is still high, making all the 

fibers wet. Fig. 3(c) shows an SEM image where the 

process temperature was 200°C, where the PVC enters 

the fibers suitably. However, in the condition of 220°C 

and the timeframe of 10 min, the quality of impregnation  
 
 

Table 1. Trials performed and response values for flexural strength and modulus, void volume fraction, volume fraction [13] 

No. 
Flexural 
modulus 

(GPa) 

Flexural 
strength 
(MPa) 

Void volume 
fraction 

(%) 

Fiber volume 
fraction 

(%) 

Density 
(kg/m3) 

Processing 
pressure 
(MPa) 

Processing 
time 
(min) 

Processing 
temperature 

(°C) 

1 8.4 153.6 5.2 27.7 1571 1 20 220 
2 4.8 28.2 29.7 28.3 1257 1 40 220 
3 9.4 136 1.9 26.9 1602 2.5 30 200 
4 10.7 149 3.2 25.8 1573 1.5 30 200 
5 10.8 151.1 2.3 26.6 1593 1.5 50 200 
6 7.4 99.2 5.9 25.5 1533 2 20 180 
7 3 54.2 8.8 24.2 1479 1.5 30 160 
8 4.9 33.6 30.8 28.2 1251 2 40 220 
9 8.3 145.8 4.4 25.5 1554 0.5 30 220 
10 9.7 147.2 2 26.7 1598 2 20 220 
11 8.7 120.4 3.6 25 1556 2 180 180 
12 5.5 35.5 35.7 25.9 1158 1.5 240 240 
13 10.1 138 3 26.4 1583 1.5 200 200 
14 7.6 106.5 4.8 25.1 1542 1 180 180 
15 7.1 110 3.7 25.9 1566 1 180 180 
16 10.4 153.6 3 26.3 1581 1.5 200 200 
17 9.7 170.7 1.2 28 1625 0.5 220 220 
18 10.3 189 2.2 28.3 1617 2 220 220 
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Fig. 3. SEM images of fiber/matrix impregnation of the 
composite layers shaped at changed settings [13]. 

 

was superior, and the matrix bordered all the fibers 

entirely (Fig. 3(d)); this shows the suitable decrease of 

PVC matrix stickiness at 220°C can be used to make the 

fibers wet. Though 220°C seems to be the appropriate 

temperature to reach an excellent impregnation, more 

increase in the time or temperature of the process makes 

an intense decrease in the mechanical features. By 

enhancing the time of the process, the PVC matrix was 

slowly ruined making the bonding weaker. Fig. 3(e) and 

3(f) illustrate SEM images of the ruined specimens. 

 
3. Optimized Intelligent Modeling 

 

3.1. ANFIS 

The adaptive neuro-fuzzy inference system (ANFIS) 

has the advantages of both linguistic and numerical 

methods. The ANFIS network is trained without the 

need for expert knowledge while this is essential for the 

fuzzy logic system. ANFIS utilizes the ability of 

artificial neural networks to detect patterns and 

categorize data. The ANFIS has less memory error 

compared to the artificial neural network and has a 

clearer architecture for the user. Other advantages of the 

ANFIS system include nonlinear capability, fast learning 

and adaptability. Similar to fuzzy logic systems, the 

structure of ANFIS contains two sections: the antecedent 

and subsequent. These two sections are merged with 

each other by a set of rules. ANFIS is known as a 

multilayer network that has five distinct layers. Takagi-

Sugeno (TS) fuzzy system is a variation of such systems 

that includes multiple inputs and only one single output, 

as presented in Fig. 4. This system consists of two inputs 

x and y, and an output f, which are merged by the rules 

as: 

Rule 1: If (x equals A1) and (y equals B1), then 𝑓ଵ =

𝑝ଵ𝑥 + 𝑞ଵ𝑦 + 𝑟ଵ 

Rule 2: If (x equals A2) and (y equals B2), then 𝑓ଶ =

𝑝ଶ𝑥 + 𝑞ଶ𝑦 + 𝑟ଶ 

In this system, Ai and Bi are the fuzzy sets, and fi is 

the output set. Furthermore, pi, qi, and ri are designing 

constants that are obtained during the learning 

procedure. In particular, the computations in each layer 

are explained below; if the output of each is defined as 

𝑂௜
௝ where 𝑖 and 𝑗 are indexes of node and layer, 

respectively. 

Layer 1: In the first layer, each node is equal to a 

fuzzy  layer where the output is related to the 

membership function (MF) degree. The constants of 

each node determine the shape of the corresponding 

membership function. If we utilize Gaussian 

membership functions, we have: 
 

𝜇஺௜(𝑥) = 𝑒
ି

ଵ
ଶ൬

௫ି௖೔
ఙ೔

൰
మ

,        𝑖 = 1,2 (1) 
 

in which, x is the node input and 𝑐௜, 𝜎௜  the center and 

width of the Gaussian membership, respectively. 
 

Fig. 4. ANFIS network structure. 
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Layer 2: In the second layer, the inputs of each node 

are reproduced together, and the rule firing strength is 

computed as: 
 

𝑂௜
ଶ = 𝜔௜ = 𝜇஺௜(𝑥)𝜇஻௜(𝑦),        𝑖 = 1,2 (2) 

 

in which, 𝜇஺௜is the degree of MF of x in the fuzzy set 𝐴௜, 

𝜇஻௜ is the degree of MF of y in the fuzzy set 𝐵௜ . 

Layer 3: The nodes in third layer calculate the 

comparative weight of the rules, where 𝜔௜
௡ is the 

normalized fire intensity of rule i. 
 

𝑂௜
ଷ  =  𝜔௜

௡  =  
𝜔௜

𝜔ଵ + 𝜔ଶ

,        𝑖 = 1,2 (3) 

 

Layer 4: This layer is recognized as the rule layer, 

which is attained by producing the rule firing strength by 

the output of the Takagi-Sugeno fuzzy inference model. 
 

𝑂௜
ସ  =  𝜔௜

௡𝑓௜  =  𝜔௜
௡(𝑝௜𝑥 + 𝑞௜𝑦 + 𝑟௜),     𝑖 = 1,2 (4) 

 

Layer 5: The final layer included is an individual 

node in which all the inputs are merged with each other: 
 

𝑂௜
ହ  =  ෍ 𝜔௜

௡𝑓 

ଶ

௜ୀଵ

=  
𝜔ଵ𝑓ଵ + 𝜔ଶ𝑓ଶ

𝜔ଵ + 𝜔ଶ

,        𝑖 = 1,2 (5) 

 

For a better and simpler understanding, the ANFIS 

formulation presented in this section (Eqs. (1) to (5)) is 

a basic example of an ANFIS network with two inputs, 

each with two fuzzy sets. For this reason, i = 1, 2 is used 

in the relations. Obviously, by increasing inputs as well 

as increasing fuzzy sets, the values of i increase to the 

number of fuzzy sets. 

According to the description given, it is clear that the 

first and fourth layers are adaptive layers in which 𝜎௜ and 

𝑐௜ are adaptive parameters. In the fourth layer, 𝑟௜, 𝑞௜ , and 

𝑝௜  are also other adaptive parameters known as output 

parameters. Numerous optimization algorithms have 

been utilized to improve the accuracy of the ANFIS 

model. The teaching-learning-based optimization 

algorithm is one of the most effective optimization 

approaches used to find the optimal parameters of the 

ANFIS network in this study. 

 

3.2. TLBO 

The teaching-learning-based optimization method 

which is designed on the foundation of the effect that a 

teacher has on students has two parts: teaching and 

learning phases. In a classroom, a teacher is a person 

who has the best knowledge and can teach the subject to 

students very well.  

Teaching section: In this section, the teacher is 

selected from among the students based on his or her 

high knowledge. The teacher tries to raise the average of 

the class based on the information he or she has, 

although none of the students can reach his level, but 

instead they reach the new average. As a result, a new 

population with a new average of 𝑀ଶ is created with the 

presence of a teacher (𝑇ଶ). The process of improving the 

average of the classroom continues until they achieve an 

optimal score in the teaching phase. This process is 

illustrated in Fig. 5(a). The mathematical equations of 

the first phase are as follows: 
 

Fig. 5. (a) Teacher phase, and (b) learner phase. 
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𝑋௡௘௪ = 𝑋௢௟ௗ + 𝑟(𝑋௧௘௔௖ℎ௘௥ − 𝑇௙ × 𝑀𝑒𝑎𝑛) (6) 
 

in which, r is a random vector that determines the 

success rate of a student in the teaching process and is 

considered between zero and one. Furthermore, 𝑇௙   

indicates the teacher success rate with values {2,1}. 

Learning section: In this phase, students learn from 

each other, which results in the process of improving the 

level of the students. According to Fig. 5(b), two 

students are randomly selected, among which, the first 

one learns from the second. Here, depending on the score 

of these selected students, two situations arise: 

Case 1: If the Xi score is worse than Xj but, a poor student 

(Xi) requests to learn from a student with better grades 

(Xj). The mathematical relation will be as follows: 
 

𝑋௜,௡௘௪ = 𝑋௜ + 𝑟(𝑋௝ − 𝑋௜) (7) 
 

in which r is a random vector that determines the success 

rate of a student in the learning process and is between 

zero and one.  

Second case: if Xi scores are better than Xj the same 

situation as the latter arises, except that Xj learns from Xi 

and its mathematical relation is as follows: 
 

𝑋௜,௡௘௪ = 𝑋௜ + 𝑟(𝑋௜ − 𝑋௝) (8) 
 

It is important to know that in both the teacher and the 

learner phases, the value of the target function is 

computed by obtaining the new X i,new; and if this score 

is higher than the score of the old version of the target 

function, the student information will be updated. 

Otherwise, the previous information will remain 

unchanged. 
 

4. Results and Discussion 
 

In this study, 18 numbers of experimental data for 

testing the system, which includes three inputs of 

pressure, time and temperature process, and four outputs 

of flexural strength and modulus, fiber volume ratio, and 

void volume ratio were obtained. This data is separated 

into two subsets, 70% for teaching, and 30% for testing 

of ANFIS. Errors in experimental data are unavoidable, 

although these errors are larger in some tests. If these 

tests are placed in the training section, it will lead to 

improper network training, and if located in the test 

section, it will cause a high network error in this section. 

The best way to separate the tests into two training and 

test sections, is random selection, which is done by 

software code. In this case, there is no intentional 

intervention in the data separation by the user. The 

parameters of the input and output MFs, as well as the 

fuzzy rules, are optimized by the teaching-learning 

optimization algorithm. Figs. 6-9 display the optimized 

Gaussian MFs for flexural strength and modulus, fiber 

volume ratio, void volume ratio outputs.
 

 
Fig. 6. Optimized MFs for temperature, time, and process pressure inputs for fiber volume fraction. 
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Fig. 7. Optimized MFs for temperature, time, and process pressure inputs for void volume fraction. 

 

 
Fig. 8. Optimized MFs for temperature, time, and process pressure inputs for flexural strength. 

 

 
Fig. 9. Optimized MFs for temperature, time, and process pressure inputs for flexural modulus.
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Here are some graphical methods utilized to measure 

the efficiency of the proposed model. Fig. 10 displays 

the approximated data by the ANFIS model alongside 
 

 
Fig. 10. Comparison between experimental data and 

prediction data. 

with actual data for each of the outputs of the production 

process. In these diagrams, the square symbols are 

related to the data utilized in the teaching section, and 

the triangular symbols are related to the data of the 

ANFIS testing section. The middle 𝑦 = 𝑥 is also a 

reference to determine the accuracy of the model. As it 

is seen, the correctness of the network is very high for 

predicting the data of the teaching phase for all outputs. 

It can also be seen that the network accuracy for 

estimating the outputs of flexural strength and modulus, 

fiber volume ratio, void volume ratio is also high. On the 

other hand, the estimated data for void volume fraction 

and flexural strength outputs are farther from the 

centerline, which indicates a larger network error in 

predicting these outputs. Furthermore, Fig. 11 shows the 

values of void volume fraction, fiber volume fraction, 

flexural modulus and flexural strength of the production 

process for real and predicted data in both teaching and 

testing phases. In these diagrams, the purple and orange 

lines represent the practical data for the teaching and 

testing sections. The square and triangular symbols 

indicate the data estimated by the ANFIS model related 

to the teaching and testing phases, respectively. As can 

be seen in these diagrams, the ANFIS network is 

coincident with the data of the teaching section for all 

outputs (the square symbols correspond to the purple 

lines). It is also clear from the second part of the 

diagrams (orange section) that the network has been able 

to predict the data related to the testing section very well; 

however, the estimation accuracy for the fiber volume 

fraction and flexural modulus is higher than that of the 

void volume fraction and flexural strength. Furthermore, 

Fig. 12 shows the percentage of mean absolute error 

related to the teaching and testing sections for modeling 

void volume fraction, fiber volume fraction, flexural 

modulus and flexural strength. In this figure, the 

teaching section is shown with a green background 

color, and the testing section is shown with a yellow 

background color. Based on the figures, the error values 

for all outputs are lower in the teaching section than in 

the testing section. Moreover, a higher error in predicting 

the output of void volume fraction and flexural strength 

in the test section is well observed.
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Fig. 11. Differences between experimental data and test data for predicting outputs. 

 

In order to quantitatively measure the accurateness of 

the attained ANFIS network, the criteria of root mean 

square error, mean absolute error, correlation 

coefficient, and percentage of the mean absolute error 

have been used. How to calculate these criteria is 

presented in Eqs. (9)-(12), respectively. 
 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑛
× ෍(𝑂஺ − 𝑂௉)ଶ

௡

௜ୀଵ

 (9) 

 

𝑀𝐴𝐸 =
1

𝑛
෍|𝑂஺ − 𝑂௉|

௡

௜ୀଵ

 (10) 

 

𝑅 =
∑ [(𝑂஺ − 𝑂ሜ஺)(𝑂௉ − 𝑂ሜ௉)௡

௜ୀଵ

ට[∑ (𝑂஺ − 𝑂ሜ஺)ଶ௡
௜ୀଵ ][∑ (𝑂௉ − 𝑂ሜ௉)ଶ௡

௜ୀଵ ]

 
(11) 

  

𝑀𝐴𝑃𝐸 =
100%

𝑛
෍ ฬ

𝑂஺ − 𝑂௉

𝑂஺

ฬ

௡

௜ୀଵ

 (12) 

 

In these relations, 𝑂஺  is the value of output measured 

for sample i, and 𝑂௉  is the output predicted for sample i, 

𝑂ሜ஺ is the mean of the measured data, and 𝑂ሜ௉  is the mean 

of the estimated data. To check the correctness of the 

model, the above-mentioned criteria are calculated for 

the teaching and testing phases which are listed in Table 

2.
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Fig. 12. Error of experimental data and test data for fiber volume fraction, void volume fraction, flexural strength and flexural 

modulus approximation. 
 

From the values presented in Table 2, it can be 

understood that the obtained model has generally been 

effective in predicting all outputs of the production 

process, although the accuracy in estimating fiber 

volume fraction and flexural modulus was higher. The 

RMSE and MAE criteria are very small, especially for 

the teaching section. These criteria are not enough for 

evaluating the model. In the following, MAPE and R 

criteria are used to determine the value of error relative 

to the values of the data. The correlation coefficient R 

for the teaching section is very high (close to one), 

which indicates the complete coincidence of the 

experimental data with the predicted data in the 

teaching section. The correlation coefficient for the test 

section is also very high for all outputs (𝑅 > 0.97), 

which specifies the high accuracy of the obtained 

system. 

In addition, the MAPE error in the testing section is 

higher than the one obtained from the teaching section. 

This is quite normal because in the teaching section all 

training data is used. However, the evaluation of the 

system is founded on test data and this data has not been 

utilized in the network teaching part. As a result, due to 

the errors in the practical results, this amount of error 

can be expected. Moreover, the higher error in 

predicting void volume fraction and flexural strength 

indicates the higher accuracy of the ANFIS model in 

predicting fiber volume fraction and flexural modulus. 
 

Table 2. The RMSE, MAE, R and MAE criteria for modeling fiber volume fraction, void volume fraction, flexural strength and 
flexural modulus 

  RMSE MAE R MAPE (%) 

Fiber volume fraction 
Train 0.066493 0.042317 0.997844 0.159903 

Test 0.26672 0.217867 0.988865 0.852331 

Void volume fraction 
Train 0.000125 4.44E-05 1 0.000389 

Test 4.894411 3.572525 0.975539 42.41306 

Flexural strength 
Train 3.135467 1.469346 0.997933 1.074266 

Test 20.38059 16.16196 0.979542 33.95702 

Flexural modulus 
Train 1.75E-05 1.22E-05 1 0.000181 

Test 0.368455 0.329811 0.988639 4.89478 
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5. Conclusion 
 

In this study, the ANFIS network optimized by 

TLBO algorithm is used to model the production process 

based on the input variables (pressure, time and 

temperature) and output variables (void volume fraction, 

fiber volume fraction, flexural modulus and flexural 

strength). The analysis of the results displays that the 

obtained ANFIS structure is very effective for the 

present procedure, and by using this model the values 

considered outputs can be calculated based on the 

changes of the input variables. The correlation 

coefficient for modeling the output variables in the 

teaching and testing sections are close to one, which 

indicates a very good agreement between the results 

estimated by the ANFIS and the experimental data. It can 

also be seen that the network error for estimating fiber 

volume fraction, void volume fraction, flexural strength, 

and flexural modulus in the teaching section is equal to 

0.159%, 0.0003%, 1.074%, and 0.0001%, and the 

corresponding values are equal to 0.852%, 42.413%, 

33.95%, and 4.894% in the testing section. 
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