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This study investigates the effect of friction stir back extrusion (FSBE) input parameters such as 

traverse speed, rotational speed, and wire diameter on the mechanical and microstructural 

properties of the produced wire. Numerous experiments were performed with different input 

parameters, and the grain size, hardness, and ultimate pressure strength (UPS) of each of the 

produced wires were investigated. In addition, to better understand the effect of input parameters, 

the process was simulated using the finite element method (FEM) model, and the temperature, 

material flow, and strain distributions in the wires were investigated.  Then, using the artificial 

neural network (ANN), a relationship was obtained between the input parameters of the process, 

such as traverse speed, rotational speed, and wire diameter, with the mechanical and 

microstructural properties of the produced wires. This relationship was then used in a hybrid 

multi-objective optimization to find the optimal process parameters. Due to the higher 

importance of UPS in comparison to the grain size and microhardness, the weighting of 0.6, 0.2, 

and 0.2 were used in the TOPSIS model, and the optimum input parameters were achieved as 6 

mm, 36.35 mm/min, and 456 rpm, for the traverse speed, rotational speed, and wire diameter, 

respectively. 
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1. Introduction 

 

Brasses (Cu–Zn alloys) comprise of 5 to 45 percent 

zinc for increased hardness and mechanical resistance, 

while the rest consists of copper for improved corrosion 

resistance in various media [1]. As a result, the physical 

and mechanical properties of these alloys vary 

depending on their Zn content. They may also contain 

trace amounts of lead, iron, and other metals. Brasses 

also exhibit strong electrical and thermal conductivities, 
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as well as great malleability, corrosion resistance, a good 

balance of strength and ductility, good castability and 

formability, and excellent machinability [2]. Brass has 

been used in various fields, including plumbing fixtures 

and fittings, low-pressure valves, counters and taps, 

gears, bearings, decorative hardware, architectural 

frames, musical instruments, germicidal and anti-

microbial devices, and architectural frames, due to its 

excellent and unique properties [3, 4]. 

Due to limited resources, excessive energy use, and 
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environmental damage, metal recycling has been a hot 

concern. Deferent metallic alloys are widely employed 

in manufacturing practically all types of industrial 

products. As a result, most waste materials in industrial 

businesses are metal chips produced during machining. 

Additionally, shops generate a large number of metal 

scrap pieces each year, which are then chopped up into 

chips using shredders. Even though these wastes are 

generally contaminated with oils and cutting fluids, 

washing them is much cheaper than mining them. Metal 

chips are usually re-casted for recycling. Therefore, 

some companies are required to collect the chips and 

transport them to the casting shops, where they will be 

subjected to recasting, rolling, extruding, and other 

operations to generate the final/useable metal product. 

The new recycling procedure, Friction Stir Back 

Extrusion (FSBE), enables workshops to recycle the 

metal chips straight into extruded products rather than 

selling them to chip collectors.  

Friction-based procedures, such as friction welding, 

have already proven their capacity to combine and create 

solid-state materials, resulting in products with desired 

mechanical properties [5]. With the purpose of 

processing and recycling chips to produce bulk material, 

new friction stirring concept was recently developed. As 

a solid-state recycling technique, the FSBE generates 

frictional heat to soften the recycling chips. The chips 

are then combined and pressed into a channel to develop 

an integrated product such as a wire or tube by exerting 

adequate pressure called a forging force [6-8]. 

In each production process, varying the input 

parameters such as process parameters, tool, and mold 

sizes, material type, etc., will influence outputs such as 

mechanical properties. To find the effect of these 

influencing parameters needs to perform several 

experiments. However, finding a proper relationship 

between process inputs and outputs can drastically 

reduce the cost of experiments along with saving time. 

In the FSBE process, it is tough to derive these 

correlations using mathematical equations due to the 

nonlinear nature of this process. Artificial neural 

networks (ANN) are one of the most effective solutions 

to this challenge. Artificial neural networks, which are 

based on brain neural networks, can extract the 

relationships between the inputs and outputs of complex 

processes. So far, this method has been used by 

researchers in manufacturing processes to model the 

process. Shojaeefard et al. [9]   used the ANN model to 

establish the correlation between the friction stir welding 

(FSW) parameters, including traverse and rotational 

speed, and heat-affected zone (HAZ) width, peak 

temperature, and axial force values. Their model was 

able to correctly determine the relationship between 

input and output parameters in the FSW process. In 

another study, the relationship between the friction stir 

process (FSP) parameters and mechanical and 

microstructural properties of the fabricated composites 

were determined using ANN [10]. 

In the present work, the quality of FSBE wires, 

which were produced by different process parameters, is 

determined by several factors, including grain size, 

microhardness, and ultimate pressure strength (UPS). 

The aim is to optimize the plunging (traverse) speed, 

rotational speed, and wire diameter; therefore, a multi-

objective optimization method must be utilized to 

account for all of these qualities simultaneously. The 

non-dominated sorting genetic algorithm-II (NSGA-II), 

due to its excellent skills in discovering optimal 

solutions [9-11], is employed to optimize the grain size, 

microhardness, and UPS of the produced wires and find 

the optimum process parameters. 

 

2. Experimental Procedure 
 

Brass chips were machined from a CuZn39Pb2Sn 

brass shaft with the chemical composition stated in Table 

1. Before applying the FSBE procedure, these brass 

chips were packed in a matrix and crushed under 500 kgf 

Table 1. Chemical composition of brass  

Element Cu Zn Pb Sn Fe Ni Al Mn Si S P 

wt.% 58.9 37.39 2.14 0.60 0.51 0.43 0.007 0.004 0.003 0.003 0.003 



48                                                                                                               M. Akbari, P. Asadi & H. Rahimi Asiabaraki 
 

October 2021                                                                             IJMF, Iranian Journal of Materials Forming, Volume 8, Number 4 

(Fig. 1). The matrix was fabricated from H13 hot-

working steel and heat-treated to a hardness of 52 RC. 

Three Chrome-Nickel steel tools with the dimensions 

shown in Fig. 2 were made with wire sizing holes of 6, 

7, and 8 mm, which were heat-treated to a hardness of 

58 RC. Along with the tool dimensions, Fig. 2 shows an 

image of the manufactured FSBE tool with a 60° conical 

cut applied to the tool head as the material entrance, 

allowing the softened material to flow easily toward the 

cylindrical hole at the tool center. The rotational and 

traverse speeds were changed from 310 to 800 rpm and 

from 25 to 40 mm/min, respectively. 

The wires are cut perpendicular to the wire axis and 

polished using a conventional process, then polished and  
 

 
Fig. 1. Brass chips employed in this investigation to make 

brass wire. 
 

Fig. 2. The FSBE tool used in this investigation. 

etched for microstructural investigations using the 

optical microscope (OM). The metallographic samples 

are etched for 20 seconds with a solution of 5 g Fe3Cl, 

30 mL HCl, and 100 mL ethanol, then washed with 

distilled water and dried. 

Using a Vickers microhardness testing machine, the 

microhardness of the specimens was measured at two 

places in the wire cross-section (at the center and 

periphery) by applying a load of 200 g for 15 seconds. 

The standard pressure test was performed at ambient 

temperature with a strain rate of 10-3 s-1 using Cometech 

universal tensile/pressure test equipment. The pressure 

test specimens were 12 mm long. A thin film of 1040 oil 

lubricant was used on both sides of the pressure test 

samples. 

 
3. Simulation Details 

 

In order to study the process parameters in more 

depth, it seems necessary to know the temperature 

distribution in the wires during the process. It is 

complicated and even impossible to obtain the 

temperature distribution by using experimental methods 

due to the large deformation of the material and the very 

high force applied. For this purpose, the FSBE process 

was modeled using Deform-3DTM software, which is 

one of the best software for modeling processes with 

high plastic deformation. In this study, an arbitrary 

Lagrangian-Eulerian formulation was selected for the 

numerical simulation of the process [12]. The FSBE tool 

was considered as a rigid body and meshed with 32000 

tetrahedral elements. Moreover, the workpiece was 

partitioned into two zones and meshed with different 

tetrahedral element sizes. Smaller meshes in the mean 

length of 0.8 mm are used on top of the workpiece, which 

is subject to excessive plastic deformation (Fig. 3). 

The flow stress of Brass aluminum alloy is given as 

a function of strain rate, plastic strain, and temperature: 

 
𝜎̄ = 𝜎̄(𝜀̄, 𝜀̇ሜ, 𝑇) (1) 

 

where 𝜎̄ represents the flow stress, 𝜀̄ represents the 

plastic strain, 𝜀̇ሜ represents the strain rate, and T is the  
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Fig. 3. Illustration of the workpiece and the FSP tool. 

 

temperature. The material flow model used is from the 

laboratory results available in the DEFORM software 

library. 

Constant shear friction is utilized to model friction 

between tool and workpiece in this study. In the constant 

shear model, the frictional force could be calculated as 

follows: 
 

𝑓 = 𝑚𝑘 (2) 
 

where f, k, and m represent the frictional stress at the 

tool-workpiece interface, the shear yield stress, and the 

shear friction factor. Based on previous experimental 

works, a constant friction factor of 0.4 was employed for 

the tool-workpiece [13]. The thermal properties of the 

workpiece and tool are summarized in Table 2. Heat 

transfer coefficients have been selected based on the 

research of Tutunchilar et al. [14]. It was also assumed 

that 90% of the friction heat was transferred to the 

workpiece. 
 

Table 2. Thermal characteristics of the workpiece, tool, and 
matrix 

Property Brass Tool Matrix 

Heat capacity (N/mm2 °C) 3.105 3.3 3.3 

Emissivity 0.7 0.7 0.7 

Conductivity (N/s °C) 122 24.5 24.5 

Heat transfer coefficient 
between tool and billet 
(N/°C s mm) 

11 11 - 

Heat transfer coefficient 
between matrix and billet 
(N/°C s mm) 

11 - 11 

 

The simulation and experimental thermal history 

curves are compared to verify model accuracy (Fig. 4). 

Temperatures are measured on the matrix body at 3 mm 

from the inside of the cylindrical surface and 10 mm 

from the top surface. The experimental and numerical 

temperature history that graphs over the process are 

illustrated in Fig. 4, showing good agreement between 

them. 
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Fig. 4. The experimental and numerical temperature history 

curves. 

 

4. Results and Discussion 
 

In this study, first, the mechanical and 

microstructural properties of the produced wires were 

investigated. Then, using experimental and simulation 

results, the effect of parameters on the microstructural 

and mechanical properties of the produced wires is 

investigated. The process was then modeled using neural 

networks, and this model was used in a multi-objective 

optimization algorithm to optimize the process 

parameters. 

 

4.1. Temperature distribution 

Fig. 5 depicts the temperature distribution for 

extruded workpieces at various tool rotational and 

traverse speeds. The required heat for material softening 

in the FSBE, like other friction-stir-based processes, is 

primarily created by friction at the tool/workpiece 

interface. The plastic deformation heat is then added to 

the total generated heat by flowing the material. The 

generated heat softens the material, which elevates the 

workpiece temperature to 60-95% of the substance’s 

melting point [15]. Then the axial movement is applied 

to the tool to deform the workpiece and reduce its 

diameter from extrusion chamber diameter to the wire 

diameter. 

As shown in Fig. 5, the maximum temperature is 

reached under the tool shoulder in all specimens, where 

the tool has the most force and speed. In addition, most 

plastic deformation occurs in this area, which is another 

reason for the higher temperature below the tool 

shoulder. As can be seen in this figure, by increasing the 

rotational speed of the tool, the heat produced in the 

sample increases, and, as a result, the temperature of the 

samples rises as well. By reducing the rotational speed, 

the generation of both frictional and plastic deformation 

heat diminishes. As the tool speed increases from 315 to 

800  rpm at a constant traverse speed of 31.5 mm/min, 

the maximum temperature increases from 566 to 646°C. 

The tool’s traverse speed effects on the heat 

generated and the resulting wire temperature can be seen 

in Fig. 6. As the traverse speed of the instrument 
increases from 25 to 40 mm/min, the maximum 

temperature changes from 601 to 648°C. Two opposite  
 

 
Fig. 5. Temperature distribution during the FSBE process at a traverse speed of 31.5mm and a rotational speed of (a) 315 rpm, (b) 

500 rpm, (c) 800 rpm.
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Fig. 6. Temperature distribution during the FSBE process at a rotational speed of 500 rpm and a traverse speed of (a) 25 mm/min, 

(b) 31.5 mm/min, (c) 40 mm/min. 
 

factors are influential in this increase in temperature. 

First, by increasing traverse speed of the tool, the force 

applied to the workpiece increases [16], and as a result, 

the heat generated due to friction will rise due to the 

growth in vertical force. On the other hand, increasing 

the traverse speed reduces the processing time and the 

time that the workpiece is exposed to heat, thus reducing 

the workpiece temperature [17]. 
As shown in Fig. 6, increasing the traverse speed 

reduces the temperature of the workpiece, indicating that 

the processing time is the dominant parameter in 

determining the temperature. It may be determined by 

comparing the maximum temperature reached in 

different process parameters that samples with a greater 

rotational speed to traverse speed ratio (ω/v) have a 

higher maximum temperature. 

In Fig. 7, the effect of the diameter of the wires on 

the temperature is specified. As the diameter of the wire 

increases, more material must enter the tool, and, as a 

result, more time is required to produce the wire at the 

same traverse speed. As the processing time increases, 

the material is heated for a longer time, and, as a result, 

its temperature rises. However, the effect of changing the 

wire diameter on temperature is negligible compared to 

the impact of the previous two variables, traverse speed, 

and rotational speed. 

 
Fig. 7. Temperature distribution during the FSBE process at a rotational speed of 500 rpm and a wire diameter of (a) 6 mm, (b) 7 

mm, (c) 8 mm.
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4.2. Characteristics of produced wire by FSBE 

The cross-section macrograph of the FSBE-produced 

wire is shown in Fig. 8(a). The FSBE process can 

produce a defect-free brass wire by recycling brass 

chips, as demonstrated in this figure. The peripheral and 

central microstructures of the cross-section of the 

generated wires by FSBE at different process parameters 

are shown in Figs. 8(b) and 8(c). The periphery 

microstructure in both samples is more refined than the 

center microstructure. The amount of strain and the 

temperature encountered are related to this differential, 

which will also affect the microhardness [16]. 

Due to the increased linear velocity of the tool at the 

wire perimeter rather than the tool center, the materials 

at the wire periphery incur more strain (Fig. 9(a)). It is 

widely known that increasing the strain reduces the grain 

size in the generated microstructure by increasing the 

nucleation sites over the recrystallization.  

Regarding the experienced temperature over the 

processing time, it could be declared that the surface of 

the FSBE tool acts as a heat well and cools the outer 

surface of the wires that are in contact with the tool, and 
 

Fig. 8. (a) Cross-section macro image of the produced brass 
wire by FSBE. central and peripheral microstructures of the 

samples produced at (b) a traverse speed of 25 mm/min and a 
rotational speed of 500 rpm, (c) a traverse speed of 40, and a 

rotational speed of 800. 

Fig. 9. (a) Strain distribution and (b) temperature distribution 
on the cross-section of the wires produced at a rotational 
speed of 500 rpm and a traverse speed of 31.5 mm/min. 

 

as a result, the temperature at the surface of the wires is 

lower than the center of the wire (Fig. 9(b)). As a result, 

the lower experienced temperature at the wire periphery 

reduces the grain growth during the process. Higher 

strain and lower temperature of the outer surface of the 

wires is the main reason for the smaller grain size in this 

area. 

In order to better understand the difference between 

the microstructure in the center and periphery of the 

wires produced, the material flow in these two areas was 

modeled. In the original stock, the points are 1 and 3 mm 

from the center axis (see Fig. 10). From 3D, front, and 

top views, their routes through the process from initial 

stock to final wire sample may be seen. As can be 

observed, from the starting stock to the size channel, 

where the wire is formed, all points spin around the axis 

and climb in a virtually helical manner. The path for the 

point in the center zone, on the other hand, is almost 

entirely helical and moves practically vertically at a 

slower rate. The path is a conical helix for the point at 

the wire’s periphery, and it takes an inward spiral 

movement in addition to upward movement. Therefore, 

it must follow the longer path with higher speed. As a 

result, as previously stated, a greater strain is applied to 

the points near the wire’s periphery. The higher the 

strain, the higher the dislocation density and the more 

favorable sites for grain nucleation, resulting in a 

microstructure with more refined grains. 

Even though there are visible grain size disparities 

between the center and periphery of the generated 

samples, the center values are used to optimize the 

process parameters. 
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Fig. 10. Material flow behavior in two areas (a) the center and (b) periphery. 

 

Table 3 shows the central microhardness of the 

manufactured samples. Based on the microstructural 

data, the microhardness value in the sample perimeter 

should be larger than that of the sample core. The center 

microhardness of a sample made with a traverse speed 

of 25 mm/min and a rotational speed of 500 rpm, as well 

as a sample made with a traverse speed of 40 mm/min 

and a rotational speed of 800 rpm, is 121 and 119 HV,  
 

Table 3. The experimental data used in the neural network 

 Traverse Speed 
(mm/min) 

Rotational Speed 
(rpm) 

Wire Diameter 
(mm) 

Grain Size 
(µm) 

Hardness 
(HV) 

UPS  
(MPa) 

1 25 315 6 12.1 133 863 

2 25 500 6 17 123 888 

3 25 800 6 25.7 113 869 

4 25 315 7 12.71 131.3 850 

5 25 500 7 18.3 121 871 

6 25 800 7 28.3 110.4 860 

7 25 315 8 13.6 129 820 

8 25 500 8 19.8 119 863 

9 25 800 8 30.4 106 832 

10 31.5 315 6 10.8 136.2 870 

11 31.5 500 6 15.05 126 940 

12 31.5 800 6 20.1 119 856 

13 31.5 315 7 11.91 132.8 839 

14 31.5 500 7 16.91 122.5 932 

15 31.5 800 7 22.55 116 832 

16 31.5 315 8 13.13 130 820 

17 31.5 500 8 18.8 120 899 

18 31.5 800 8 24.7 114 811 

19 40 315 6 9.2 142 650 

20 40 500 6 13.1 130 818 

21 40 800 6 19 120 831 

22 40 315 7 9.59 139 520 

23 40 500 7 14.17 128.3 792 

24 40 800 7 20.3 119 824 

25 40 315 8 10.7 135 706 

26 40 500 8 15.8 125 750 

27 40 800 8 22.1 116.4 804 
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respectively, whereas the peripheral microhardness is 

129 and 123 HV. The grain size is the leading cause of 

greater hardness near the sample’s periphery (Fig. 7). 

Fig. 11 shows the engineering stress-strain pressure 

test curves for a sample generated at a traverse speed of 

25 mm/min and a rotational speed of 500 rpm, as well as 

a sample produced at a traverse speed of 40 mm/min and 

a rotational speed of 800 rpm. In section 4.5, the impact 

of process factors on the UPS of produced samples will 

be addressed. 

 
4.3. Effect of input parameters on grain size 

The influence of process parameters, including 

traverse speed, rotational speed, and wire diameter, is 

shown in Figs. 12 and 13. As discussed in the preceding 

section, raising the tool’s rotating speed raises the 

temperature of the workpiece during the process, 

hastening grain growth. By reducing processing time and 

limiting frictional heat generation, the traverse speed has 

the opposite effect and reduces temperature.  

The base part of deformation is generated by rotating 

speed during the process, and increasing rotational speed 

promotes deformation. The grain structure that results 

should be more refined as a result of this. Because more 

severe recrystallization with a more considerable 

number of nucleation sites occurs with higher 

deformation [18, 19]. However, the results showed that 

the temperature of the workpiece is the dominant 

parameter in determining the grain size compared to the 

amount of plastic deformation of materials. As shown in 

Fig. 12, the grain size increases in the wires produced by 

increasing the rotational speed or decreasing the traverse 

speed. 

Fig. 13 shows the effect of wire diameter on the grain 

size of those wires. Two factors affect the change in 

grain size by changing the diameter of the wires. First, 

as the diameter of the wire increases, the temperature 

produced in the wire increases due to the increased 

processing time, which intensifies grain growth. 

Furthermore, the larger tool central hole (which creates 

a larger-diameter wire) minimizes plunging force during 

the process, resulting in less strain in the processed 

materials. As a result, the nucleation sites decrease during 

Fig. 11. The engineering stress-strain pressure test curves for 
samples produced at (a) a traverse speed of 25 mm/min and a 

rotational speed of 500 rpm, (b) a traverse speed of 40 
mm/min, and a rotational speed of 800 rpm. 

 

Fig. 12. The effect of rotational and traverse speed on the 
grain size of the wires. 

 

Fig. 13. The effect of wire diameter on the grain size of the 
wires. 

 

during the recrystallization process, resulting in a coarser 

microstructure in the generated wire. The smallest grain 

size is reached when a 6 mm diameter wire is produced, 

as seen in Fig. 13. 

 
4.4. Microhardness as a function of input parameters  

Figs. 14 and 15 illustrate the variation of 

microhardness versus the different tool traverse and 

rotational speeds and wire diameter. As it is known, 

increasing the traverse speed or decreasing the rotational 

speed and diameter of the produced wires increases the  
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Fig. 14. The effect of rotational and traverse speed on the 
hardness of the wires. 

 

Fig. 15. The effect of wire diameter on the hardness of the 
wires. 

 

hardness of the samples. The effects of the parameters 

on the hardness are opposite to their impact on the grain 

size. According to the Hall-Petch relationship, grain size 

affects the hardness of alloys, and the hardness increases 

by decreasing the grain size [20, 21]. 

 
4.5. Effect of input parameters on UPS 

The variation curves of UPS vs. tool rotating speed, 

traverse speed, and wire diameter are shown in Figs 16 

and 17. UPS behaves differently when it comes to the 

input parameters than it does when it comes to the grain 

size and hardness of the samples. The UPS of the 

samples appears to be influenced by a factor other than 

temperature and strain. Although its microstructure and 

hardness determine the strength of a material, 

discontinuities in the macrostructure caused by 

inadequate material flow during the FSBE process 

substantially impact the UPS in the samples generated.  

Since the temperature and grain size are lowered, and 

hardness is enhanced. Additionally, by increasing the 

traverse speed, the UPS should be increased. The 

traversal speed ranged from 25 to 31.5 mm/min when this 

Fig. 16. The effect of rotational and traverse speed on UPS of 
the wires.  

 

Fig. 17. The effect of wire diameter on UPS of the wires. 

 

event occurred. To put it another way, a faster traverse 

speed will result in a higher UPS. 

However, the defect that appeared in the center of the 

produced sample at a traverse speed of 40 mm/min (Fig. 

18) demonstrates that insufficient heat generation causes 

poor formability of the materials in the process, which 

leads to the production of discontinuity in the sample 

core. In reality, the poor softening of material due to the 

lack of heat results in a poor material flow (strain) in the 

materials under process. The manufactured wire UPS is 

drastically reduced as a result of this serious flaw. 

It should be noticed that the temperature and strain 

have a bilateral effect on themselves. Lower temperature 

weakens the material flow and strain. While on the other 

side, the heat generated from plastic deformation will be 

lowered in low strains and weak flow of materials, 

consequently, decreasing the temperature. Therefore, it 

could be mentioned that the lack of both strain and 

generated heat leads to the generation of defects. 

The influence of rotational speed also exhibits 

reversal behavior. As mentioned in section 4.4, 

increasing the rotational speed decreased the 

microhardness (Fig. 14); hence the wire generated at the  
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Fig. 18. The defects generated in the cross-section of the 
wires produced with the traverse and rotational speeds of (a) 

40 mm/min and 315 rpm, and (b) 40 mm/min 500 rpm. 
 

higher rotating speed should have a lower UPS. Increase 

the rotating speed from 500 to 800 rpm to see this 

behavior, which reduces the UPS. However, the rotating 

speed of 315 rpm has unexpectedly resulted in the lowest 

UPS. Similarly, a fault in the cross-section of the wire 

caused this much lower UPS. 

Although the influence of wire diameter variation on 

the UPS is intangible, it appears that increasing the 

diameter of the produced sample causes a reduction in 

strength. In fact, the axial forging force necessary to pass 

the under-process material over a smaller hole is greater 

than that required to pass the material over a larger hole. 

As a result, a smaller tool center hole could generate a 

stronger material (which produces a smaller wire 

diameter). 

 
4.6. Modeling using ANN 

As it turned out from the experimental results, the 

input parameters significantly affected the 

microstructural and mechanical properties of the 

process. In manufacturing processes, due to the high cost 

of production, it is impossible to use all input parameters 

to determine the product’s properties. The use of 

numerical methods to model the relationship between 

input parameters and output properties of the product 

makes it possible to determine output properties based 

on input parameters without performing experimental 

tests. One of these numerical models is neural networks, 

which have been widely used in modeling 

manufacturing processes. This research uses an artificial 

neural network to obtain a relationship between process 

inputs such as rotational speed, traverse speed, and wire 

diameter and output parameters such as UPS, hardness, 

and grain size. 

For this reason, a feed-forward neural network with 

a back-propagation algorithm was used to predict the 

required results without performing an experiment. A 

feed network is a network in which the output of neurons 

is connected only with the neurons of the next layer [9, 

11, 22]. Additionally, the output and input data from the 

experiment were normalized in the range of 0 to 1 for 

use in the neural network. Neural network model and 

multivariate optimization were performed with 

MATLAB software. In order to develop the neural 

network model, twenty-seven sets of experimental data 

obtained using different input parameters were used 
(Table 3). Moreover, Levenberg-Marquardt (LM) was 

used as a training algorithm. The LM algorithm is 

commonly used to tackle nonlinear least squares issues. 

This approach uses a combination of gradient descent 

and Gauss-Newton methods [23]. 

In the development of neural networks, the selection 

of parameters affecting the network, such as the number 

of hidden layers and the functions used, play a vital role 

in the neural network’s performance. Several neural 

networks were examined using different parameters to 

select the optimal neural network parameters, and the 

network with the lowest error between the experimental 

data and the predicted data was established. The 

developed neural network consists of 3 neurons in the 

input layer, 10 neurons in the hidden layer, and 3 neurons 

in the output layer. The Mean Relative Error (MRE) 

criterion was used to evaluate the performance of each 

of these networks: 
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MRE = 

1

𝑃
෍(

|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

௉

ଵ

× 100)     

 
(3) 

 

The minimum MRE in the network with ten hidden 

layers as well as Logsig activation functions in both 

layers is achieved  (Fig. 19) [9, 11, 22]. In the 

development of neural networks, some data are used to 

train neural networks and others to test the function of 

neural networks. In this study, about 20% of the 

experimental data were used for testing and the rest for 

neural network training. The neural network error during 

the training and testing stage for the various parameters 

is given in Table 4. As can be seen, the neural network 

has been able to predict the results in both stages. 

 
Fig. 19. Three-layer neural network used in this study. 

 
Table 4. Neural network errors in two stages of training and testing 
 MRE 
 Train Stage (%) Test Stage (%) 

Grain size 1.765130255 7.488925 

Hardness 0.774006694 1.544752 

UPS 0.84007045 8.454584 
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Eqs. (4)-(6) were obtained from ANN based on the input 

parameters of traverse speed, rotational speed, and wire 

diameter to determine the grain size, hardness, and UPS 

as outputs of the model. Similarly, using these equations 

(Eqs. (4)-(6)), grain size, hardness and UPS may be 

calculated as:

  

𝐺𝑟𝑎𝑖𝑛 𝑆𝑖𝑧𝑒  = ൬
40

1 + eି(ିଵ.଻଻×୊భି଴.଴ଷ଺×୊మା଻.ଵ×୊యାଵ.଼×୊రାଵ.ଵ×୊ఱି଺.଴଻×୊లି଴.଺×୊ళିସ.ଵଽଷ×୊ఴି଴.ହ଻×୊వାଵ.ଷ×୊భబାଷ.ଷ଼)
൰  (4) 

𝐻𝑎𝑟𝑑𝑛𝑒𝑠𝑠 = ൬
160

1 + eି(ଶ.ଽସ×୊భା଴.ଵ଺×୊మିଶ.ଶ଻×୊యିଶ.ଶ×୊రି଴.ଽଵ×୊ఱାଵ.ଽହ×୊లା଴.଻଺×୊ళାଶ.ଵସ×୊ఴା଴.଺ଵ×୊వିଵ.଼ଷ×୊భబାଵ.ସଶ)
൰ (5) 

UPS = ൬
1000

1 + eି(ଵ.ସ଺×୊భାଵ଴.ଵଶ×୊మାଶ.ଷ×୊యାଽ.ହ×୊రାହ.଺×୊ఱାସ.଼×୊లାଵ଼.ହ×୊ళାଽ.ଵ×୊ఴିସ.଺ସ×୊వା଼.଺ଽ×୊భబିଶଵ.଺ଷ)
൰ (6) 

 

where Fi (i = 1, 2, 3, ..., 10) are the weights, can be 

calculated using: 
 

𝐹௜ =
1

1 + 𝑒𝑥𝑝ି௎೔
 (7) 

 

where i=1,….,10 and 𝑈௜  can be determined by Eq. (8): 
 

𝑈௜ = 𝐶ଵ௜ × 𝑇 + 𝐶ଶ௜ × 𝑅 + 𝐶ଷ௜ × 𝑑 + 𝐶ସ௜ (8) 
 

Constants, Cji, in Eq. (8), are given in Table 5 LM 

algorithm, and T, R, and d, are traverse speed, rotational 

speeds, and wire diameter, respectively. T, R, and d 

values are normalized by being divided by 50, 1000, and 

10. 
 

Table 5. The weights and biases between input and hidden 
layers for Eq. (8) 

𝑼𝒊 = 𝑪𝟏𝒊 × 𝑻 + 𝑪𝟐𝒊 × 𝑹 + 𝑪𝟑𝒊 × 𝒅 + 𝑪𝟒𝒊 

i 𝑪𝟏𝒊 𝑪𝟐𝒊 𝑪𝟑𝒊 𝑪𝟒𝒊 

1 4.8668 10.27 -51.36 15.86 
2 -32.4117 -1.6 41.31 2.507 
3 16.82 12.71 -4.34 -40.91 
4 12.1456 30.029 -45.93 13.561 
5 -0.46 17.51 -46.41 19.70 
6 2.37 -1.91 -5.09 5.18 
7 6.65 1.28 -37.38 16.46 
8 31.99 -5.6 -18.631 -23.38 
9 13.0316 22.79 -76.008 30.38 

10 -21.21 -38.43 66.303 -19.60 

 

4.7. Analysis of variance (ANOVA) 

Controlling the input parameters to produce quality 

samples requires understanding the impact of each input 

parameter on the performance of the produced samples. 

The relevance of input parameters can be calculated 

using a variety of ways. The ANOVA method, a 

statistical tool for testing the differences between two or 

more means, is being considered by researchers as one 

of these methods for analyzing sensitivity [24]. In this 

study, this analysis was used to investigate the 

importance of the parameters. Sensitivity analysis of 

process outputs, including grain size, hardness, and UPS, 

is shown in Table 6. As shown in this table, rotational 

speed is the dominant parameter in determining the grain 

size and hardness of the samples. In the production of 

wires, the deviation from the optimal rotational speed 

creates the most significant deviation in the properties of 

the wires produced from the desired value, and precise 

control of this parameter seems to be critical compared 

to other parameters. In addition, as shown in Table 6, the 

most critical parameter on the UPS of wires produced is 

traverse speed, with a contribution of 65.29%. As 

discussed before, increasing the traverse speed causes 

defects such as discontinuities in the wires, which cause 

a sharp drop in UPS. 
 

4.8. Multi-objective optimization 

In this research, hybrid optimization has been used to 

optimize the process parameters. This optimization 

consists of two parts. First, the Pareto front is obtained 

using the NSGA-II method. Then, using the TOPSIS 

method and weighting the objectives based on their 

importance, the optimal parameter is selected from the 

Pareto solutions. 

Multi-objective optimization, which is also called 

multi-criteria optimization, is used in processes where 

the output is more than one in order to optimize all 

objectives simultaneously. The objectives in these 

processes are often in conflict with each other and 

improving one objective will worsen another. For this  
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Table 6. Analysis of variance of objectives  

Grain size 

Source Sum Sq. d.f. Mean Sq. F Contribution (%) 

Traverse Speed 107.6031 2 53.8016 33.6584 13.12511016 

Rotational Speed 671.7368 2 335.8684 210.1199 81.93636164 

Wire diameter 40.4874 2 20.2437 12.6645 4.938528202 

Error 31.9692 20 1.5985   

Total 851.7965 26    

Hardness 

Source Sum Sq. d.f. Mean Sq. F Contribution (%) 

Traverse Speed 265.5141 2 132.757 83.5573 12.72033718 

Rotational Speed 1694.574 2 847.287 533.2824 81.18419266 

Wire diameter 127.2319 2 63.6159 40.0399 6.095470159 

Error 31.7763 20 1.5888   

Total 2119.096 26    

UPS 

Source Sum Sq. d.f. Mean Sq. F Contribution (%) 

Traverse Speed 84005.41 2 42002.7 13.4021 65.29796297 

Rotational Speed 39131.19 2 19565.59 6.2429 30.41677446 

Wire diameter 5512.963 2 2756.482 0.87953 4.285262561 

Error 62680.96 20 3134.048   

Total 191330.5 26    

 

reason, no one answer optimizes all objectives 

simultaneously. There is a set of answers to these 

problems as the optimal answer known as Pareto front or 

Pareto optimal solutions. The concept of Pareto front 

stands for a set of solutions that are non-dominated by 

each other but superior to the rest of the solutions in the 

search space. The answers in the Pareto front cannot be 

optimized with respect to an objective unless at least 

another objective gets worse. 

So far, various algorithms have been proposed to 

solve multi-objective optimization problems. The most 

widely used multi-objective optimization algorithms 

based on evolutionary algorithms are presented. Among 

the meta-heuristic algorithms for multi-objective 

optimization, the NSGA-II algorithm, which is a 

modified version of the NSGA algorithm, has received 

more attention due to its excellent performance in 

determining optimal solutions. Therefore, in this study, 

the NSGA-II algorithm is used to optimize process 

parameters. 

In order to determine the optimal values of the 

process, such as hardness, UPS, and grain size, the 

relationship obtained by the neural network between the 

input and output parameters was used in a multi-

objective optimization algorithm. The three conflicting 

objectives in this research were grain size, hardness, and 

UPS, to be simultaneously optimized with respect to the 

design variables, namely traverse speed (T), rotational 

speed (R), and wire diameter (d). This optimization 

problem can be formulated as follows: 
 

⎩
⎪
⎨

⎪
⎧

max ℎ𝑎𝑟𝑑𝑛𝑒𝑠𝑠 (𝑇, 𝑅, 𝑑)
min 𝑔𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒 (𝑇, 𝑅, 𝑑)

max 𝑈𝑃𝑆 (𝑇, 𝑅, 𝑑)
6 ≤ 𝑑 ≤ 8
300 ≤ 𝑅 ≤ 800
25 ≤ 𝑇 ≤ 40

 (9) 

 

The corresponding Pareto front of three objectives, 

grain size, hardness, and UPS, has been shown in Fig. 

20. It is necessary to mention that there is a single set 

of individuals due to the three-objective optimization 

illustrated in different planes of the objective 

functions. Thus, there are some points in each plane that 

may dominate others in the same plane. However, these  
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Fig. 20. Optimization result (Pareto front). 

 

individuals are all non-dominated when considering all 

three objectives simultaneously. According to the Pareto 

sets, choosing the design variables (traverse speed and 

rotational speed, and wire diameter) results in the best 

possible combination of those three objectives. 

As can be seen, the answers obtained by multi-

objective optimization were a set of nondominated 

answers. Since only one optimal parameter is needed to 

produce the product in manufacturing processes, it is 

necessary to introduce one of the Pareto optimal 

solutions as the optimal solution. In order to select an 

optimal parameter from Pareto solutions based on the 

desired criteria, the TOPSIS method has been used. 

In the TOPSIS method, first, the positive ideal 

solution (S+) and the negative ideal solution (S-) are 

defined, and then, among the Pareto points, the closest 

answer to the positive ideal solution and the farthest 

answer from the negative ideal solution are introduced 

as the best compromise solution. The TOPSIS method 

for selecting the best compromise solution is as follows: 

1. Enter a matrix for evaluation 
2. Normalize the evaluation matrix using the 

following equation: 
 

𝑠̃௜௝ =
𝑠௜௝

ට∑ 𝑠௜௝
ଶ௠

௜ୀଵ

 
(10) 

 

where 𝑠̃௜௝ is the normalized rating; 𝑠௜௝ is the jth objective 

value of the ith alternative, and m is the number of 

optimum values. 
3. Calculate the weighted evaluation matrix by 

determining the weight (W) of each objective according 

to its importance: 
 

෍ 𝑤௝ = 1 (11) 

  
𝑠̂ = 𝑤௝ × 𝑠̃௜௝  (12) 

 

4. Calculate the positive and negative ideal solution 

according to the following equations: 
 

𝑆ା = {൫max 𝑠௜௝
^ ห𝑗 ∈ 𝐽ଵ൯, ൫min 𝑠௜௝

^ ห𝑗 ∈ 𝐽ଶ൯ 

                                                , 𝑖 = 1,2, … , 𝑛} (13) 
  

𝑆ି = {൫min 𝑠௜௝
^ ห𝑗 ∈ 𝐽ଵ൯, ൫max 𝑠௜௝

^ ห𝑗 ∈ 𝐽ଶ൯ 

                                                , 𝑖 = 1,2, … , 𝑛} (14) 
 

where J1 is a set of benefit attributes and J2 is a set of cost 

attributes. 

5. Using the positive and negative ideal solutions, 

determine the best (D+) and the worst (D−) alternatives 

as follows: 
 

𝐷௜
ା = ඨ෍(𝑠௜௝

^

௝

− 𝑠௝
ା)ଶ        (15) 

𝐷௜
ି = ඨ෍(𝑠௜௝

^

௝

− 𝑠௝
ି)ଶ      (16) 

 

6. Calculated relative closeness Di for each Pareto 

front point as follows: 
 

𝐷௜ =
𝐷ି

𝐷ି + 𝐷ା
   (17) 
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7. Select the best compromise solution whose 

relative closeness (Di) is closest to 1. 

In order to find the best compromise answer by the 

TOPSIS, it is necessary to determine the weight of each 

objective based on its importance. Since the UPS is more 

critical than the hardness and grain size, the weight given 

to the UPS is considered more than the other two 

parameters. For this purpose, a weight of 0.2 was 

considered for grain size and hardness and a weight of 

0.6 for UPS. In this experiment under W = (0.2,0.2,0.6), 

the best compromise solution has a traverse speed of 

36.35 mm/min, a rotational speed of 456 rpm, and a wire 

diameter of 6 mm. 

 
5. Conclusion 

 

In the present study, the friction stir back extrusion is 

employed to produce brass wires from its chips. Then the 

effect of process input parameters such as traverse speed, 

rotational speed, and wire diameter on the mechanical 

and microstructural properties of the produced wires was 

investigated. Numerical methods were used to 

investigate the temperature history of materials during 

the process. Finally, the process parameters were 

obtained using a hybrid optimization method. The results 

show that 
 Lower temperature and higher strain on the 

surface of the wires reduce the grain size in this 

area compared to the center of the wire. 

 The maximum temperature is reached under the 

tool shoulder, where the most force and speed 

of the tool is found. 

 The grain size increases in the wires by 

increasing the rotational speed or decreasing 

the traverse speed. 

 The defect that emerged at the center of the 

produced sample with 40 mm/min traverse 

speed reveals that inadequate heat generation at 

high traverse speed. 

 The neural network was able to determine the 

relationship between inputs and outputs. 

 The rotational speed of the tool has the most 

significant effect on determining the grain size 

as well as the hardness. 

 Unlike grain size and hardness, the 

predominant parameter in determining the UPS 

value of wires is traverse speed. 

 Hybrid multi-objective optimization introduced 

a traverse speed of 36.35 mm/min, a rotational 

speed of 456 rpm, and wire diameter of 6 mm 

as optimal parameters. 
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