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Abstract– This paper presents an ant colony system model for cost optimization of a composite 
floor system based on the load and resistance factor design (LRFD) specification of the AISC. The 
model formulation includes the cost of concrete, steel beam, and shear studs. The objective 
function is considered as the cost of the structure, which is minimized subjected to serviceability 
and strength requirements. Examples of composite floor systems are presented to illustrate the 
performance of the present algorithm. A parametric study is also included to investigate the effects 
of beam spans and loadings on the cost optimization of composite beams.           
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1. INTRODUCTION 
 

Composite floors are widely used in commercial multistory buildings because of their economy. In order 
to create a composite floor, a concrete slab is often mechanically connected to a hot-rolled steel section 
through shear connectors. 

In practice, a composite beam is designed by a trial-and-error process to select the following 
parameters: (1) the concrete type expressed by its compressive strength and its unit weight, (2) the slab 
thickness, (3) the steel section size expressed by its cross-sectional area, and its steel grade expressed by 
its yield strength, and (4) the strength of the shear connectors expressed by its shear resistance, and the 
number of shear connectors provided. 

The design of composite beams is complicated and highly iterative. Depending on the design 
parameters, a beam may be fully or partially composite. In the case of the LRFD design code [1], the 
plastic deformation has to be considered. A source of complexity is due to the fact that the location of the 
plastic neutral axis (PNA) may lie within the concrete slab, the flange of the steel beam, or the web of the 
steel beam. Since the value of a design parameter affects other design parameters, all design parameters 
cannot be found simultaneously. 

Mathematical optimizations provide methodologies to automate the complicated design process. 
Moreover, one can achieve an optimum solution out of numerous solutions on the basis of a selected 
criterion such as the minimum weight or the minimum cost. In fact, most of the articles that have been 
published on the optimization of structural systems focus on the minimum weight design. 

There are some articles published on the optimization of composite beams. Zahn [2] discussed the 
economies of the LRFD design code versus the AISC allowable stress design code in the design of 
composite beams through the weight comparison of some 2500 composite designs using A36 steel. The 
results indicated that the LRFD design code yielded a savings of 6–15% for span lengths ranging from 3 m 
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to 13.7 m. Lorenz [3] discussed the minimum cost design of composite beams based on the AISC–LRFD 
design code and argued that the real advantage of the AISC–LRFD concept could be realized in the 
minimum cost design. Bhatti [4] put the problem into a standard optimization formulation and solved the 
problem approximately using the Symbolic Algebra Mathematica [5]. His cost function, however, only 
includes the cost of the steel beams and the field-installed shear studs, neglecting the cost of the concrete. 
Long et al. [6] presented a non-linear programming based optimization of cable-stayed bridges with 
composite superstructures and proposed a cost objective function which contained the costs of concrete, 
structural steel, reinforcement, cables and formwork. Kravanja and Šilih [7] introduced a non-linear 
programming optimization model for composite I beams. Kravanja and Šilih [8] also introduced a mixed-
integer non-linear programming approach for cost optimization of composite I beams. Adeli and Kim [9] 
proposed a formulation for the cost optimization of composite beams based on the AISC LRFD 
specifications by including the costs of (a) concrete, (b) steel beam, and (c) shear studs. The problem was 
formulated as a mixed integer-discrete nonlinear programming problem and solved by the neural 
dynamics model of Adeli and Park. In addition, Kravanja and Šilih [10] performed an optimization based 
comparison between composite welded I beams and composite hollow-section trusses for a defined steel 
price of €/0.4 kg and for fixed economical parameters. In their work, the cost objective function includes 
the costs of concrete, steel sections, reinforcement, shear studs, anti-corrosion paint, fire protection paint, 
sheet-steel cutting costs, and welding costs as well as the formwork costs. This objective function was also 
used by Klanšek and Kravanja [11] to compare different composite systems for a pre-defined imposed 
load and a fixed steel price. Kravanja et al. [12] presented a mixed-integer non-linear programming 
(MINLP) optimization approach to mechanical super-structures. Klanšek and Kravanja [13,14] presented 
the cost optimization, comparison, and competitiveness between three different composite floor systems: 
composite beams produced from duo-symmetrical welded I sections, composite trusses formed from 
rolled channel sections and composite trusses made from cold formed hollow sections. The optimization 
was performed by the non-linear programming (NLP) approach. The aim of the comparison was to define 
the spans and the loads, at which each of the presented composite structures showed its advantages. 
Comparative diagrams were displayed at the end of the paper for choosing the optimal type of a structure. 

In recent years, structural optimization witnessed the emergence of novel and innovative design 
techniques. These stochastic search techniques make use of ideas taken from nature and do not suffer the 
discrepancies of mathematical programming based optimum design methods. The basic idea behind these 
techniques is to simulate the natural phenomena. The cost optimization problem for a composite floor was 
solved by Senouci and Al-Ansari [15] by using a genetic algorithm. Recently Kaveh and Shakouri 
performed cost optimization of a composite floor system via a modified harmony search algorithm [16]. 
In this paper, an ant colony system model is utilized for cost optimization of a composite floor system 
based on the LRFD specification of the AISC. In recent years the usage of meta-heuristic has been 
increased in many fields of engineering [17,18]. The formulation includes the cost of concrete, steel beam, 
and shear studs. The objective function is taken as the cost of the structure, which is minimized subjected 
to serviceability and strength requirements. Examples of composite floor systems are included to illustrate 
the performance of the present algorithm. A parametric study is also provided to investigate the effects of 
beam spans and loadings on the cost optimization of composite beams. 
 

2. MODEL FORMULATION 
 

In this section the primary purpose is to formulate an efficient optimization model that supports the cost 
minimization of composite beams. The present model is formulated in two major steps: (1) To determine 
the major decision variables affecting the design of composite beams; and (2) to formulate the objective 
function for composite beams and implement it in an efficient optimization model. 
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a) Decision variables 
 

The present model is designed to consider all relevant decision variables that may have an impact on 
the cost optimization of composite floor system. These include for the concrete slab: (1) the compressive 
strength ( cf  ), (2) the unit weight ( c ), and (3) the thickness ( ct ); for the steel section: (1) the yield 
strength ( yF ), (2) the cross-sectional area ( sA ), (3) the depth ( h ), (4) the web thickness ( wt ), (5) the 
flange thickness ( ft ), (6) the flange width ( fb ), (7) the moment of inertia ( sI ), (8) the plastic modulus 
( sZ ), and (9) steel beam spacing ( 0d ); and for the shear connectors: (a) the diameter ( ASC ) and (b) the 
number ( sN ) of shear connectors. A schematic view of the composite floor variables and system are 
shown in Fig. 1. 
 

 
 

(a) 

 
(b) 

Fig. 1. Schematic view of (a). variables of composite floor system, (b). a simple composite floor system 
 

In order to reduce the complexity of the optimization model, the present model combines the decision 
variables related to the steel section into a single variable called a steel section decision variable. As an 
example, when an I-Shape section is selected as the steel section, h , wt , ft  and fb  are available in the 
existing steel design codes, and the following variables can be obtained by the following formulas: 
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The yield strength, Fy, of the steel section is given and fixed at the onset of each design, and hence, 
the fourth decision variable (first steel section variable) is not considered in the present model. 

A design alternative option which defines a complete design of a composite floor system includes the 
following decision variables: 
 

1X  = concrete compressive strength, 

2X  = concrete slab thickness, 
3X  = steel section shape, 

4X  = steel beam spacing, 
5X  = shear connector diameter, and 

6X  = number of shear connectors. 
 
b) Optimization objectives 
 

The present optimization model is formulated in order to provide the capability of cost optimization 
of composite floor systems. The model is also designed to quantify and measure the impact of various 
decision variables that affect the cost optimization of composite floor systems. It incorporates the 
following objective equation: 
 

Minimize composite beam cost = sdsct CCCC   
 
where cC , sC , and sdC  are the cost of concrete, steel beam, and shear connectors, respectively. The 
terms used in the objective equation are defined as follows: 
 

cccc CLBtC                                                                          (2) 
 

sss Cd
BLGC  )(

0
            (3) 

 
sdssd CNC               (4) 

 
where L is the beam span (or the length of the floor), B is the width of the floor, sG is the weight of the 
steel beam in length units, cC   is the cost of concrete per unit volume, sC   is the cost of the steel section 
per unit weight, and sdC  is the cost of one shear connector including installation and material costs. These 
costs include labor payments and welding expense. The labor cost in a composite beam is almost 
permanent; therefore, it is not necessary to include it in the objective function. 

The minimization of the objective function is subjected to the constraints prescribed by the AISC–
LRFD specifications [1]. These constraints are described briefly in the following section. 
 
c) Design constraints 
 
1. Flexural strength constraints: The ultimate bending moment must be less than or equal to the nominal 
flexural strength multiplied by the resistance factor ( 9.0 ). Two cases must be considered. First, the 
moment capacity of the non-composite steel section (excluding the concrete strength) must be checked to 
make sure that the steel section can support its own weight, the weight of the wet concrete, and the 
temporary loads such as construction loads. This constraint is expressed as 
 

tenoncomposintenoncomposiu MM   90.0                      (5) 
 
where tenoncomposiuM   is the ultimate factored moment due to the wet concrete weight, the temporary loads, 
and the own weight of the steel section, and tenoncomposinM   is the nominal moment capacity of the steel 
section. 
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Second, the moment capacity of the composite section must be checked to make sure that the 
composite section can support all dead and live loads, as defined by the following constraint: 
 

compositencompositeu MM   85.0                                                (6) 
 
where compositeuM   is the factored moment due to dead and live loads, and compositenM   is the moment 
capacity of the composite beam. 
 
2. Deflection constraint: The deflection of a composite beam depends on whether it is shored or not 
during the construction phase. The unshored construction is less labor-intensive and faster than the shored 
construction, and hence, it is often the preferred method of construction. For unshored composite beams, 
the deflection of the composite beam due to live loads, LL , is given by [1]: 
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where LLW  is the service live load per unit length of the beam, Es is the modulus of elasticity of the steel 

section, LBI  is the lower bound moment of inertia, and 1C  is a coefficient ranging from 
300

1
 to 

360
1

 for 

building structures or 
500

1
 to 

900
1

 for highway bridges. 

 
3. Shear stud spacing constraints: AISC–LRFD defines the minimum center-to-center spacing of shear 
connectors, p , not to be less than six times the diameter,  , of the shear connector, and the maximum 
center-to-center spacing not to be greater than eight times the total slab thickness, ct , i.e. 
 

6p              (8) 
 

ctp 8             (9) 
 

3. ANT COLONY SYSTEM FOR COST OPTIMIZATION OF  
COMPOSITE FLOOR SYSTEMS 

 
A meta-heuristic algorithm based on the ants’ behavior was developed in the early 1990s by Dorigo and 
Gambardella [19]. This algorithm was called ant colony optimization (ACO) because it was motivated by 
the social behavior of ants. Ant colony system is a variation of the ACO, which has proven to behave 
more robustly and provide far better results for certain problems. 

The building blocks of these algorithms are cooperative agents called ants. These agents have simple 
capabilities, which make their behavior similar to real ants. Real ants are capable of finding the shortest 
path from food source to their nest or vice versa by smelling pheromones which are chemical substances 
they leave on the ground while walking. Each ant probabilistically prefers to follow a direction rich in 
pheromone. Since pheromones do evaporate and lose strength over time, the final result is that more ants 
tend to pass over the shortest path and this path is visited more often as the amount of pheromone being 
laid increases. As an illustrative example, consider the sketch shown in Fig. 2. The number of dashed lines 
in Fig. 2c is approximately proportional to the amount of pheromone deposited by ants. 

In order to apply the ACS algorithm to a specific problem, it is necessary to represent it as a set of 
different paths for ants to travel. In this problem, different feasible variables selection is supposed as a tour 
for an ant to travel, therefore the cooperative ant agents search to find the best set of decision variables, 
resulting in minimal objective function. 
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Fig. 2. Ant technique to find an optimum solution. 

 
First, m artificial ants are initially positioned on m decision variables as primary selected variables, 

and then ACS algorithm is applied as follows: 
An ant k chooses the thr decision variable by applying the rule of the following equation: 
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Where q is a random number uniformly distributed in [0..1], 0q is a parameter 10 0  q , and J is a 
random variable selected according to the probability distribution given in the following equation: 
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)(rLk  is the set of variables that remain to be chosen by ant k as the thr  variable, and rs  is the amount 

of pheromone deposited on the variable number s as a candidate for being the rth variable. It is assumed 
that there is an equal amount of pheromone 0 , deposited initially on each decision variable. rs  is the 
corresponding heuristic value which remains constant throughout the iterations and, unlike pheromone, 
amount is not modified. Moreover,   is a parameter for controlling the relative importance between   
and .  

After an ant chooses one number as a decision variable, the local updating rule on that chosen variable 
is performed in order to shuffle the solution and prevent focusing on a specific solution. The local 
updating rule modifies the amount of pheromone by 
 

0)1(   rsrs                                                       (12) 
 
where 10    is a parameter for adjusting the pheromone previously deposited on rs . 

Once all the ants complete their own tours, the pheromone will be updated for all the variables 
according to the global updating rule. This pheromone updating is intended to allocate a greater amount of 
pheromone to shorter tours. The rule is given by the following equation: 
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where gbD  is the amount of objective function for best tour and 0 <   < 1 is the pheromone decay 
parameter. The best ant tries to find the minimal objective function. 
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The ant colony optimization initiates the design process by selecting random values for the steel beam 
section and spacing, compressive strength and thickness of slab concrete, number and distance of shear 
connectors. The algorithm tries to find the best value for each design variable to minimize the objective 
function.  

After this brief introduction of ant colony optimization, we should mention how this problem is 
solved by this meta-heuristic algorithm. First, ants select ASC and sN  randomly, because the selection of 
these variables is independent from others. Then, ct  is selected satisfying the following condition: 
 

),
4

max(
minc

s
c t

N
Lt                                                              (15) 

 
Now, 0d  is the next choice of each ant. In this step, some of the values of 0d  cannot be selected by 

some ants, because 0d  must be chosen such that the compatibility between ct  and 0d  holds. 
Each ant selects steel beam section in this step by satisfying the constraint 

tenoncomposintenoncomposiu MM   90.0  and after this selection, compressive strength of concrete slab should 
be selected by satisfying the following two conditions: 
 

1) compositencompositeu MM   85.0 . 
      2) The maximum moment produced in concrete slab should be smaller than its moment   capacity. 
 

4. NUMERICAL RESULTS 
 
Here we have considered a single span floor unit, which is repeated in the structure to cover a ceiling. 
Such a span behaves independently, and once we optimize the problem for one span the result will 
correspond to the entire ceiling. This process can be repeated for spans of different dimensions. 
Furthermore, the following parameters values are considered in the proposed ACS algorithm: β = 2, ξ = 
0.1, ρ = 0.1 and 5.00 q . Table 1 lists a number of possible values for the six decision variables. The 
cost values cC  , sC  , and sdC  are selected to be 50 3/$ m , 1 kg/$ , and 0.5 stud/$ , respectively. 
 
a) Example  
 

The considered composite I-beam floor system is 6 m long, subjected to the combined effects of the 
self-weight and the imposed dead load of 2.94 2m/kN (300 2m/kg ) and imposed live load of 1.96 

2m/kN  (200 2m/kg ); the width of the floor is 8 m. The overall height of studs is 50 mm. 
The output consists of the following: 

 
Steel beam spacing = 210 cm, 
Steel beam size = INP 200, 
Concrete slab thickness = 8 cm, 
Concrete slab compressive strength = 19613.3 2m/kN  ( )200( 2cmkg , 
Diameter of shear connectors = 12 mm, and 
Number of shear connectors = 18. 
 
The history of design for this example is shown in Fig. 3. 
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Table 1. Design variable range values 
 

 2cm/kgcf   ShapeI    cmtc   cmd0   cmASC  sN  
200 INP120 8 50 1.3 10 
250 INP140 9 60 1.6 12 
300 INP160 10 70 2.0 14 
350 INP180 11 80 2.2 16 
400 INP200 12 90  18 

 INP220 13 100  20 
 INP240 14 110  22 
 INP260 15 120  24 
 INP280 16 130  26 
 INP300 17 140  28 
 IPE120 18 150  30 
 IPE140 19 160  32 
 IPE160 20 170  34 
 IPE180  180  36 
 IPE200  190  38 
 IPE220  200  40 
 IPE240  210  42 
 IPE270  220  44 
 IPE300  230  46 
 IPB120  240  48 
 IPB140  250  50 
 IPB160  260   
 IPB180  270   
 IPB200  280   
 IPB220  290   
 IPB240  300   
 IPB260     
 IPB280     
 IPB300      

 
Fig. 3. Design history for Example 1 

 
5. PARAMETRIC STUDY 

 
A parametric study is also performed to investigate the effects of beam spans and loadings on the cost 
optimization of composite beams. Table 2 summarizes the design results obtained in the case study using 
the present model. As expected, the steel section size increases with both the beam span and acting loads 
as to satisfy the strength and the deflection constraints. Similarly, the size and the number of studs 
increase with both the beam span and the loadings as to satisfy force and moment equilibrium. Table 3 
summarizes the second-order polynomial fits between the beam costs and the spans, which can be used to 
get an initial estimation of the total cost under a given span length or a given loading combination. 

Figure 4 shows the curves representing the variations between the total costs and the floor spans 
under three different loadings. One can obtain these second-order polynomial fits among the beam costs 
and dead load, live load and span length. The equation will have the following pattern: 
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where the coefficients must be calculated by nonlinear three-dimensional regression. 
 

Table 2. Parametric study results 
 

Cc/Cs Csd/Cs B 
(m) 

L 
(m) 

DL 
(kg/m2) 

LL 
(kg/m2) 

I 
section 

tc 
(cm) 

fc 
(kg/cm2) 

ASC 
(cm) 

Ns 
(number) 

d0 
(cm) 

50 0.6 

8 
4 

200 100 
IPE160 8 200 1.3 12 230 

6 IPE220 8 200 1.3 18 230 
8 IPE300 8 200 1.3 24 250 

8 
4 

300 200 
IPE160 8 200 1.3 12 210 

6 IPE220 8 200 1.3 18 210 
8 IPE270 8 200 1.6 24 210 

8 
4 

400 300 
INP140 8 200 1.6 12 180 

6 IPE200 8 200 1.6 18 170 
8 IPE270 8 200 1.6 24 190 

 
Table 3. Polynomial best-fit equation 

 
Dead load 
( 2mkg ) 

Live load 
( 2mkg ) 

Floor span 
(m) Floor total cost($) 

Coefficient of 
determination 

( 2R ) 
200 100 L 47.91352.19756.22 2  LL  0.9989 
300 200 L 449.515865.0878.21 2  LL  0.9964 
400 300 L 2.190009.57069.28 2  LL  0.9984 

 
6. CONCLUDING REMARKS 

 
An efficient optimization model is suggested to perform the cost optimization of composite beams. The 
composite floor system consists of a reinforced concrete slab and steel I-beams. The proposed model 
enables structural designers to generate and evaluate optimal/near-optimal design solutions. To 
accomplish this, the model incorporates (1) a design module that performs the design of composite beams 
(LRFD-AISC rules); (2) a cost module that computes the total cost of composite beams; and (3) an 
optimization module that searches for and identifies optimal/near-optimal design alternatives. Substantial 
cost savings can be achieved by using the present model. The main aim of this paper has been to present a 
simple and efficient algorithm that can be used in practical engineering problems. Such a simple approach 
can be utilized in some other engineering design problems such as cost optimization of bridges, arch-dams 
and retaining walls to reduce the cost of the construction. 
 

 
Fig. 4. Optimal composite floor design total costs. 
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