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In this paper, a finite element (FE) model is developed to calculate stress concentration factors 

of functionally graded (FG) hollow tubes under torsion. First, the shear stresses in FG hollow 

tubes with curved edges are investigated for different curvature radius of the cross-section 

corners. Next, stress concentrations are evaluated at low curvature parts of the cross-sections. 

Due to stress concentrations in low curvature regions, more considerable shear stresses are 

obtained. FE results are compared with the results of an analytical method for analysis of the 

torsion of hollow tubes to verify the computational approaches. Except for the points of stress 

concentrations, in other regions, an excellent agreement is found between analytical and FE 

results. Therefore, in stress concentration regions, regarding the error of analytical formula in 

stress analysis, some correction factor is presented. These stress concentration factors are 

calculated for a variety of curvature radius and cross-section thicknesses. Applying the 

presented factors, the proposed analytical formula can be used for stress evaluations, even at 

stress concentration regions. Finally, the effects of changing the volume fraction of the 

constituent phases are investigated for a range of curvature radius of cross-section corners. 
 

© Shiraz University, Shiraz, Iran, 2021 

Keywords:  

Hollow tube 

FGMs 

Stress concentration 

Torsion 

Shear stress 

 

1. Introduction 
 

Complex torsion problems have become a serious 

concern to many researchers in the area of elasticity 

theory. Due to the high strength to mass ratio of hollow 

tubes, researchers have focused more on the torsion of 

hollow members. Inhomogeneous hollow rods have 

spatially varying mechanical and thermal properties. 

This gradual change of material properties can be 

tailored to meet desired application requirements. Such 

materials, which are mostly composed of two or more 

constituents with gradually varying volume fraction 

distribution, are called functionally graded materials 

(FGMs).  
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Recently, stress analysis of hollow functionally 

graded (FG) structures has attracted many researchers. 

Studies on torsion of hollow structures with spatially 

varying properties have led to an accurate analytical 

solution for stress analysis of circular, ellipsoidal, and 

polygonal hollow tubes. Chandra et al. tested symmetric 

and non-symmetric epoxy composite rods of rectangular 

cross-section under flexural, torsional, and axial loads 

[1]. Savoia and Tullini investigated the torsional 

response of inhomogeneous multilayered composite 

beams [2]. Horgan and Chan studied torsion of FG 

elastic bars using Prandtl’s stress function [3]. Mejak 

designed optimal shapes for hollow prismatic bars in 
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torsion [4]. The governing equations of the torsion 

problem of hollow tubes with polygon shapes are 

formulated in terms of Prantl’s stress function by 

Hematiyan and Doostfatemeh [5]. This formulation is 

later extended to torsion of hollow tubes with straight 

and circular edges [6]. Using the same stress function, 

Arghavan and Hematiyan presented an analytical 

formula for the torsion of FG hollow tubes with arbitrary 

cross-sections [7]. They assumed that the shear modulus 

of rigidity varies through the thickness of the tube, based 

on a power-law distribution. Ecsedi presented analytical 

solutions for non-homogenous hollow solid cylinders 

[8]. Golami Bazehhour and Rezaeepazhand presented a 

method for analyzing the torsion of non-homogeneous 

tubes with arbitrary cross-sections [9]. Bayat et al. 

investigated FG hollow cylinders under torsional load 

considering a radial variation of material properties [10]. 

Talebanpour and Hematiyan also studied the torsion of 

piezoelectric hollow bars with arbitrary cross-sections 

[11]. Barretta et al. investigated torsion of two-phase 

random composite beams with simple and multiply 

connected cross-sections [12]. 

Stress analysis of cracked hollow cylinders made of 

FGMs is performed by Eshraghi et al. for 

thermomechanical loading conditions [13]. The 

torsional deformations of hollow truncated conical 

cylinders made of FGMs are studied by Batra and Nie 

[14]. Wang et al. performed stress analysis of arbitrary 

FG layered hollow cylinders under arbitrary loading 

conditions [15]. Stress analysis of cracked hollow 

cylinders made of FGMs is performed by Ghasemi and 

Noroozi [16] for torsional loading. Nikbakht et al. 

reviewed optimization-related research of FG structures, 

including hollow tubes and tubes filled with foams [17].  

In all of the mentioned studies, the effect of stress 

concentration on curved edges at a low radius of 

curvature is neglected. Nigrelli and Mariotti calculated 

the stress concentration of coaxial shafts under torsion 

[18]. Stress concentration factors (SCFs) formed under 

tension, bending, and torsion have been considered for 

cylindrical components [19]. The calculation of SCFs in 

the mentioned literature, has been performed for 

isotropic components. To the best of the author’s 

knowledge, determination of SCFs for FG tubes under 

torsion has not been presented in the literature. 

In this paper, a finite element (FE) model has been 

developed to calculate SCFs of FG hollow tubes under 

torsion. The torsion problem of FG hollow tubes with 

curved edges at a considerably low curvature radius of 

the cross-section corners has not been studied yet. First, 

the shear stresses in FG hollow tubes with curved edges 

are investigated for different curvature radius of the 

cross-section corners. The plots of SCFs versus 

curvature radius of the corners are obtained for a variety 

of the cross-section thicknesses. The FE results are 

compared with the analytical results presented in Ref. [7] 

for model validation. Finally, the effects of constituent 

volume fractions are investigated for a range of radius of 

curved segments.  

With the aim of the presented results, SCFs for other 

values of curvature radius can be obtained by 

interpolation. Using these SCFs, the analytical formula 

of Ref. [7], can also be applied to the stress concentration 

regions for both rounded square and flattened tube cross-

sections made of FGMs, with reasonable accuracy.  

 

2. Materials and Methods 

2.1. Analytical solution 

The stress analysis of hollow tubes with polygon 

shapes under torsion are formulated in terms of Prantl’s 

stress function in Ref. [5]. This formulation is then 

extended to torsion of hollow tubes with straight and 

circular edges [6]. Later, an analytical formula for 

torsion of FG hollow tubes with arbitrary cross-sections 

is presented by Arghavan and Hematiyan [7].  

Here, the proposed analysis of Ref. [7] is adopted to 

evaluate the SCFs of FG hollow tubes with curved edges 

under torsion. First, the general relations governing the 

torsion of non-homogenous materials are discussed. The 

governing equations and boundary conditions of this 

problem are given in equations (1) to (3), 

1
2

G

 
      

                                                     (1) 
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In the above relations, ϕ is the Prandtl’s stress 

function, α is the twist angle per unit length, τ is the total 

shear stress, and T is the input torque. 
1

A
describes the 

area enclosed by the inner boundary, while n is the 

normal unit vector to the constant ϕ contour. The 

boundary conditions on the outer and inner boundaries 

are 0  and, 1   , respectively. The value of 1  

satisfies Eq. (2). The shear stress is obtained at each 

point of the cross-section by d / dn    . 

The material properties of the constituent phases in 

FGMs, change continuously along the direction of cross-

section thickness. Here, the FG material is composed of 

two constituent phases, with a shear modulus variation 

designed according to the power-law distribution with an 

exponent k. G0 is the shear modulus of the material at the 

outer boundary and Gi is the one at inner boundary. 

 Now, considering constant thickness for all parts of 

the FG hollow tube, the proposed cross-section will be 

divided into straight and curved segments. The shear 

modulus is obtained at each point in the straight and 

curved segments as Eq. (4) and Eq. (5), respectively. 
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where k is the volume fraction of the material at the outer 

boundary and, t is the cross-section thickness. The local 

Cartesian coordinate system, x'-y', is used for the straight 

segments, where x' is perpendicular to the segment 

length toward the inner surface. For the curved 

segments, the polar coordinate system rθ is defined, 

where it’s center is the center of the arced segment.   

Substituting equations (4) and (5) in Eq. (2) and 

using d / dn    , the shear stress relations for the 

straight and curved segments of the cross-section along 

the thickness direction, are presented in Eq. (6) and (7), 
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        (7) 
where 

1jr  and 
2 jr  are the inner and outer radius of the jth 

curved segment and 
jR  is it’s averaged radius. The 

constant coefficients of the above relations are defined 

in terms of shear flow according to Ref. [7] as presented 

in Eq. (8) and Eq. (9), 
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in which jI is obtained from Eq. (10), 
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The relation between the angle of twist per unit 

length (α) and the shear flow (q) is given in Eq. (11),   

 

 
 

 

 

1

i o
o

j i
i oj i

o

j i
i oj i

o

2 G G t
G t

k 2
2A p (2t ) l

G G
G

k 1
q

1
q l

G G
t G

k 1



 
     

 
 

  


 

 
 

 

 

           (11) 

 

in which the constants given in Eq. (12) and Eq. (13) are 

used [7], 
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Then, using the above analytical formula, the shear 

stresses versus curvature radius of curved segments are 

investigated for two types of FG hollow tubes for a 

variety of cross-section thickness and later, the 

corresponding SCFs are evaluated. 

 

2.2. FE solution 

An FE model is developed to calculate SCFs of FG 

hollow tubes with curved edges using Ansys software. 

The FE results are then compared to the analytical 

solutions of the previous section. Two types of cross-

sections are examined. The rounded square cross-section 

consists of four straight pieces and four curved segments 

(Fig. 1(a)), while the flattened tube section has two 

straight and two curved segments (Fig. 1(b)).  

 

 
 

 
Fig. 1. (a) Rounded square cross-section, (b) and flattened 

tube cross-section. 

 

In Fig. 1, three points at inner boundary, namely C, 

E and A, and points D, F and B at the outer boundary are 

established. The normalized shear stress at point E is 

equal to the average value of the normalized shear stress 

at points A and C. The inner radius is r1 and, r2 is the 

outer radius of both examples.  

According to equations (6) and (7), the shear stress, 

in the thickness direction, is expressed in terms of α. 

Since the shear stress has a linear relationship with α, we 

define the normalized shear stress as / 2  .  

The FG material has two constituent phases and, the 

shear modulus is regarded as varying along the thickness 

direction based on the power-law distribution. The inner 

surface of the FG hollow tube is metal-rich with 

iG 77 Gpa Pa, while the outer boundary is ceramic-rich 

with oG 25.5 Gpa Pa. 

The FE model mesh is shown in Fig. 2, where only 

1/8 of the rounded square cross-section (Fig. 2(a)) and 

1/4 of the flattened tube cross-section (Fig. 2(b)) are 

modeled due to the model symmetries. This significantly 

reduces the number of elements and nodes of the FE 

model, which in turn reduces the computational costs. 

The number of the elements through the thickness is 

chosen as 32 according to a mesh study, which is 

performed before stress analysis. The length of the 

straight segment for both cross-sections is L=100 mm.  

The thermal analysis of the Ansys software is applied 

here to model the torsion problem, recalling that the 

torsion and two-dimensional heat transfer governing 

equations are identical. The temperature in the heat 

transfer problem is the same as the Prandtl’s stress 

function in the torsion problem. Hence, the temperature 

is set to zero on the outer boundary and an unknown 

value on the inner boundary.  

After performing the FE simulations, the constant ϕ 

contours are shown in Fig. 3 for an averaged radius of 

R=50 mm, cross-section thickness of t=20 mm and, k=1. 

The constant ϕ contour lines are parallel to the boundary 

of the cross-sections.  

Using the proposed FE model, the normalized shear 

stresses on points A, E and C on the inner boundary and 

points B, F and D on the outer boundary are calculated 

for different values of the curvature radius and cross-

section thickness. Then, the FE results are compared 

with those of the analytical solution presented in 

previous sub-sections. Note that in analytical model, the 

normalized shear stress at point E is set to the averaged 

value of shear stress at points A and C. Similarly, shear 

stress at point F is equal to the averaged value of shear 

stress at points D and B. 
 



26                                                                                                                                                                Z. Ebrahimi & S. Negahban 

 

April 2021                                                                                  IJMF, Iranian Journal of Materials Forming, Volume 8, Number 2 

 
 

 
Fig. 2. The FE model, (a) Rounded square and, (b) Flattened 

tube cross-sections. 
 

 

 
3. Results and discussions 

 

3.1. Effects of curvature radius on normalized shear 

stress for k=1 
 

3.1.1. Rounded square cross-section 

The effects of the radius of curvature variations on 

shear stress in a rounded square cross-section with a 

thickness of 5 mm and k=1, are investigated on both the 

inner and outer boundaries of the cross-section. The 

normalized shear stress versus averaged curvature radius 

are shown in Fig. 4 and Fig. 5 on inner and outer 

boundaries, respectively. It can be seen that there is a 

good agreement between the stress values calculated by 

the FE method and those of the proposed analytical 

method. 

 

 
Fig. 3. The constant ϕ contours for R=50 mm, t=20 mm and 

k=1. (a) Rounded square cross-section, (b) flattened tube 

cross-section. 

 

 
Fig. 4. Normalized shear stress at points C, E and A on inner 

boundary of the rounded square cross-section with t=5 mm 

and k=1. 
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Fig. 5. Normalized shear stress at points D, F and B versus 

curvature radius for t=5 mm and k=1. 
 

However, at points C and E, the normalized shear 

stress has a decreasing trend from R=3 to R=10 mm and 

after that, it returns to its usual increasing trend. The 

difference between the analytical and FE results at points 

C and E are presented in Table 1, as an error of the 

analytical solution. By comparing the results of the 

accurate FE method with those of the proposed 

analytical method at points C and E (Table 1), we find 

that the accuracy of the analytical formula is not 

adequate at stress concentration regions. Therefore, in 

the present article, some coefficients are evaluated to 

correct the analytical formula. These SCFs are given in 

Section 3.3. 

Similar simulations have been performed for 

rounded square hollow tube cross-sections with 

thicknesses of 10, 20 and 40 mm.  

For the rounded square cross-section with a thickness 

of 10 mm, according to Figures 6 and 7, at point A on 

the inner boundary and points B, F and D on the outer 

boundary, by increasing the radius of curvature, the 

normalized shear stress has increased uniformity. There 

is a slight difference between the FE and analytical 

solutions at these points. However, at points C and E, the 

amount of normalized shear stress has decreased in low 

curvature radiuses, which is due to the stress 

concentration on the corners of the cross-section. As the 

radius of curvature increases, the stress concentration 

decreases, and shear stresses return to the usual 

increasing trend. 

 

Table 1. Error of the calculated analytical normalized shear 

stress at points C and E for t=5 mm and k=1  

Relative Error Percent (%) 

R (mm) r1 (mm) E C 

3 0.5 34.253 40.804 

4.5 2 7.660 7.917 

5.5 3 5.106 3.688 

6.5 4 3.273 1.158 

10 7.5 2.363 1.222 

10.5 8 2.665 1.702 

20 17.5 1.588 1.111 

30 27.5 1.338 1.104 

40 37.5 1.124 1.431 

50 47.5 1.220 1.106 

60 57.5 1.177 1.105 

 

 
Fig. 6. Normalized shear stress at points C, E and A versus 

curvature radius with t=10 mm and k=1. 

 

 
Fig. 7. Normalized shear stress at points D, F and B versus 

curvature radius with t=10 mm and k=1. 
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Figures 8 and 9 illustrate the normalized shear stress 

versus curvature radius on the inner and outer 

boundaries for a cross-section of 20 mm thickness. 

According to Figures 8 and 9, it is clear that the 

amount of normalized shear stress for the rounded 

square cross-section with a thickness of 20 mm, on the 

outer boundary points and point A on the inner 

boundary, have a uniform upward trend by increasing 

curvature radius. Due to the stress concentration on the 

corners at low curvature points C and E, the normalized 

shear stress decreases from R=10.5 to R=20 mm. Hence, 

the stress concentration decreases by increasing the 

curvature radius. After that, the variation of shear stress 

will ascend as the radius of curvature increases. 
 

 
Fig. 8. Normalized shear stress at points C, E and A versus 

curvature radius with t=20 mm and k=1. 
 

 
Fig. 9. Normalized shear stress at points D, F and B versus 

curvature radius with t=20 mm and k=1. 

The results of the shear stress evaluation for t = 40 

mm are shown in Figures 10 and 11 for the inner and 

outer boundaries. For the rounded square cross-section 

with a thickness of 40 mm, although the section is 

relatively thick, an increasing trend is observed in plots 

of shear stress versus curvature radius at point A on inner 

and B, F and D on the outer boundaries. However, at the 

corners, points C and E, the stress concentration causes 

a decrease of shear stress as the curvature radius 

increases to 40 mm. After that, it returns to its usual 

increasing trend. 

Moreover, in the stress concentration regions, the 

difference between analytical and FE results is 

significant. Therefore, a correction factor for the 

analytical solution will be introduced in section 3.3. 

 

 
Fig. 10. Normalized stress at points C, E and A versus 

curvature radius with t=40 mm and k=1. 

 

 
Fig. 11. Normalized shear stress at points D, F and B versus 

curvature radius with t=40 mm and k=1. 
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3.1.2 Flattened tube cross-section 

Next, the effect of curvature radius on shear stress in 

a hollow shaft with a flattened tube cross-section is 

examined. The volume fraction parameter (k) is fixed as 

follows: 1. Thickness is considered the same in all parts 

of the cross-section. The effect of curvature radius on 

shear stress is evaluated for thicknesses of 5, 10, 20 and 

40 mm. 

The variation of the normalized shear stress at a 

flattened tube section with t=5 mm versus radius of 

curvature is investigated. The shear stress on the inner 

boundary at points A, E and C are shown in Fig. 12 and 

at points B, F and D of the outer boundary in Fig. 13. 

The hollow points in these figures show the results of the 

FE simulations and, the solid points show the analytical 

solutions. 
 

 
Fig. 12. Normalized shear stress at points C, E and A versus 

curvature radius with t=5 mm and k=1. 

 

 
Fig. 13. Normalized shear stress at points D, F and B versus 

curvature radius with t=5 mm and k=1. 

Accordingly, in the flattened tube cross-section with 

a constant thickness of 5 mm, the normalized shear stress 

obtained by both FE and the analytical methods, will 

have a uniform upward trend with an increase in the 

radius of curvature. On the other hand, there is a little 

difference between the FE and analytical results, except 

at the stress concentration region i.e., points C and E, 

where we have a difference of about 0.06 at R = 3 mm. 

Although this difference increases by increasing the 

curvature radius, it eventually reaches a value of 0.04, 

which is very low and negligible. 
Considering the same conditions as the previous 

analysis, for the flattened tube cross-section with a 

thickness of 10 mm, the effect of changing the curvature 

radius on the normalized shear stress is investigated. 
In the flattened tube cross-section with a thickness of 

10 mm, the normalized shear stress has a uniform, 

increasing trend after increasing the radius of curvature, 

on all points of the inner boundary (Fig. 14) and those of 

the outer boundary (Fig. 15). Due to the stress 

concentrations at points C and E, the normalized shear 

stress for R=5 mm has a higher value than that of the 

next curvature, as shown in Fig. 14. The difference 

between analytical and FE results, is negligible at large 

curvatures. As the radius of curvature decreases, this 

difference increases and eventually, reaches a maximum 

value of 0.3 at point C for R=5. 

 

 
Fig. 14. Normalized shear stress at points C, E and A versus 

curvature radius with t=10 mm and k=1. 
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Fig. 15. Normalized stress at points D, F and B versus 

curvature radius with t=10 mm and k=1. 

 

The results of the normalized shear versus curvature 

radius are shown in Figures 16 and 17 for the flattened 

tube cross-section with a thickness of 20 mm. The 

normalized shear stress at points B, F and D on the outer 

boundary and point A on the inner boundary obtains a 

uniform, increasing trend by increasing the curvature 

radius. However, at points E and C on the inner 

boundary, the shear stress has a decreasing trend up to 

R=12 mm, which is due to the stress concentration at 

these low curvature points. After this, the variation of the 

normalized shear stress returns to its usual ascending 

trend.  

 

 
Fig. 16. Normalized shear stress at points C, E and A versus 

curvature radius with t=20 mm and k=1. 

 
Fig. 17. Normalized shear stress at points D, F and B versus 

curvature radius with t=20 mm and k=1. 

 

The difference between analytical and FE results, 

also increases by increasing the curvature radius. 

However, this difference is negligible, except at points 

C and E, where stress concentration exists. At points C 

and E, this difference gets the values of 1.3 and 0.7, 

respectively. Hence, a correction factor for the analytical 

formula should be applied at stress concentration 

regions. 
Figures 18 and 19 show the stress analysis results for 

the flattened tube cross-section with a thickness of 40 

mm. At all points on the inner boundary and point A on 

the inner boundary, the normalized shear stress increases 

by increasing curvature radius. At points E and C, up to 

R=28 mm, the normalized shear stress versus curvature 

radius has a decreasing trend due to the stress 

concentration. After that, the shear stress returns to the 

usual increasing trend as the stress concentration is 

removed. 

By comparing the FE and analytical results at points 

E and C, a difference of 2.48 and 5.26 are recognized, 

respectively. This significant difference, which is due to 

the stress concentration, requires the implementation of 

SCFs to correct the analytical formula at stress 

concentration regions for 40 mm thickness.  

Obviously, with the aim of the presented results in 

this section, it is easy to analyze the shear stress at 

different points of the FGM hollow tube with a flattened 

tube cross-section at a different radius of curvatures and 

thickness. 
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Fig. 18. Normalized shear stress at points C, E and A versus 

curvature radius with t=40 mm and k=1. 
 

 
Fig. 19. Normalized shear stress at points D, F and B versus 

curvature radius with t=40 mm and k=1. 

 

3.1.3. Evaluation of Fillet-Radius and Thickness 

Ranges for application of SCFs 

According to previous results, significant differences 

exist between analytical and FE stresses at low fillet-

radiuses of the FG hollow tube cross-sections. 

Therefore, implementation of SCFs is required at these 

stress concentration regions to correct the analytical 

formula. In this section, a range for the fillet-radius and 

thickness of the hollow tube cross-sections is proposed, 

in which the SCFs should be applied.  

For a better understanding, the percentage of relative 

error of analytical formula point C, as the critical point 

of stress concentration, is summarized in Table 2 for 

different fillet-radius and thickness of the rounded 

square cross-section. Obviously, for r1=0.5 to 10 mm, 

the relative error is high for larger thicknesses, i.e. t >5 

mm. However, for t=5 mm and smaller thicknesses, if 

r1<4 mm, then SCFs should be applied to analytical shear 

stresses. 

 
Table 2. Error of the calculated analytical normalized shear 

stress at point C for rounded square cross-section  

Relative Error Percent (%) 

r1 (mm) t=5 mm t=10 mm t=20 mm t=40 mm 

0.5 40.804% 82.480 159.044 333.086 

2 7.917 % 18.708 45.151 99.497 

4 1.158 7.488 21.887 53.520 

8 1.702 3.396 9.067 25.542 

10 1.577 2.781 5.847 20.306 

20 1.106 1.172 1.930 6.855 

30 1.349 1.089 1.295 3.389 

40 1.187 1.052 0.515 2.124 

50 1.105 1.092 1.130 1.331 

 

Similar investigations are performed for FG hollow 

tube with the flattened tube cross-section (Table 3). If r1 

≤ 2 mm, then for all thicknesses the SCFs should be used 

in analytical formula. For large thickness values, t ≥ 20 

mm, the stress correction factors are needed for 0.5 ≤  r1 ≤ 

8 mm. 

 
Table 3. Error of the calculated analytical normalized shear 

stress at point C for flattened tube cross-section  

Relative Error Percent (%) 

r1 (mm) t=5 mm t=10 mm t=20 mm t=40 mm 

0.5 20.633 47.596 99.110 219.151 

2 2.346 8.371 24.711 58.894 

4 1.197 0.232 9.381 31.252 

8 0.050 1.255 2.985 14.238 

10 0.522 1.241 1.172 8.244 

20 1.099 1.147 1.162 2.614 

30 1.100 1.112 1.129 1.640 

40 1.372 1.101 1.112 1.357 

 

According to the proposed ranges for fillet-radius 

and thickness of the FG cross sections, the SCFs are 

calculated and presented in Section 3.3.   
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3.2. Effects of FGM parameter variation across the 

section thickness on normalized shear stress 

In this section, the effect of the nonlinear distribution 

of the FGM on plots of normalized shear stress versus 

curvature radius is investigated for a hollow tube with a 

constant cross-section thickness by performing FE 

simulations. The normalized shear stress values are 

evaluated for k=2,3,4 and five on both inner and outer 

boundaries of the proposed cross-section. 

 

3.2.1 Rounded square cross-section 

For a hollow FG tube with a rounded square cross-

section of t=5 mm thickness, as shown in Fig. 20-22, the 

normalized shear stress has increased by increasing the 

curvature radius for all values of k. On the other hand, 

increasing the coefficient k decreases the amount of 

normalized shear stress at each curvature radius. By 

changing k=1 to k=5, the stress values will have a 

reduction of 4.4%, approximately. 

According to Figures 21 and 22, at points E and C, 

the amount of shear stress decreases by increasing the 

value of k at all curvature radiuses. For example, at the 

minimum curvature radius, by changing k=1 to k=5, 

shear stress reductions of 8.7% and 10.9% are observed, 

at points C and E, respectively. 

 

 
Fig. 20. Normalized shear stress at point A versus curvature 

radius with t=5 mm and variation of k. 

 

It is worth noting that increasing the value of k, in the 

stress concentration regions, reduces the shear stress 

values and thus, the stress concentration, significantly. 

This fact can be used as a way to reduce the stress 

concentration at the desired FG hollow tube. Although 

the most considerable reduction in the present study is 

related to changing the value of k from one to five, the 

distance between the k=1 and k=2 plots is more 

significant. The plots for other values of k are almost in 

the same line. 
 

 
Fig. 21. Normalized shear stress at point E versus curvature 

radius with t=5 mm and variation of k. 

 

 
Fig. 22. Normalized shear stress at point C versus curvature 

radius with t=5 mm and variation of k. 
 

3.2.2 Flattened tube cross-section 

For the flattened tube cross-section with a constant 

thickness of 5 mm, according to Figures 23, 24 and 25, 

increasing the value of k reduces the amount of 

normalized shear stress at each curvature radius. The 

most significant reduction is accompanied by the change 

of linear distribution to the second degree, i.e., changing 

k=1 to k=2. Additionally, the distances between the plots 

of shear stress for different values of k, increase by 

increasing the curvature radius.  
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Fig. 23. Normalized shear stress at point A versus curvature 

radius with t=5 mm and variation of k. 

 

 
Fig. 24. Normalized shear stress at point E versus curvature 

radius with t=5 mm and variation of k. 

 

 
Fig. 25. Normalized shear stress at point C versus curvature 

radius with t=5 mm and variation of k. 

 

3.3 Evaluation of the SCFs  

As stated in Section 3.1, there is a difference between 

the shear stress values obtained by the analytical method 

and those of the FE simulations, due to the stress 

concentration in the low-curvature corners of the FGM 

hollow tube cross-sections. Therefore, to correct the 

analytical formula, some SCFs are presented here. 

Figure 26 (a) shows the SCFs for the rounded square 

cross-section and Figure 26 (b) shows those of the 

flattened tube cross-section. The SCFs versus curvature 

radius are obtained for different values of cross-section 

thickness.  

As can be seen in Fig. 26, in each radius of curvature, 

by increasing the cross-section thickness, the difference 

between FE and analytical results gains a more 

considerable value and, the SCFs differ significantly 

from 1. Moreover, in each thickness, the stress 

concentration reduces by increasing the curvature radius 

and, the SCFs reach the value of 1.  

With the aim of the presented results, the SCFs for 

other values of curvature radius can be obtained by 

interpolation. Consequently, using these SCFs, the 

analytical formula of Ref. [7], can also be applied to the 

stress concentration regions of both rounded square and 

flattened tube cross-sections made of FGMs., with 

reasonable accuracy. 

 

 
Fig. 26. The calculated SCFs. (a) Rounded square cross-

section and, (b) flattened tube cross-section. 
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Fig. 26. Continue.  

 

4. Conclusions 
 

A FE model was developed to calculate SCFs of FG 

hollow tubes under torsion. The shear stresses in FG 

hollow tubes with curved edges were investigated for 

different curvature radiuses of the cross-section corners. 

The rounded square and flattened tube hollow bars were 

investigated. The plots of SCFs versus curvature radius 

of the corners were obtained for a variety of the cross-

section thicknesses. The FE results are compared with 

results of a proposed analytical model. 

With the aim of the presented results, SCFs for other 

values of curvature radius can be obtained by 

interpolation. Using these SCFs, the proposed analytical 

formula can also be applied to the stress concentration 

regions for FG hollow tubes with curved edge cross-

sections with reasonable accuracy. The effects of 

constituent volume fractions were also investigated for a 

range of the radius of the curved segments. 
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