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Abstract– Model order reduction is known as the problem of minimizing the   -norm of the 

difference between the transfer function of the original system and the reduced one. In many 

papers, linear matrix inequality (LMI) approach is utilized to address the minimization problem. 

This paper deals with defining an extra matrix inequality constraint to guarantee that the minimum 

phase characteristic of the system preserves after order reduction. To overcome this, poles and 

zeros of the reduced system transfer function must be at left-half plane (LHP). It is very easy to 

apply a LMI condition to force the poles of the system to be at LHP. However, the same cannot be 

applied to zeroes easily. Thus, a special state-space realization of the system is introduced in a way 

to apply conditions on zeros of the reduced system. The method is applied to some sample 

examples and the simulation results verify the performance of the proposed method.          
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1. INTRODUCTION 
 

Model order reduction has been an attractive research area in recent years [1]. The motivation of such 

considerable interest is the need for model order reduction in different fields of control such as simulation, 

identification, control system design and so on. Actually, a high order plant imposes a lot of complexity in 

control system design in terms of hardware, memory and implementation. It is crucial to notice the main 

characteristics of the system such as frequency response, stability, and minimum phase property must be 

preserved after order reduction. 

Numerous methods of finding reduced order models have been introduced over the past few decades. 

Various methods of model order reduction are based on    and    norm [2], [3] and the most popular 

methods, namely the balanced truncation methods [4], [5] and the optimal Hankel norm approximation 

provide constructive techniques for model order reduction [6], [7]. These methods deal with the 

minimization of the    norm of the difference between the main and the reduced order transfer function. 

In the optimal Hankel norm reduction method, it is possible to show that the upper and lower bounds of 

the   -norm have been obtained in terms of the Hankel singular values [7]-[9]. Some papers try to 

consider specific characteristics of a system in model order reduction. For example in [10], model 

reduction is done by balanced realization method and a modification is suggested that results in a better 

approximation of the low frequency behaviour of the original system. 

In the literature,    and   -norm approximations are well adapted for model reduction problems 

[11]. A well-known method to solve the problem is based on LMI [12]. A significant advantage of LMI 

approach is the possibility to solve model order reduction subject to additional constraints. This could 
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mean finding reduced system subject to a pole region constraint and subject to a zero region constraint to 

keep the minimum phase characteristic of the original system. 

The    and    model order reduction problems result in bilinear matrix inequalities (BMIs). In most 

papers, an iterative LMI approach (ILMI) is used to solve the problem [13]. However, no one can ignore 

the drawback of iterative LMI scheme due to the need for priori knowledge of decision variables. 

In [14], frequency weighted    norm model reduction is investigated. The problem results in the 

BMIs. Thus, a two-step iterative LMI method is considered as the solution and different algorithms are 

proposed to prevent getting stuck in a local minimum. In [15], a two-step iterative LMI scheme is used to 

obtain the    model error and the results are compared to Hankel norm reduction method. It is shown that 

in the model reduction of a system of order   to  , in case      , the Hankel norm reduction method 

is optimal. In other cases, the    norm is bounded by the sum of the     smallest Hankel singular 

values. To resolve the drawback of iterative LMI methods, in [16] a new non-iterative   -based model 

order reduction using LMI approach is suggested. 

All the above mentioned papers try to minimize ‖ ( )   ̂( )‖. However, they do not consider the 

minimum phase characteristic of the reduced order system. There are some papers such as [15], in which, 

the main system is minimum phase while the reduced order system is non-minimum phase.  

Some papers try to reduce the order of the plant and design a suitable controller for it. Since 

designing controller for non-minimum phase systems encounters many problems, it is necessary to reduce 

the plant to a minimum phase system. In [17], it is desired to design an adaptive robust backstepping 

controller for a hard disk drive. The backstepping controller design procedure has a limitation in 

stabilization of systems with non-minimum phase characteristic. Therefore, the suggested solution is to 

reduce the system to a minimum phase one and apply the controller to the new reduced order model. In the 

above mentioned paper, the Hankel norm reduction method is used many times to achieve a reduced order 

minimum phase system through a trial and error approach. 

The key point of the present paper is to propose a matrix inequality constraint to ensure that the 

minimum phase property of the main system is kept [18]. Since undershoot and time-delay are features of 

non-minimum phase systems which are not desirable in controller synthesis procedures, this paper exploits 

a special state-space realization to preserve this characteristic.  

The paper is outlined as follows. In Section 2, LMI based model order reduction problem is stated 

and the state-space realization is written in a way that the proposed constraint can be applied to the 

minimization problem. The algorithm is explained in detail in Section 3. In Section 4, simulation results 

are shown. Finally, conclusions are discussed in Section 5. 

 

2. MODEL ORDER REDUCTION 

The main purpose of model order reduction problem is to reduce a system of    -order with transfer 

function  ( )   (    )      to the system  ̂( )   ̂(    ̂)
  

 ̂   ̂  with lower order (    ) 

to keep the frequency response of these two systems as close to each other as possible. Indeed, the concept 

of model reduction is to remove the states from  ( ) that are of little effect on the system input-output 

characteristic [19]. The problem can be considered as an optimization problem to minimize the difference 

between  ( ) and  ̂( ) by using [20]: 

‖ ̃(  )‖
 

 ‖ (  )   ̂(  )‖
 

         { (  )   ̂(  )}                  (1) 

Different methods are exploited to solve the above minimization problem such as the well-known 

Hankel norm model order reduction [6] or genetic algorithm method [21]. In this paper, linear matrix 

inequalities are used. Therefore, a brief description of the method is given in the following. 
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a) LMI based model order reduction 

The problem is to find the reduced order model such that the   -norm of the error system is 

minimized. Assume the main system transfer function and state space representation as follows [22]: 

                  ( )  
          

        

        
        

 *
  
  

+   (    )         (2) 

Assume the reduced order system is defined as  ̂( ) with the following representation: 

 ̂( )  
 ̂     

  ̂     
        ̂ 

   
  ̂    

        ̂ 

 [ ̂  ̂
 ̂  ̂

]   ̂(    ̂)
  

 ̂   ̂  (3) 

where      . The error system is the difference between these two systems which should be minimized. 

The block diagram of this problem is shown in Fig. 1, and the error system transfer function can be written 

as follows [15]: 

 ̃( )   ( )   ̂( )  [ 

  
  ̂

   ̂

|

 
 ̂

   ̂

 ]   ̃(    ̃)
  

 ̃   ̃                              (4) 

 

Fig. 1.  Error system transfer function 

The goal of model order reduction is to find  ̂,  ̂,  ̂ and  ̂ such that the infinity norm of the error 

system is minimized. It can be shown that ‖ ‖    is equivalent to the existence of a symmetric, 

positive definite matrix     satisfying: 

[
          

        

     
]    

            

(5) 

This inequality is called the bounded real lemma and is proposed in [23]-[25]. 

In previous model reduction researches, the    norm of the error system is minimized by (5) and the 

best reduced order model is developed. However, the minimum phase characteristic of the reduced system 

is not regarded. In this paper, a constraint is added to the above minimization problem to guarantee that 

the minimum phase characteristic of the system is kept unchanged after model order reduction. To achieve 

this, a special state space representation is exploited which is explained in the next sub-section. 

b) LMI constraint to preserve the minimum phase characteristic of the system 

To preserve the minimum phase property of the main system, poles and zeros of the reduced system 

transfer function must be at LHP. It is very easy to apply a LMI condition to force the poles of the system 

to be at LHP, however, the same cannot be applied to zeroes easily. Thus, the state-space representation 

has to be defined in a way that conditions on the poles and zeros of the reduced system can be applied. 

The main idea of the following state space realization is derived from [26]. 

Assume a linear system represented by the transfer function: 
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 ( )  
          

        

        
        

 
 ( )

 ( )
 

                                     

(6) 

where       ,          , and    is the coefficient of    when the coefficient of    is equal to 

one (    ). The relative degree       . By Euclidean division,  ( )  can be written as: 

                                                                                     ( )   ( ) ( )   ( )     (7) 

where  ( ) and  ( ) are remainder polynomial and the quotient, respectively. It is obvious that the first 

coefficient of  ( )  is    ⁄ . From (7), we know that: 

                      (8) 

We can rewrite  ( ) as follows:  

 ( )  
 ( )

 ( ) ( )   ( )
 

 
 ( )

  
 

 ( )
 ( )
 ( )

 (9) 

Thus,  ( ) can be represented as a closed loop system shown in Fig. 2. The r-th order transfer 

function   ( )⁄  has no zeros, and can be realized by the r-th order state vector: 

 

 ( )
 

  

        
        

 

  [   ̇    (   )]
 

 (10) 

Therefore, the state space model for   ( )⁄   will be:  

 ̇  (      
 )        (11) 

      

where (          ) is a canonical form representation of a chain of    integrators, that is: 

   

[
 
 
 
 
     
     
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 ]
 
 
 
 

   

    

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

   

    [     ]     (12) 

  

[
 
 
 
 
   

   

 
     

     ]
 
 
 
 

   

 (13) 

The minimal realization of  ( )  ( )⁄   transfer function can be written as: 

 ̇            (14) 

      

where        ,     
   ,     

    and     
   . 
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Fig. 2.   ( ) Transfer function 

The eigenvalues of    are the zeros of the polynomial  ( ), which are the zeros of the transfer 

function  ( ). Considering       and combining (14) and (11), we can write the state-space model 

of  ( )  as: 

 ̇            

 ̇         
                 (15) 

      

where        ,        . 

Finally, a new representation of  ( )   (    )      is defined where the state-space matrices 

are: 

  [
      

             
 ]    [

 
    

]    [   ]     (16) 

Since the eigenvalues of    are the zeros of the transfer function  ( ), it is necessary to apply the 

following matrix inequality to be sure that the system zeros are at the LHP. 

        
           (17) 

Similarly, the following matrix inequality guarantees the stability of the system by forcing the system 

poles to be at the left half plane. 

              (18) 

  

3. MODEL ORDER REDUCTION ALGORITHM CONSIDERING THE  

MINIMUM PHASE PROPERTY OF SYSTEM 

Suppose that the main system is  ( ) and the reduced order model is defined by  ̂( ). In addition, the 

state space representations of both systems are based on (15). As stated before, the model order reduction 

problem can be considered as an optimization problem, i.e. minimize ‖ ̃‖
 

 ‖   ̂‖
 

with respect to 

 ̂. The minimization problem is given below: 

Find the smallest possible   with respect to ( ̂   ̂   ̂   ̂       )  such that: 

    [
  ̃   ̃    ̃  ̃ 

 ̃      ̃ 

 ̃  ̃    

]    (19) 

and 

         ̂   ̂ 
 
     (20) 

     ̂     ̂    (21) 
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where 

 ̂  [
 ̂  ̂  ̂ 

  ̂  ̂  ̂  ̂   ̂  ̂
 
]    (22) 

The state space representation of the error system is as follows:  

[
 ̃

 ̃
|
 ̃

 ̃
 ]  [ 

  
  ̂

   ̂

|

 
 ̂

   ̂

 ] (23) 

where 

 ̃  [

      

       

 
 

      
 

 
 

  
 
 ̂ 

  ̂  ̂  ̂ 

 
 ̂  ̂ 

 ̂   ̂  ̂
 

]   ̃  [

 
    

 
 ̂  ̂ 

]   ̃

 [     ̂ ]  ̃    

(24) 

We can partition matrix   and insert (24) into (19) to acquire the final matrix inequality. 

Note: in the reduced system, matrices  ̂ ,  ̂ ,  ̂  are known based on (12) and their dimensions depend on 

the order of the reduced system.  ̂  can be chosen arbitrarily. After solving the optimization problem, 

( ̂   ̂   ̂   ̂) are obtained. 

If the matrix inequality constraints (20) and (21) are satisfied, then the minimum phase property of 

the reduced system is guaranteed. In other words, inequality (20) causes the real part of the eigenvalues of 

 ̂   to be negative. As a result, the zeros of  ̂( ) are at LHP. Similarly, inequality (21) causes the poles of 

 ̂( ) to be at LHP. Thus, the reduced system  ̂( ) is minimum phase and the aim of the paper is satisfied.  

The matrix inequalities (19)-(21) are not linear matrix inequalities because of the bilinear terms. 

Thus, LMI methods cannot be applied to find a solution. Suggested solution is to change nonlinear 

problem into two simpler optimization procedures which are linear in decision variables. 

An iterative two-step algorithm can be used as follows: 

(1) Find an initial estimation for  ̂( ) from other classical techniques. 

(2) Choose an initial, arbitrary and proper upper bound (    ) for gamma. 

(3) Keep ( ̂   ̂   ̂   ̂) constant and minimize   with respect to (      ) subject to inequalities (19)-

(21) and (25): 

              (25) 

  (The optimum         computed in this step is used as the initial   for next step). 

(4) Keep (      ) constant, minimize   with respect to ( ̂   ̂   ̂   ̂) and subject to inequalities 

(19)-(21) and (25). (The optimum         computed in this step is also used as initial   for step 

3) 

(5) Repeat steps 3 and 4 until the difference between    and    is less than a prescribed tolerance 

 .(i.e. stopping condition is |     |   ) 

In this paper, unweighted model order reduction is applied, while in weighted model reduction, it is 

possible to match the frequency response of the main system and the reduced one in a desired frequency 

range which will gain better results on that specified range. In this paper weighted model reduction is 

ignored to prevent computational complexity. However, it is straightforward to take weights into account. 

The optimization problem will change to [14]: 
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 ̂( )

‖ ( ) ( ( )   ̂( )) ( )‖ (26) 

where  ( ) is the input frequency weight and  ( ) is the output frequency weight. 

 

4. SIMULATION RESULTS 

In this section, two examples are presented to illustrate the performance of the proposed method. In the 

first example, a 4
th
-order system is reduced to 3

rd
 and 2

nd
 order models, respectively. In the second 

example, the LMI based method of this paper is compared to Hankel model order reduction method. The 

corresponding algorithm has been solved using the MATLAB LMI toolbox [27]. 

a) Example 1: A 4
TH

 order system 

Consider the minimum phase fourth-order system:  

 ( )  
            

                   
 (27) 

In this system,             . Now, we try to reduce this system to a 3
rd

-order system where 

                 . Based on the expressed state-space realization in section 2.2: 

 ( )      
 ( )

 ( )
 

 

            
 (28) 

Therefore, the following matrices are known: 

                         (29) 

   [
       
   
   

]     [
 
 
 
]     [   ]      (30) 

In the reduced model, we have: 

 ̂     ̂     ̂     ̂    (31) 

The results which are achieved after running the iterative minimization algorithm are as follow: 

 ̂  *
           
           

+   ̂  *
      
    

+   ̂  [            ]  ̂       (32) 

           ( ̂ )                (33) 

In Fig. 3, frequency response of the main system and the reduced one are plotted. According to the 

figure, it is obvious that the minimum phase characteristic of the system is preserved and the bode plot of 

the main system and the estimated one are close to each other. The main system is also reduced to a 

system of order 2. The result is as follows: 

 ̂           ̂           ̂         ̂         (34) 

           ( ̂ )          (35) 

The frequency responses of these two systems are plotted in Fig. 4. 
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Fig. 3. Original system versus reduced 

          system of order 3 
Fig. 4. Original system versus reduced  

             system of order 2 

b) Example 2: A 3
RD

 order system 

The purpose of this example is to compare the performance of Hankel model order reduction and the 

method used in [15] with the proposed order reduction method of the present paper. 

In [15], the following minimum phase transfer function is considered: 

 ( )  
 

   
 

 

      
 

       

           
 (36) 

At first, the reduced model of order 2 is obtained using Hankel order reduction and the LMI based 

methods introduced in this paper. Then, the system is reduced to a first order model. The Hankel order 

reduced model is obtained using MATLAB  –Analysis and Synthesis Toolbox [28]: 

 ̂( )  
               

                  
 (37) 

where the Hankel singular values are 0.7144, 0.191, 0.1017. The    error bound of the Hankel model 

order reduction is   ∑         , where the sum is taken over the removed states. It is obvious that 

the above reduced model is non-minimum phase. The next step is to apply the suggested method to obtain 

a reduced system of order 2 that preserves the minimum phase characteristic of the system. The following 

matrices are known according to the system transfer function. 

                        (38) 

   *
    
  

+     *
 
 
+     [  ]      (39) 

 ̂     ̂     ̂     ̂    (40) 

The result of the minimization problem is as follows: 

 ̂          ̂          ̂         ̂      (41) 

           ( ̂ )         (42) 

The eigenvalue of  ̂  is at LHP. Thus, the reduced system obtained by the proposed approach is 

minimum phase. The transfer function of the reduced model is: 
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 ̂( )  
       

                    
 (43) 

The    error bound of the method is 0.1092 which is approximately half of Hankel model order 

reduction method. In Fig. 5, the frequency response of Hankel reduced model is compared to the LMI 

based reduced model proposed in this paper. The system is also reduced to a first order model. The Hankel 

reduced order model is: 

 ̂( )  
      

         
 (44) 

The error bound of the above model is 0.5857. It is noticeable that the first order reduced model 

obtained in [7] is non-minimum phase. The model is as follows: 

 ̂( )         
             

             
 (45) 

In this paper, the first order model approximation is found in way to have a minimum phase system. 

Since the first order reduced system is strictly proper, there are no zeroes in the reduced model. Thus, we 

have 
 ( )

 ( )
   and the only decision variable of the minimization problem is  ̂. 

 ̂     ̂     ̂     ̂    (46) 

The reduction problem is solved with    error bound of 0.5296 and  ̂          is obtained. Thus, 

the following reduced model is achieved: 

 ̂( )  
 

        
 (47) 

The frequency responses are shown in Fig. 6. The    error bound of the methods illustrated in example 2 

is reviewed briefly in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Main system (blue solid line), Hankel reduced 

model (green dash-dot line), LMI based  

reduced model (red dash line) 

Fig. 6. Main system (blue solid line), Hankel reduced 

model (green dash-dot line), LMI based  

reduced model (red dash line) 
 

Table 1.    error bound of Hankel method versus the LMI approach 

Model Order Methods 

    Hankel LMI 

    0.2034 0.1092 

    0.5857 0.5296 
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5. CONCLUSION 

In this paper, model order reduction is defined as an optimization problem. The matrix inequality 

approach is used to minimize the   -norm of the difference between the original system and the reduced 

one. 

The main point of the paper is to propose an extra matrix inequality constraint to guarantee that the 

minimum phase characteristic of a system is preserved after reduction. To handle it, a special state-space 

realization of the system is used to be able to apply a condition on the zeros of the reduced system. 

This problem was not a linear matrix inequality because of bilinear terms. As a solution, two steps 

iterative schemes are used to change nonlinear problem into linear matrix inequality. Then, the method is 

applied to some examples and its efficiency is shown. It is seen that the Hankel order reduced model is 

non-minimum phase in some cases, while the LMI based method of this paper insures that the minimum 

phase characteristic of the main system preserves. 

The main drawback of iterative LMIs is that we cannot guarantee that the solution converges toward the 

global minimum. Moreover, a priori knowledge of the variables is required. Obtaining a non-iterative   -

based model reduction algorithm under the proposed matrix inequality constraint is suggested as the future 

work of the present paper. 
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