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Abstract– Transfer learning allows the knowledge transference from the source (training dataset) 

to target (test dataset) domain. Feature selection for transfer learning (f-MMD) is a simple and 

effective transfer learning method, which tackles the domain shift problem. f-MMD has good 

performance on small-sized datasets, but it suffers from two major issues: i) computational 

efficiency and predictive performance of f-MMD is challenged by the application domains with 

large number of examples and features, and ii) f-MMD considers the domain shift problem in fully 

unsupervised manner. In this paper, we propose a new approach to break down the large initial set 

of samples into a number of small-sized random subsets, called samplesets. Moreover, we present 

a feature weighting and instance clustering approach, which categorizes the original feature 

samplesets into the variant and invariant features. In domain shift problem, invariant features have 

a vital role in transferring knowledge across domains. The proposed method is called RAkET 

(RAndom k samplesETs), where k is a parameter that determines the size of the samplesets. 

Empirical evidence indicates that RAkET manages to improve substantially over f-MMD, 

especially in domains with large number of features and examples. We evaluate RAkET against 

other well-known transfer learning methods on synthetic and real world datasets.          

 

Keywords– Transfer learning, unsupervised domain adaptation, random samplesets, feature weighting, instance 

clustering  

 

1. INTRODUCTION 
 

The main assumption of learning algorithms is that the data used for training and testing are drawn from 

the same distribution. However, this assumption is challenged in many real world applications [1]. In 

some special cases like spam detection, where data is easily outdated, the training and testing data obey 

different distributions. As another case, in machine translation [2] and sentiment classification problems 

[3], we might want to adapt a learning algorithm trained on some products for a new product that helps to 

reduce the effort of annotating reviews for new products. However, the reviews may be different for 

various products and training and testing data have different distributions. 

In general, domain adaptation approaches are divided into two settings: unsupervised domain 

adaptation where the target domain is fully unlabeled, and semi-supervised domain adaptation where the 

target domain contains a small amount of labeled data. This paper focuses on the feature selection for 

transfer learning (f-MMD) [4], which is an unsupervised domain adaptation method. f-MMD is an 

interesting approach to study, as it has the advantage of transfer learning in the original feature space. f-

MMD tries to learn some domain invariant features across domains in a Reproducing Kernel Hilbert 

Space (RKHS) using maximum mean discrepancy (MMD) [5]. 

However, f-MMD is challenged in domains with large number of features and training examples due 

to the typically proportionally large number of variables appearing in the optimization problem. The 
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number of variables raises the computational cost of f-MMD on one hand, and makes it quite unsolvable 

in some datasets with a few more features or instances on the other hand. Moreover, f-MMD learns 

invariant features fully unsupervised and dismisses the relation of features to class labels. Nevertheless, 

some of the removed variant features have strong relations to the class labels and influence the classifier 

performance.   

In order to deal with the aforementioned problems, this work proposes randomly breaking the initial 

set of samples into a number of small-sized samplesets, and employing kernel based feature weighting 

approach to learn invariant features of domains. Our main contributions are as follows: i) a new 

perspective to divide large datasets to small-sized random samplesets, ii) a kernel based feature weighting 

and instance clustering approach, and iii) a new representation for dataset in its original feature space. The 

proposed method is called RAkET (RAndom k samplesETs), where k is a parameter that specifies the size 

of the samplesets.  

The rest of this paper is organized as follows. We briefly review the related work in the next section. 

Then the theoretical background behind of the proposed approach is described in Section 3. Section 4 

introduces the proposed method and presents the main algorithm. We evaluate our method on a variety of 

datasets with different number of features, instances and distributions in Section 5. This will be followed 

by the conclusion and future work in the last section. 

 

2. RELATED WORK 

In unsupervised domain adaptation, there are generally three types of approaches: i) common feature 

representation, ii) weighting individual instances, and iii) weighting individual features. The first group 

learns a domain invariant representation on which the distribution of source and target domains are closer 

than under the ambient feature space [6-11]. The main drawback of these methods is that the joint 

optimization of predictor and representation is difficult and prevents them from focusing on predictive 

features. 

The second group endeavors to minimize the difference between domains, typically by weighting the 

individual instances [12, 13]. In some proposed methods [14, 15], MMD of the source and target domains 

is used for reweighting of the examples. Gong et al., 2013, proposed a novel approach for selecting the 

landmarks among the source examples based on MMD [16]. This sample selection approach is shown to 

be very effective, especially for the task of visual object recognition.  

The third group attempts to minimize the divergence between domains, especially by weighting 

individual features [4, 16-18]. One of the effective feature-based approaches is Maximum Mean 

Discrepancy Embedding (MMDE) [17]. MMDE measures the divergence between distributions by MMD 

and learns the invariant features across domains while the variance of data can be conserved. However, 

two major limitations in MMDE are observed: (1) MMDE is transductive and cannot cover out-of-sample 

patterns, and (2) MMDE needs to solve a semi definite program for learning the latent space, which is 

computationally expensive.  

Transfer Component Analysis (TCA) [19] is another dimensionality reduction and feature weighting 

approach that uses MMD as a distance measure across domains. TCA learns transfer components and 

performs mapping onto the learned components to reduce the distance across domains. TCA is a very 

effective method in domain adaptation area, but it handles the shift problem fully unsupervised. In this 

paper, we propose RAkET, which is a feature weighting and instance clustering approach. RAkET breaks 

down the large initial set of samples into a number of small-sized random subsets to decrease the time 

complexity of the algorithm. RAkET manages to improve substantially over f-MMD, especially by 

learning the invariant features in supervised manner and composing compact clusters in the reduced 

domains. 
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3. MAXIMUM MEAN DISCREPANCY 

In this work, we aim to quantify the distance between two probability distributions of the source (s), and 

target (t) domains. MMD is a non-parametric model that analyzes the circulations of two sets of 

information by mapping the information to a rich reproducing kernel Hilbert space. Given two 

distributions s and t, the MMD is characterized as: 

                                                                         (1) 
      

where xs and xt are the source and target datasets respectively, and E[.] is the expectation under different 

distributions. F is the class of functions, e.g. unit ball in a universal RKHS, which is rich enough. If the 
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where n and m are the number of source and target samples respectively and      is the feature map 

defined as         , where H is a universal RKHS. If the universal kernel associated with this mapping 

is defined as  (     
 )            

  , the distance can be rewritten [20] as: 

         (∑ ∑
 (  

    
 
)

  
 
   

 
    ∑ ∑

 (  
    

 
)

  
 
   

 
     ∑ ∑

 (  
    

 
)

  

 
   

 
   )

 

 

                   (3) 

 

4. PROPOSED APPROACH 

In this paper, we aim to find a solution to the problem of domain shift in datasets with large number of 

features and examples. The proposed approach is composed of five major steps: i) dividing the samples 

into random, small-sized, samplesets, ii) assigning weight to each feature of samplesets according to the 

kernel based feature weighting and instance clustering approach, iii) grouping features of each sampleset 

into different local categories (variant/invariant) regarding their weights obtained from the former phase, 

iv) aggregating the local variant and invariant feature vectors from different samplesets to compose 

ultimate vectors, and v) reducing datasets to the new representation and classifying target data using the 

standard machine learning algorithms. We omit the last step for brevity, as it is the same as learning any 

other classifier. Figure 1 shows the phases of RAkET in a graphical view. 

 

Fig. 1. A graphical view of RAkET. Si is the i
th

 sampleset and Wi is the diagonal weight matrix.  

RAkET assigns a weight to each feature in local samplesets and categorizes features 

 into the invariant (N) or variant (V) based on a threshold parameter 

a) Kernel based feature weighting 

Consider two datasets with large difference in their distributions; the key idea is to use domain-

invariant features to adapt. Specifically, the invariant features would capture statistics of data between the 

source and target domains. Being informed of all these different features from the same dataset, the 

learning algorithms might be able to find invariant features that are less sensitive to variation of dataset. 
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Our objective is to discover the features whose distributions are invariant across domains. This 

implies that, we look for the features that minimize the distance between the source and target domains. 

Assume        
    

      
   and        

    
      

   are source and target matrices containing n and m 

number of instances respectively and d number of features. The point is to discover diagonal weight 

matrix W, in such a way that the distance between the source and the target samples after reduction by the 

weight matrix stays as similar as possible. Distance measurement of two domains can be done by MMD. 

Utilizing MMD, learning W can be expressed as an optimization problem. Henceforth, the issue changes 

to discover W in such a way that the distance between domains is minimized: 

                    
  

                                                                              (4) 

where diag(W) is the diagonal of the weight matrix. The constraints control the range of W; the first 

constraint restricts the size of weights, and the second one allows W to only has positive values. Following 

Pan et al., 2011, the above equation can be rewritten in the form below using the kernel trick, i.e. 

 (     
 )             

   where k is a positive definite kernel: 
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and                  is a composite kernel matrix.     ,     and     are kernel matrices that have been 

defined by k on the source, target and cross domains respectively.                  is the coefficient 

matrix with      
 

  ,      
 

   and      
  

  
. Each element in K is computed using the kernel function, 

thus they depend on W, e.g. using the polynomial kernel,      with the degree p is calculated as     

        . 

b) Composing compact clusters in the reduced domains 

The Eq. (5) finds W fully unsupervised while the source domain contains class labels that can be used 

for weighting the features to increase the classification performance. Since the source domain has the 

labeled instances, we could exploit this knowledge to improve the weight matrix. In finding W, the 

weights are adjusted in a way that the examples from same class have lower distance compared to their 

class means. This can be done through minimizing the distance between the examples of each class and 

their means. In this way, every instance falls in one compact cluster, hence, the classification performance 

increases. This yields the optimization problem: 

                                      
  

                                                                              (7) 

where Q is an n×d matrix that contains the distance of each instance from its class mean in the source 

domain. Q can be computed as the following relation: 

                                                                    (8) 

where          denotes the source domain data sorted by class number in ascending order, and 

         is a mean matrix that indicates the mean of each class samples in each row in ascending order 

as well (it is obvious that some adjacent rows of   will be repetitive). Actually, by composing Q, we let 

instances with the same labels fall into the same compact clusters. This can be achieved by minimizing the 
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distance between the reduced samples of each class and their means. It is worth noting that β is the 

regularizer that is adjusted through experiments. 

Equation (7) is the reformulated optimization problem, which clusters instances in finding W. For 

simplicity, we use indicator matrix F, which contains zero and ones as elements for variant and invariant 

features, respectively. Algorithm 1 shows the achievement process of F. Actually, after solving the 

optimization problem, optimal weight matrix W
*
 is used for generating the indicator matrix F. 

Algorithm 1. The construction process of indicator matrix F using weight matrix W
*
 

Input: Optimal weight matrix W
*
, number of samplesets m, number of features d, threshold parameter λ 

Output: Indicator matrix F (m×d) 
for i = 1 to m do 

w = diag(Wi
*
); 

for j = 1 to d do 
if wj > λ then 

Fi,j = 1; //invariant feature 
else Fi,j = 0; //variant feature 

-RAndom k-samplesETs (RAkET) 

Feature selection for transfer learning (f-MMD) is a relatively simple method with the advantage of good 

accuracy on small-sized datasets. However, as briefly mentioned in the introduction of this article, f-MMD 

is challenged in domains with large number of features and examples. It is noteworthy that in some 

experiments, f-MMD cannot solve the problem and dismisses the results. In fact, the main challenge of f-

MMD is its computation time, typically in datasets with large number of examples and features. 

The computational complexity of f-MMD depends on the optimizer that solves the problem. In 

practice, interior-point optimizers like SeDuMi (Self-Dual Minimization) and SDPT3 (SemiDefinite 

Programming - Tutuncu, Toh, Todd) solve problems in 10 to 100 iterations. In uncommon cases in which 

the problem needs more than 200 cycles, numerical issues ordinarily keep them from solving the problem. 

Every cycle obliges polynomial complexity like O(n
4.5

) where n is the quantity of variables. In datasets 

with large number of features and examples, the number of variables in the optimization problem 

increases dramatically and raises the computation time of the algorithm. 

In order to deal with the aforementioned problem, RAkET offers to break down the source and target 

domains into the random, small-sized, samplesets. In fact, RAkET divides the dataset into a number of 

samplesets, which are distinct from each other. In this situation, local feature categorization is done in 

each sampleset. Actually, RAkET seeks variant and invariant features in small-sized samplesets instead of 

the original dataset. Hence, we expect to solve the problem in a reasonable time with decreasing the 

complexity of the algorithm. Ultimately, all results from different samplesets are aggregated together to 

form the final solution. 

RAkET offers advantages over f-MMD for several reasons. First of all, the resulting k-samplesets 

classification tasks are computationally simpler. Actually, RAkET by dividing the dataset to the random, 

small-sized samplesets, decreases domain adaptation time complexity. Also, it provides the ability to solve 

the problems with large number of features and instances. In addition, the resulting dataset has two major 

properties: i) lowest discrepancy in featuresets, and ii) maximum relation between invariant features and 

class labels. On the other hand, the performance of classifier increases by keeping the dependency 

between features and labels. In what follows, we introduce RAkET in further detail. 

Given k being defined as the size of samplesets, RAkET initially partitions n samples randomly into 

m=[n/k] disjoint samplesets, Sj, where j=1, …, m, ⋂   
 
     . Samplesets Sj, where j = 1, …, m-1 are k-

samplesets. If n/k is an integer, then sampleset Sm is also a k-sampleset, otherwise Sm contains the 

remaining n mod k samples. RAkET learns m vectors of local variant and invariant features using Eq. (7). 



J. Tahmoresnezhad and S. Hashemi 

 

IJST, Transactions of Electrical Engineering, Volume 39, Number E2                                                                   December 2015 

198 

Each vector contains the local variant and invariant features of samplesets and their aggregation compose 

the final vector of features. 

Si is the i
th
 sampleset of the source and target domains. We assume that the number of samples in both 

domains are equal and define the k as the percentage of data from domains. The source and target domains 

indicated by S should be divided into m samplesets. This process proceeds in random and each sample is 

assigned to the individual Si. Ultimately for each sampleset, indicator matrix Fi is calculated using Eq. (7). 

Algorithm 2 offers an algorithmic presentation of the learning process of RAkET. 

 

Algorithm 2. The learning process of RAkET 

Input: Number of samplesets m, set of samples S of size n, sampleset size k 
Output: Indicator matrix F 
for i = 1 to m do 

Si = φ; 
for j = 1 to k do 

if S = φ then 
break; 

zj = randomly selected sample from S; 
Si = Si ⋃   ; 

S = S \ zj ; 
Calculate Fi using Eq.  (7) based on Si; 

There are m vectors of local variant and invariant features, which are distinct from each other. In the 

next phase, each Fi should be aggregated to compose the final variant and invariant vectors. The final 

vectors contain ultimate invariant and variant features of the dataset, which will be used for dataset 

reduction and classifier training. Algorithm 3 shows the aggregation process of RAkET, while Table 1 

exemplifies it for a run with k = 20% and 7 features. 

 
Algorithm 3.The aggregation process of RAkET 

Input: Number of samplesets m, indicator matrix F, number of features d 
Output: Variant and invariant features of dataset (V and N respectively) 
 N = φ; 
V = φ; 
for j = 1 to d do 

sumj = 0; 
for i = 1 to m do 

for j = 1 to d do 
sumj = sumj + Fi,j; 

for j = 1 to d do 
avgj = sumj / m; 
if avgj < 0.5 then 

V = V ⋃     ; 
else N = N ⋃     ; 

Table 1. An example of the aggregation process of RAkET while k = 20% and d=7. For each sampleset Si, each 

feature obtains variant (specified by 0) or invariant (specified by 1) tag, and ultimately the final  

tag is assigned with respect to results aggregated from different samplesets 

Sampleset f1 f2 f3 f4 f5 f6 f7 

S1 0 1 1 0 1 1 1 

S2 0 0 1 0 1 1 0 

S3 0 1 1 1 0 1 1 

S4 0 1 0 1 1 1 0 

S5 0 1 0 0 1 1 0 

average votes 0/5 4/5 3/5 2/5 4/5 5/5 2/5 

final prediction 0 1 1 0 1 1 0 

 



A generalized kernel-based random k-samplesets … 

 

December 2015                                                                   IJST, Transactions of Electrical Engineering, Volume 39, Number E2      

199 

5. EXPERIMENTS 

This section provides details on the experiments and results of the proposed approach. Section 5a 

introduces the artificial and real world datasets used by RAkET and Section 5b shows the evaluation 

measures and the basis of the comparison. Empirical results and analysis are presented in Section 5c and 

ultimately the comparison of RAkET with other transfer learning approaches is illustrated in the last 

section. 

Experiments are conducted on 9 domain shift datasets where Table 2 presents the basic statistics such 

as type, distribution, size and number of examples and features of the datasets. We assume that the number 

of source and target examples is the same. Generally, the datasets are divided into the synthetic and real 

world. Synthetic datasets have been generated to test our approach in different conditions. We designed 

datasets with a variety of distributions and samples to show the performance of RAkET against f-MMD 

and other transfer learning methods. Real world datasets naturally have differences in distribution, and 

they are sufficient for the evaluation of domain shift problem. However, we categorize datasets regarding 

their size into three groups: small, medium and large. Most of the algorithms can handle small- and 

medium-sized datasets, but we will show that RAkET presents good performance on all types of datasets. 

Short descriptions of these datasets are given in the following paragraphs. 

Table 2. Details of synthetic and real world benchmark transfer learning datasets 

Dataset type distribution number of 

examples 

number of 

features 

size 

NorGeo Synthetic Normal, Geometric 1000 100 small 

NorWei Synthetic Normal, Weibull 2000 150 small 

WeiGeo Synthetic Weibull, Geometric 4000 180 medium 

UniPoi Synthetic Uniform, Poison 6000  200 medium 

NorNor Synthetic Normal, Normal 8000 400 large 

UniExp Synthetic Uniform, Exponential 10000 500 large 

ExpPoi Synthetic Exponential, Poison 12000 500 large 

WiFi Real --- 621 100 small 

USPS Real --- 1470 256 small 

In order to generate the synthetic datasets, invariant and variant features should be sampled from 

different distributions to model the domain shift problem. The number of invariant and variant features is 

indicated by N and V, respectively. Dataset NorNor is a shifted dataset, which has been composed of the 

source and target domains where total number of features is 400. For both domains, N invariant features 

are sampled from N randomly picked distributions with zero mean and unit variance. For the source 

domain, V variant features are sampled from V randomly picked distributions with zero mean and unit 

variance. For the target domain, V variant features are sampled from V randomly picked distributions with 

shifted mean and unit variance. 

Dataset WeiGeo is generated similar to NorNor with the difference being that for both domains N 

invariant features and for source domain V variant features are sampled from randomly picked Weibull 

distribution, and for the target domain V variant features are sampled from randomly picked Geometric 

distribution. In order to generate the class labels, we use the sign function which is applied to the weighted 

instances. The class labels are generated using r number of features randomly selected from the total 

number (d) of features. g is a d-dimensional weight vector that is drawn from a uniform distribution. 

Every element in g is set to zero only if it is not included in r. Finally, the class labels (l) for data is 

generated by l = sign(g*x) where x is the input data. 
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We then assess RAkET on real world datasets. Our first evaluation is on the task of indoor WiFi 

localization utilizing the general population WiFi information set distributed in the 2007 IEEE ICDM 

Contest for transfer learning. The objective of indoor WiFi localization is to anticipate the location of 

WiFi gadgets focused around Received Signal Strength (RSS) qualities gathered amid diverse time 

periods. Dataset contains a number of labeled WiFi information gathered in time period A (the source 

domain) and numerous unlabeled WiFi information gathered in time period B (the target domain). 

Another real world dataset is USPS digit handwritten data. This dataset contains pictures of size 16 x 

16, totaling up to 256 features, with pixel qualities going from 0 to 2. Numerous past works on the USPS 

dataset show that separating 4 from 7 [21] and 4 from 9 is especially difficult [22, 23]. In our experiments, 

digits 4 and 7 are considered as the source domain, and digits 4 and 9 are supposed to be the target 

domain. The classification task is binary and our goal is to discriminate information somewhere around 4 

and 7 in the source to 4 and 9 in the target domain. 

a) Evaluation metrics 

There are two common criteria for evaluation of the classification methods, which are called 

execution time and accuracy. However, in this work for improving the legibility of the figures and 

simplifying the interpretation of the results, we use the percentage of improvement over f-MMD across 

several different datasets. Also, for real world dataset of WiFi localization, the average performance is 

calculated using the Average Error Distance (AED): 

     
∑                      

 
 

where xi, f(xi) and yi are vectors of RSS values, predicted location and correspond to true location 

respectively. 

The linear SVM and logistic regression algorithms are used as the base-level classification methods 

where they are chosen in order to capture the contribution of each feature independently. The Weka [24] is 

used as the platform of classification algorithms and implementation of domain shift methods are done 

within Matlab [25]. 

b) Empirical results and analysis 

In this section, the evaluation is based on the execution time and accuracy measures, estimated in 7 

synthetic and 2 real world datasets. The first part of this section examines the performance of RAkET in 

synthetic datasets according to the size of the samplesets, k. The last part compares the performance of 

RAkET in real world datasets against f-MMD. 

In this section, the improvement of RAkET against f-MMD is evaluated according to the different 

parameters. Figure 2 presents the percentage of improvement of RAkET over f-MMD in terms of 

execution time and accuracy with respect to the size of the samplesets (k) in small- and medium-sized 

synthetic datasets. Since f-MMD fails to run on large-sized datasets, Figure 2 does not include the results 

of large-sized dataset. The horizontal axis indicates the size of the samplesets (k) and points to the percent 

of data, which parts from the original dataset. 

Figure 2a shows the execution time improvement of RAkET over f-MMD. As is clear from the 

figure, RAkET provides a substantial improvement over the f-MMD for small- and medium-sized 

synthetic datasets. Concerning the effect of k on the performance of RAkET, we could argue that in 

general smaller values of k usually lead to better results in terms of running time. This confirms the 

hypothesis made earlier that splitting the initial problem into a number of simpler and smaller sub-

problems will improve the performance of f-MMD. On the other hand, greater values of k allow RAkET 

to take larger samplesets into account and predict more accurate categorization for features. This is a 
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plausible explanation for the fact that RAkET's predictive performance is always increasing with respect 

to k (except in certain special circumstances). Nevertheless, values of k that are close to 10% of data 

perform well in terms of execution time. Ultimately, we could claim that setting k to small values is 

expected to lead to substantial better results in execution time against f-MMD, especially in datasets with 

large number of examples. 
 

(a) Percentage of execution time improvement of RAkET over f-MMD. With increasing the 

     size of samplesets, the performance of RAkET in terms of execution time degrades. 

(b) Percentage of accuracy improvement of RAkET over f-MMD (linear SVM classifier). 

The classification accuracy increases with the increasing value of k. 
 

(c) Percentage of accuracy improvement of RAkET over f-MMD (logistic regression classifier). 

 The classifier shows better results for values more than k=30%. 

Fig. 2. Percentage of improvement of RAkET over f-MMD with respect to k in  

small- and medium-sized datasets 
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Figures 2b and 2c present the percentage of accuracy improvement of RAkET over f-MMD using 

different classifiers with respect to various amounts of k in small- and medium-sized synthetic datasets. 

What we observe is that as the number of instances increase in the samplesets, so does the performance of 

the method. As before, this is due to the fact that a bigger value of k leads to more accuracy for each 

sampleset. An important finding that holds for all datasets is that the improvement of performance only 

exhibit for certain values of k. In most cases a good approximation for k is 40%. 

In some cases, RAkET shows abnormal behavior with increasing the value of k. For example, 

consider the value of k is set to 50%. In this situation, the number of samplesets is 2, and there is the 

probability of uncertainty. On the other hand, if the assigned tags to a feature in distinct samplesets are 

different (e.g. one of them is variant and the next is invariant), decision making for determining the type of 

feature is done randomly. In general, because RAkET uses voting for feature grouping, odd number of 

samplesets show better performance. 

Figure 3 shows the performance of RAkET in dealing with the large-sized datasets, on which f-MMD 

fails to run. The algorithm of f-MMD is computationally expensive, because it is a Quadratically 

Constrained Quadratic Program (QCQP), which can be cast as a Semi Definite Program (SDP). Figure 3a 

shows the execution time of RAkET in dealing with large-sized datasets. With incrementing the size of 

samplesets, RAkET spends more time to solve the problem. In fact, large-sized samplesets impose more 

variables to solve in the optimization problem. 

Figures 3b and 3c present the accuracy of RAkET using linear SVM and logistic regression 

classifiers with respect to different amounts of k in large-sized synthetic datasets. What is clear is that as 

the value of k increases, the accuracy of RAkET augments dramatically. In fact, samplesets with the large 

number of instances inherit more properties of the original dataset and categorize variant and invariant 

features more accurately. An important finding that holds for all datasets is that with a greater quantity of 

examples in samplesets, the performance of RAkET exhibits substantial improvement. But it must be 

noted that an even number of samplesets decreases the performance because it poses hindrance in the 

process of decision making. 

We then evaluate our approach on the real world datasets. Figure 4a illustrates the performance of 

RAkET in case of real datasets against f-MMD. Small values of k decrease the running time of algorithm, 

but according to Figs. 4b and 4c the accuracy of classifier degrades likewise. One thing to note, however, 

is that the procedure of selecting the group for each feature via voting, as indicated, could lead to a case 

where none of the groups can be selected. In this situation, selecting an odd number of samplesets lessens 

the likelihood of getting no votes from the model. Also, as guideline, we suggest using a suitable value for 

k (e.g. k = 40%). 

c) Comparison with other methods 

In this section, the evaluation is based on the accuracy measure, estimated via 10 repeated holdout 

experiments, each using the source domain of each dataset for training and the target domain for the 

evaluation. So, in this case RAkET is run a total of 10 times, as 10 different random datasets are used for 

each different holdout experiment. To calculate the performance of RAkET for a specific holdout 

experiment, we average the values obtained from these 10 executions.  

RAkET is looked at against three high performing transfer learning methods that have been found to 

perform better than various other transfer learning strategies. Feature selection for transfer learning, called 

f-MMD [4] is one of the high performance algorithms in transfer learning area. Moreover, Transfer 

Component Analysis, called TCA [19] is another well-known method in this area that has attracted much 
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attention. Ultimately, we compare RAkET against a generalized Fisher based method for Domain Shift 

problem, called FIDOS [26] that is a state-of-the-art approach. 

 

(a) Execution time of RAkET in large-sized datasets. RAkET reduces runtime by breaking 

down the large-sized dataset into the small-sized samplesets. 

(b) Accuracy of RAkET in large-sized datasets (linear SVM classifier). The classifier  

accuracy is reduced by decreasing the value of k. 

(c) Accuracy of RAkET in large-sized datasets (logistic regression classifier). In most cases,  

RAkET shows better performance in large-sized samplesets. 
 

Fig. 3. Performance of RAkET with respect to k in large-sized datasets. f-MMD fails to  

run in datasets with large number of samples and features 
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a) Percentage of execution time improvement of RAkET over f-MMD. In real datasets the 

execution time of RAkET is raised with increasing the size of samplesets 

(b) Absolute ridge regression error improvement of RAkET in WiFi dataset. 
 

(c) Accuracy improvement of RAkET over f-MMD in USPS dataset (linear SVM classifier). 

Fig. 4. Percentage of improvement of RAkET over f-MMD with respect to k in real world datasets 

In our experiments, the value of k is set to 40% and the number of samplesets is adjusted to 3 

automatically. Note that these are generic settings based on the conclusions of the previous section, and 

definitely not the optimal ones. In addition, we set λ and β to 0.1 and 0.25 according to our numerous 

experiments. Also, the tradeoff parameters of TCA, f-MMD and FIDOS are set to 1, 0.1 and 0.1 

respectively and they are considered to be fixed during the tests. 
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Tables 3 and 4 show the average and standard deviation of accuracy measure for all method-dataset 

pairs for synthetic datasets. As evident from the results, RAkET shows better performance against other 

transfer learning approaches. Likewise f-MMD and FIDOS show a more preferable accuracy over TCA, 

however with expanding the quantity of examples, f-MMD fails to run (NaN). Table 5 demonstrates the 

results of experiments on WIFI and USPS datasets. On both datasets, experiments show that RAkET 

significantly overcomes other transfer learning methods. 

Table 3. Comparative results in terms of accuracy using linear SVM classifier. In all synthetic datasets,  

RAkET shows better performance against other transfer learning approaches. In datasets  

with large number of instances, f-MMD fails to run (NaN) 

Dataset RAkET f-MMD TCA FIDOS 

NorGeo 90.3±0.3 81.0±1.6 78.0±2.2 80.3±1.3 

NorWei 92.8±0.4 83.4±1.3 76.3±1.7 84.1±0.7 

WeiGeo 93.2±1.1 88.4±0.8 75.7±1.8 86.0±1.1 

UniPoi 93.0±0.9 89.2±0.5 72.1±2.3 89.3±0.4 

NorNor 88.7±0.6 NaN 72.4±3.6 88.2±0.9 

UniExp 89.7±0.7 NaN 73.1±1.5 87.7±1.1 

ExpPoi 92.1±1.5 NaN 72.0±2.9 86.3±1.2 

 

Table 4.Comparative results in terms of accuracy using logistic regression classifier. In all synthetic 

 datasets, RAkET shows better performance against TCA,f-MMD and FIDOS. In datasets  

with large number of instances, f-MMD fails to run (NaN). 

Dataset RAkET f-MMD TCA FIDOS 

NorGeo 88.1±0.3 77.4±0.9 76.5±1.4 76.6±1.0 

NorWei 90.7±0.6 78.4±1.1 76.0±1.9 77.2±1.1 

WeiGeo 90.0±0.9 82.1±0.6 74.7±2.1 77.1±0.9 

UniPoi 93.1±0.5 85.2±0.8 70.9±0.8 78.0±0.7 

NorNor 85.5±1.1 NaN 71.1±2.5 75.0±1.4 

UniExp 89.2±0.9 NaN 72.8±1.7 77.9±0.7 

ExpPoi 90.5±0.4 NaN 73.0±2.6 78.1±0.8 

 

Table 5. Comparative results in terms of absolute error distance and accuracy in real world datasets. First row 

indicates average absolute ridge regression error on indoor WiFi localization dataset. Second  

row shows the classification accuracy on the USPS dataset using linear SVM classifier. 

Dataset RAkET f-MMD TCA FIDOS 

WiFi (AED) 80.3±2.4 85.5±4.1 101.2±5.6 91.2±2.6 

USPS 86.6±0.3 83.2±2.4 46.8±3.2 72.9±2.2 

d) Conclusion and future work 

In this paper, we have introduced a novel approach for dealing with the domain shift problem. The 

proposed method is called RAkET (RAndom k samplesETs), where k is a parameter that determines the 

size of the samplesets. The main idea of RAkET is inspired from the basic and standard transfer learning 

method, Feature selection for transfer learning (f-MMD), where it suffers from the computational 

complexity and predictive performance, especially in domains with large number of examples and 

features. RAkET proposes randomly breaking the initial set of samples into a number of small-sized 
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samplesets, and employs kernel based feature weighting approach to learn invariant features. Moreover, 

the proposed method benefits from the instance clustering to enhance the classification performance in the 

reduced domains. RAkET improves the execution time of f-MMD about 50% while the accuracy has 

growth at an acceptable level. On benchmark tasks in both synthetic and real world problems, our method 

consistently outperforms other transfer learning methods. For future work, we plan to advance in this 

direction further, e.g. proposing RAkET for multi domain setting. 
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