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Abstract 

Functionally graded Poisson’s ratio structures have been developed for critical protection. In this paper, the static 

bending and buckling of FGPR nanoscale beam are studied based on the nonlocal Timoshenko beam model, in 

which both Young’s modulus and Poisson’s ratio are assumed to vary continuously in the thickness direction. By 

utilizing total potential energy principle, equilibrium equations are derived. In the numerical results, beam models 

with different material properties are introduced, and the effects of the nonlocal parameter, aspect ratio and the 

Poisson’s ratio on the deflection and buckling are discussed.  
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1. Introduction 

Functionally graded materials (FGM), in which the 

property and microstructure vary from one kind of 

material to the other as function of position along 

thickness of structure to achieve a required 

function, have been widely applied in many 

different engineering fields. Functionally graded 

Poisson’s ratio (FGPR) structures are one novel 

material. The concept of FGPR material/structure is 

derived by a combination of FGM design 

methodology and optimal cellular structure 

configuration, which exhibited improved impact 

protection.  

The static and dynamic characteristics of FGM 

structures have been studied by some researchers. 

The mechanical behavior of structures with FGMs 

has been explored with several theories and models. 

Both the classical and non-classical continuum 

theory was used to predict the behavior of micro 

scaled mechanical structures such as micro sensors 

or actuator, in which several theories are adopted as 

the higher order shear deformation theory, the strain 

gradient theory, the modified couple stress theory, 

based on local and nonlocal elasticity theory.  

Kadoli et al. introduced the higher order shear 

deformation theory to study the FGM beams under 

ambient temperature, and the static equilibrium 

equation in finite element form is presented by 

using the principle of stationary potential energy 

(Kadoli et al. 2008). The results suggested that the 
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deflections, stresses and the location of the neutral 

surface are higher depending on power law index. 

Xia et al. investigated the static bending, 

postbuckling and free vibration of nonlinear 

microbeams based on non-classical continuum 

mechanics by introducing material length scale 

parameters. The results showed that the size effects 

and nonlinearity are important for the design of 

microscale devices (Xia et al. 2010). Kahrobaiyan 

et al. developed a size-dependent FG beam model 

based on the strain gradient theory, which is capable 

of capturing the size-effect in micro-scaled 

structures. It found that the behavior of microbeams 

is a function of the ratios of the thickness and 

length of the microbeam to its length scale 

parameters (Kahrobaiyan et al. 2012). Salamat-

talab et al. studied third-order shear deformation FG 

micro beam by using modified couple stress theory 

and the governing equations are derived by 

applying Hamilton’s principle (Salamat-talab et al. 

2012). Asghari et al. analytically investigated the 

size-dependent static and vibration behavior of 

FGMs micro-beams based on the modified couple 

stress theory in the elastic range. The results 

suggested that the use of non-classic theories seems 

to be essential for the analysis of micro-beams 

(Asghari et al. 2010). Nateghi et al. presented the 

buckling analysis of FGM microbeam based on 

modified couple stress theory, in which three 

different beam theories are considered to study the 

effect of shear deformations. The numerical results 

showed that size dependency of FGM microbeams 

differs from isotropic homogeneous micro beams as 

it is a function of power index of material 
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distribution (Nateghi et al. 2012). Zhang et al. 

developed a novel size-dependent FGM curved 

microbeam model based on the strain gradient 

elasticity theory and n shear deformation theory. 

The results indicated that size effect leads to an 

increase in microbeam stiffness (Zhang et al. 2013). 

Li et al. presented a size-dependent model for 

bilayered microbeams based on the strain gradient 

elasticity theory, and found that the deflection and 

total axial stress of beam and locations of zero-

strain and zero-stress axes exhibit obvious size 

effect (Li et al. 2014). Tajalli et al. studied the 

FGMs Timoshenko beams based on the strain 

gradient theory, in which a nonclassical continuum 

theory able to capture the size-effect in micro-

scaled structures (Tajalli et al. 2013). Nie et al. 

investigated the plane stress problem of an 

orthotropic FG beam by using the displacement 

function approach. The influences of different 

graded models on the stress and displacement fields 

are illustrated (Nie et al. 2013). 

Simsek and Yurtcu studied the static bending, 

buckling and vibration properties of FG 

microbeams by using the local, nonlocal 

Timoshenko and Euler-Bernoulli beam models, 

higher order beam theory based on the modified 

couple stress theory, in which the material 

properties of FGM are estimated to vary in the 

thickness direction through the Mori-Tanaka 

homogenization technique. The influences of the 

volume fraction index, material properties, length 

scale parameter, the aspect ratio, nonlocal 

parameter and the Poisson’s ratio on static, buckling 

and vibration responses of the FG microbeam 

(Simsek and Yurtcu, 2013). Emam presented a 

unified model for the nonlocal response of 

nanobeams in buckling and postbuckling states, in 

which the equations of equilibrium are obtained by 

using the principle of virtual work. It presented the 

variation of the critical buckling load and the 

amplitude of buckling with the nonlocal parameter 

and the length-to-height ratio for simply supported 

and clamped-clamped nanobeams (Emam, 2013). 

Eltaher et al. studied the size dependent static 

buckling behavior of FGM nanobeams based on the 

nonlocal continuum model, which is described by 

the differential constitutive model of Eringen. The 

results suggested that in the material distribution 

profile, nonlocal effects are crucial in the behavior 

of the nanobeams (Eltaher et al. 2013). Aydogdu 

studied the bending, buckling and free vibration of 

nanobeams by using a generalized nonlocal beam 

theory and effects of nonlocality and length of 

beam are discussed in detail (Aydogdu, 2009). 

In recent years, the concept of a functionally 

graded Poisson’s ratio (FGPR) material has been 

developed for a critical protection which can 

concentrate material into areas to improve impact 

mitigation and crew protection. The Poisson’s ratio 

is defined as the ratio of the transverse contraction 

strain to the longitudinal extension strain in a 

simple tension condition. For the isotropic 

materials, the Poisson’s ratio is bounded by two 

theoretical limits, greater than -1 and less than or 

equal to 0.5. By introducing the graded Poisson’s 

ratio in materials, many applications have been 

designed in various fields of strain sensors, shock 

and sound absorbers, and smart textiles.  

This paper discusses static bending and buckling 

of FGPR nanobeam, in which the nonlocal 

Timoshenko beam model is utilized to capture the 

nonlocal effects and the Poisson’s ratio on the 

mechanical behavior of the nanoscale beam. The 

minimum total potential energy principle is used to 

derive the equilibrium equations, which are solved 

analytically for nanobeam subjected to a point load. 

In the numerical results, the effects of the nonlocal 

parameter, aspect ratio and the Poisson’s ratio on 

the deflection and buckling are discussed. 

2. Nonlocal nanoscale beam 

In Eringen’s nonlocal elasticity theory the stress 

state at a reference point in the body is regarded to 

be dependent not only on the strain state at this 

point but also on the strain state at all points of the 

body, which is in accordance with atomic theory of 

lattice dynamics and experimental observations on 

phonon dispersion. 
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kj  and kj  are the stress and strain tensors, kjilC  is 

the elastic modulus tensor in classical isotropic 

elasticity, 
ku  is the displacement vector, 

( , )x x   is the nonlocal modulus or attenuation 

function incorporating the nonlocal effects into the 

constitutive equations. x x  is the Euclidean 

distance and 0e a
l

  , where a  is an internal 

characteristic length, l  is an external characteristic 

length, 
0e  is a nonlocal scaling parameter, which 

has been assumed as a constant appropriate to each 

material. 

For homogeneous and isotropic elastic solids, the 

constitutive equation of nonlocal elasticity can be 

given as 
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where 
0C  is the elastic stiffness matrix of classical 

isotropic elasticity, σ  is the nonlocal stress tensor 

at x , ε  is the strain tensor at any point x  in the 

body. 
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Fig. 1. Functionally graded Poisson’s ratio nanoscale 

beam 

3. Functionally graded Poisson’s ratio materials 

In recent years, the concept of a functionally graded 

Poisson’s ratio material has been developed, which 

combined the computational design methodology 

and innovative structural-material concept as shown 

in Fig. 1. Many cellular materials and structures 

have been introduced due to their improved 

properties, such as enhanced shock resistance, 

fracture toughness, indentation and shear modulus. 

Functionally graded Poisson’s ratio 

materials/structures is a further extension of FGM 

material which can be achieved by modifying the 

microstructures of the material in the thickness 

direction as shown in Figs. 2-4. 
 
 

 

 

 

 

 
Fig. 2. Double arrowhead FGM structure 

 

 

 

 

 

 

 

 
 

Fig. 3. Re-entrant FGM structure 
 

 

 

 

 

 

 
 
 

Fig. 4. Hexagonal honeycomb FGM structure 

4. Functionally graded Poisson’s ratio nanoscale 

beam model 

In this study, the effective material properties of the 

FGPR nanoscale beam vary continuously in the 

thickness direction, including Young’s modulus E , 

Poisson’s ratio  , shear modulus G  and mass 

density  .  

According to the classical rule of mixture, the 

effective material properties can be estimated as 
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where the subscripts b  and t  denote bottom and 

top surfaces of the nanoscale beam, k  is the non-

negative variable parameter which indicates the 

material variation profile through the thickness of 

the beam as shown in Fig. 5. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 5. Variation of material properties through the 

thickness direction of FGM beam 
 

Based on the Timoshenko beam theory, the 

displacement fields of the beam 
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where 0u  and 0w  are the axial and the transverse 

displacement on the neutral axis, ϕ is the total 

bending rotation of the cross-sections on the neutral 

axis. Then, the strains of the Timoshenko beam 

theory can be obtained as 
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Based on the principle of total potential energy, 

the equilibrium equations can be derived. The first 

variations of the strain energy and work done by the 

external applied force are given by 
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where U  is the strain energy, P  is the axial 

compressive force, q  is the transverse component 

of the body forces per unit length, L  is the length 

of the beam. 

By performing the integrating processes, the 

virtual strain energy can be written as 
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where 
sk  is the shear correction factor and 
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According to the minimum total potential energy 

principle, the first variation of the total potential 

energy must be zero 
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where   is the total potential energy. 

The equilibrium equations of the FGPR nanoscale 

beam in terms of the displacements can be obtained 

as  
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In this study, the boundary conditions of a 

simply-supported Timoshenko nanoscale beam are 

considered. The displacement fields are assumed as 

follow: 
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where , ,n n nU W G  are the unknown Fourier 

coefficients to be determined and n L  .  

For the static bending problem, the applied 

transverse load q  can be expanded in Fourier series 

as 
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Assuming the FGPR nanoscale beam is subjected 

to the point load on the midspan of the beam, where 

the ( ) ( / 2)q x P x L   and the Fourier 

coefficients can be expressed as 
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Substituting Eqs (17-20) into Eqs (14-16) leads to 

the following equations 
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Eq. (23) can be solved to obtain the Fourier 

coefficients 
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For the buckling problem, one obtains 
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Eq. (26) presents an eigenvalue problem with 

( )n crP n  . And the critical buckling load can be 

obtained as 
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5. Numerical results 

In the numerical calculations, three different FGPR 

nanoscale beam models are introduced: isotropic, FG 

beam with Young’s modulus E  varies in the thickness 

direction, FG beam with both Young’s modulus E  and 

Poisson’s ratio   vary in the thickness direction, and the 

following material parameters are used: 

1TPa, 0.1, 0.1TPa, 0.3t t b bE E     . The shear 

correction factor is taken as 5 6sk   for Timoshenko 

beam theory.  

In Fig. 6, the effects of nonlocal parameter on the 

deflection and buckling load are shown, in which 

the beam is considered to be isotropic material. It 

can be seen that the deflection is increased with the 

aspect ratios L h , but the buckling load decreased 

with the aspect ratios. The results show that the 

deflections vary linearly with the nonlocal 

parameter, but the buckling loads vary nonlinearly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6. Effects of nonlocal parameter on the deflection 

and buckling load of isotropic beam 
 

In most literatures about FG structures, the 

Poisson’s ratio is considered to be constant in the 

thickness direction. So, the same model is 

considered first in this part. In Fig. 7, the effects of 

nonlocal parameter on the deflection and buckling 

load are exhibited, in which Young’s modulus 

varies continuously in the thickness direction and 

Poisson’s ratio 0.3  . The same trends were 

shown as in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 7. Effects of nonlocal parameter on the deflection 

and buckling load of FG beam with constant Poisson’s 

ratio 
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In Figs. 8-9, the FGPR nanoscale beam is 

considered and the effects of nonlocal parameter and 

gradient index on the deflection and buckling load are 

exhibited, in which both Young’s modulus and 

Poisson’s ratio vary continuously in the thickness 

direction. From Fig. 8, it can be seen that most results 

decreased due to the variations of gradient of 

Poisson’s ratio in the deflection and buckling load 

compared with the results in Fig. 7, which suggested 

that the Poisson’s ratio effect has an influence on the 

FG beam structures and may be considered in further 

researches. In Fig. 9, the effects of gradient index on 

the deflection and buckling load of FGPR beam are 

presented.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 8. Effects of nonlocal parameter on the deflection 

and buckling load of FGPR beam 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 9. Effects of gradient index on the deflection and 

buckling load of FGPR beam 

6. Conclusions 

Functionally graded Poisson’s ratio (FGPR) cellular 

structures are one kind of innovative material. The 

static bending and buckling of FGPR nanoscale 

beam is studied in this paper based on the nonlocal 

Timoshenko beam model. The equilibrium 

equations are derived by using the principle of total 

potential energy. In the numerical results, three 

different kinds of beam models are considered, in 

which the effects of the nonlocal parameter, aspect 

ratio and the Poisson’s ratio on the deflection and 

buckling are discussed. 

(1) The expressions of the static bending and the 

critical buckling loads of the FGPR beam are given; 

(2) Compared with FG beam with a constant 

Poisson’s ratio in the thickness direction, the 

deflections of FGPR beam are smaller, but the 

buckling loads are larger; 

(3) The deflections of the FGPR beam decreases 

with the increase of gradient index and tends to a 

constant value gradually, and the buckling loads 

increases with the gradient index and also tend to a 

constant value. 

(4) The deflections of the FGPR beam increases 

with the nonlocal parameters, and the buckling 

loads decreases with it. 

Acknowledgements 

The Project was supported by the Specialized 

Research Fund for the Doctoral Program of Higher 

Education (20130205110014) and the Introducing 

Talents of Discipline to Universities (111 Project 

B07050). 

References 

Asghari, M., Ahmadian, M. T., Kahrobaiyan, M. H., & 

Rahaeifard, M. (2010). On the size-dependent behavior 

of functionally graded micro-beams. Materials and 

Design, 31, 2324–2329. 

Aydogdu, M. (2009). A general nonlocal beam theory: Its 

application to nanobeam bending, buckling and 

vibration. Physica E. 41, 1651–1655. 

Eltaher, M. A., Emam, S. A., & Mahmoud, F. F. (2013). 

Static and stability analysis of nonlocal functionally 

graded nanobeams, Composite Structures, 96, 82–88. 

Emam, S. A. (2013). A general nonlocal nonlinear model 

for buckling of nanobeams. Applied Mathematical 

Modelling, 37, 6929–6939. 

Kadoli, R., Akhtar, K., & Ganesan, N. (2008). Static 

analysis of functionally graded beams using higher 

order shear deformation theory. Applied Mathematical 

Modelling, 32, 2509–2525. 

Kahrobaiyan, M. H., Rahaeifard, M., Tajalli, S. A., & 

Ahmadian, M. T. (2012). A strain gradient functionally 

graded Euler-Bernoulli beam formulation. 

International Journal of Engineering Sciences, 52, 65–

76. 

Li, A. Q., Zhou, S. J., Zhou, S. S., & Wang, B. L. (2014). 

 

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

 L/h=10

 L/h=20

 L/h=40

 L/h=60

e
0
a (nm)

D
e

fl
e

c
ti
o

n

 

 

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8  L/h=10

 L/h=20

 L/h=40

 L/h=60

e
0
a (nm)

B
u

c
k
lin

g
 l
o

a
d

 

 

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

 e
0
a =0nm

 e
0
a =0.5nm

 e0a =1nm

 e0a =2nm

k

D
e

fl
e

c
ti
o

n

 

0 10 20 30 40 50

0.4

0.8

1.2

1.6

 e
0
a =0nm

 e
0
a =0.5nm

 e
0
a =1nm

 e
0
a =2nm

k

B
u

c
k
lin

g
 l
o

a
d

 



 

 

 
565                                                                                                                                                                              IJST (2015) 39A4: 559-565 

 

 
A size-dependent bilayered microbeam model based on 

strain gradient elasticity theory. Composite Structures, 

108, 259–266. 

Nateghi, A., Salamat-talab, M., Rezapour, J., & 

Daneshian, B. (2012). Size dependent buckling 

analysis of functionally graded micro beams based on 

modified couple stress theory. Applied Mathematical 

Modelling, 36, 4971–4987. 

Nie, G. J., Zhong, Z., & Chen, S. P. (2013). Analytical 

solution for a functionally graded beam with arbitrary 

graded material properties. Composite: Part B, 44, 

274–282. 

Salamat-talab, M., Nateghi, A., & Torabi, J. (2012). 

Static and dynamic analysis of third-order shear 

deformation FG micro beam based on modified coupe 

stress theory. International Journal of Mechanical 

Sciences, 57, 63–73. 

Şimşek, M., & Yurtcu, H. H. (2013). Analytical solutions 

for bending and buckling of functionally graded 

nanobeams based on the nonlocal Timoshenko beam 

theory. Composite Structures, 97, 378–386. 

Tajalli, S. A., Rahaeifard, M., Kahrobaiyan, M. H., 

Movahhedy, M. R., Akbari, J., & Ahmadian, T. (2013). 

Mechanical behavior analysis of size-dependent micro-

scaled functionally graded Timoshenko beams by 

strain gradient elasticity theory. Composite Structures, 

102, 72–80. 

Xia, W., Wang, L., & Yin, L. (2010). Nonlinear non-

classical microscale beams: static bending, 

postbuckling and free vibration. International Journal 

of Engineering Sciences, 48, 2044–2053. 

Zhang, B., He, Y. M., Liu, D. B., Gan, Z. P., & Shen, L. 

(2013). A novel size-dependent functionally graded 

curved microbeam model based on the strain gradient 

elasticity theory. Composite Structures, 106, 374. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


