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Abstract 

In this paper, the flow of couple stress fluid is investigated in a helical screw rheometer (HSR). By unwrapping the 

channel, lands, and the outside rotating barrel, the geometry of HSR is approximated as a shallow infinite channel. 

Both one- and two-dimensional analysis of the problem is presented using rectangular coordinates. In either case 

an exact solution of the flow problem is presented and the formulas of velocity profile and volumetric flow rate 

are obtained as a function of couple stress parameter. It is observed that velocity profile decreases in going from 

Newtonian to couple stress fluid which indicates a decrease in extrusion process for a couple stress fluid in 

comparison with Newtonian fluid. Moreover, the volumetric flow rate is found to be a decreasing function of 

couple stress parameter.  
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1. Introduction 

Foodstuffs in many instances are concentrated 

suspensions that exhibit a very complex rheological 

behavior. Examples includes chocolate, fruit juices, 

ketchup, wheat flour dough and dairy products such 

as yogurts. The understanding and measurements of 

rheological properties of the foodstuffs during food 

processes are necessary to obtain the desired quality 

and shape of the product. Several types of 

viscometers have been used to measure rheological 

properties of food. Among these, rotational 

viscometers are most common. These include: 

concentric cylinder viscometer, cone and plate 

viscometer, parallel plate viscometer. Apart from 

these viscometers tube and slit viscometers are also 

used by food engineers to determine the rheological 

properties of various extruded food material (Steffe, 

1996). Mixer viscometer is another type of 

viscometers which has been successfully used by 

various researchers to measure rheological behavior 

of reacting biological material, fresh concrete and 

to chemorheological studies involving starch 

gelantinization (Tattersall, 1983, Dolan, 1990). 

Helical screw rheometer (HSR) is a type of mixer 

viscometer which was proposed by (Kraynik et al., 

1984) and successfully used for tomato product 

(Tamura, 1989a). The instrument consists of a 

helical screw in a tight fitted barrel and resembles a 

single screw extruder with a close discharge. 

Particle suspension is maintained by screw rotation 
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and rheological properties are correlated to pressure 

drop over the length of the screw. Initial theoretical 

study pertaining to flow in HSR was performed by 

Tamura et al. (1993b). They presented theoretical 

one- and two-dimensional analysis for Newtonian 

fluid using rectangular and cylindrical coordinates. 

For non-Newtonian power law model they 

presented a one- dimensional rectangular analysis. 

Their work was followed in some recent attempts 

by Siddiqui et al., (2013, Zeb et al., 2014). In one 

paper (Siddiqui et al., 2013), the author’s analyzed 

flow of a third grade fluid in HSR using Adomian 

decomposition technique while in Zeb et al., (2014) 

the flow analysis in HSR is developed for an 

Eyring-Powell fluid. As stated in the beginning of 

the introduction, concentrated suspensions are 

widely encountered in food industry. Since 

suspensions are basically a mixture of fluid and 

solid particles, a theoretical analysis which might 

shed light on extrusion of such suspensions should 

take into account particle size effects. One such 

model which takes into account particle size effect 

is couple stress fluid model. In the category of non-

Newtonian fluids, couple stress fluid has distinct 

features such as polar effects in addition to 

possessing large viscosity. The theory of couple 

stress was developed by (Stokes, 1966). This theory 

generalizes the classical Navior-Stokes theory to 

allow for polar effects such as presence of couple 

stresses and body couples. The main effects of 

couple stresses are introduction of size dependent 

effects that are not present in the classical viscous 

theory. In classical viscous theory the stress tensor 
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is symmetric, which is the result of the assumption 

that there is no rotational interaction among 

particles. However, this is not true for the cases of 

fluid flow with suspended particles and thus need 

for couple stress theory arises. In fact, the micro 

rotation of suspended particles gives rise to an anti-

symmetric stress, known as couple stress. Couple 

stress theory is found quite useful in description of 

various types of lubricants, blood, suspension 

fluids, etc. (Srinivasacharya and Kaladher, 2011). 

Some studies regarding couple stress fluid in 

different scenarios can be found in refs. 

(Srivastava., 1986, El-Shehawey et al., 1994, Ali et 

al., 2007, Pal et al. 1988, Naduvinamani et al., 

2005, Srinivasacharya et al, 2009, Lin et al, 2007, 

Hayat et al., 2013, Tadmor et al., 1970). 

Motivated by the above facts, we, in this paper, 

put forward a theoretical flow analysis of couple 

stress fluid in helical screw rheometer. The paper is 

organized in the following manner. Constitutive 

equation of couple stress fluid is presented in 

section 2. One dimensional flow analysis is 

performed in section 3. Section 4 presents a 

theoretical two-dimensional analysis. The obtained 

results are explained in section 5. We conclude the 

paper in section 6. 

2. Basic Equations 

For a couple stress fluid the constitutive equations 

and equation of motion in the absence of body force 

and body couple are (Stokes, 1966):  
 

, ,i
ji j

dv
T

dt
                                                       (1) 

 

, 0,A

ijk jk ji je T M                                              (2) 

 

2 ,ij ij ijp d                                              (3) 

 

, ,4 ,ij j i i jw w                                           (4)
 

 

where iv  is the velocity vector, ij  and 
A

ijT  are the 

symmetric and anti-symmetric parts of the stress 

tensor ijT  respectively, ijM  is the couple stress 

tensor, ij  is the deviatoric part of ijM , iw  is the 

vorticity vector, ijd  is the symmetric part of the 

velocity gradient,   and   are the constants 

associated with the couple stress, p  is the pressure, 

and the other terms have their usual meaning from 

tensor analysis. 

 

3. One-dimensional rectilinear flow analysis 

Let us consider flow of an incompressible couple 

stress fluid in a helical screw rheometer. The helical 

channel is unwrapped ignoring the effects of 

curvature. As suggested by (Tadmor and Klein, 

1970) and later cited by (Tamura et al. 1993), it is 

easy to visualize is the “unwrapping” of screw by 

rotating the screw, with ink-painted flights, on a 

piece of paper. The trace left on the paper would be 

the “unwrapped” channel. Thus complicated 

geometry of helical screw rheometer is 

approximated as a shallow infinite rectangular 

channel by assuming /   1L h  ; where L and h 

are the width and depth of the channel, respectively. 

The lower plate which is screw surface is stationary 

and the upper plate, the barrel surface, moves 

across the top of the channel with velocity 0V  at an 

angle   to the direction of the channel. The 

phenomenon remains unaltered if it is assumed that 

the barrel is stationary and the screw is rotating. 

The rectangular coordinate are positioned in such a 

way that x is the axial direction and z coincides with 

the direction of the screw rotation. The flow is 

assumed to occur in the xz-plane only, hence the 

velocity profile is  
 

[0,0, ( )].V w y                                                 (5) 

 
In such case the dominant flow is in the z-

direction except for circulation near the flights, 

which is considered negligible for a narrow gap 

relative to the width of the channel. The fluid then 

flows only in the direction of the barrel rotation 

from A to A' as shown in Fig. 1. The flow analysis 

initially focuses across this cross-channel, rather 

than the total unwrapped helical channel. As 

determined above there is only one velocity 

component, w = w(y). So the momentum equation 

(1) in the absence of gravity reduce to  
 

2 4

2 4
0 ,

p d w d w

z dy dy


   


                            (6) 

 
with the boundary conditions 
 

2

2
 0,  ,  0        at  0,

d w
w y

dy
                   (7) 

 
2

0 2
  ,  0          at  

d w
w V y h

dy
                  (8) 

 
The second boundary conditions in (7) and (8) 

results from the assumption of removing of couple 

stresses near the walls. Eq. (6) can be easily solved 

subject to boundary conditions (7) and (8) to get  
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In order to make expression (9) dimensionless, 

we introduce 
 

* *

0

,
w y

w y
V h

                                               (10) 

 
and get 
 

 

2 2

2

0

2

1
( )

2

sinh 1 sinh
,

2 sinh

h dp y y
w y y

V dz

y y

 
  



  
 



 

 

 

              (11) 

 

where * is dropped for simplicity. 

The first term on the right side of Eq. (11) is to be 

drag velocity and the second term is the pressure 

flow velocity. The drag flow velocity is linear, 

whereas the pressure flow velocity is parabolic due 

to pressure gradient caused by the presence of the 

screw flights. The flow rate per unit width, obtained 

by integrating the velocity across the gap is  
 

1

0 0

 .
Q

wdy
hV

                                                   (12) 

 
Substitution of (11) into (12) yields 

 
3

0

2 3

12 12
1 tanh .

2 12

hV h dp
Q

dz

  
      

  


  
    (13) 

 
The first term on right side of the above equation 

is drag flow rate, whereas the second term is 

pressure flow rate. When the screw is rotated, 

instead of the barrel the entire channel moves while 

the plate remains stationary. Thus to the stationary 

observer, there is an apparent net flow per unit 

width of Q = V0h. Thus we can write from Eq. (13) 
 

3
0

2 3

12 12
  0 1 tanh .

2 12

hV h dp

dz

  
       

  


  
  (14) 

 
Rearranging, we get 
 

3

0

3

2

6

  ,

12 12tanh

V h
p

z
h h h h





 
 
  

    
     
     






  

  

  (15) 

 

where p  is pressure difference within the channel 

and z  corresponds to channel width, D . 

Moreover 0V DN  where N is the rate of 

rotation. Thus Eq. (15) becomes 
 

2 2

3

2

3

 
6

12 12tanh

.

p

D N

h h h h

h


 

    
     
     

 
 
 




  

  





     (16) 

 
This equation can be used to calculate the 

material parameter   of couple stress fluid for 

given values of 0, ,h V  and dp/dz. The presence 

of constant pressure gradient maintained in the 

HSR is responsible for the effects of couple 

stresses. If dp/dz =0 the effects of couple stress are 

negligible and therefore in that case the value of 
can be determined experimentally. This value of   

can be used in formula (15) to obtained a value of 

 . 

 

 
 
Fig. 1. Helical channel approximated as a rectangular 

channel 
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4. Mathematical formulation for two-

dimensional flow analysis 

The two-dimensional flow analysis differs from the 

previous one-dimensional analysis in the 

positioning of the coordinate axes. Here the 

rectangular coordinates are positioned in such a 

way that x-axis is perpendicular to the channel wall 

or flights and z-axis coincide with the down channel 

direction. The flow has two velocity components, a 

cross channel component, u, and a down channel 

component, w. For simplicity, the velocity of the 

barrel relative to the channel ( 0V ) is resolved into 

two components U and W which are along x- and z 

-axes, respectively. The geometry of the problem is 

explained in Fig. 2. 
 

 
 
Fig. 2. The geometry of the unwrapped screw channel 

and barrel surface 
 
The geometry of the problem suggests that the 

velocity field is 
 

[ ( ),0, ( )].V u y w y                                            (17) 

 
In view of (17), Eq. (1) can be written in 

component form as 
 

2 4

2 4
0 ,

p d u d u

x dy dy


   


                                  (18) 

 

0 ,
p

y


 


                                                            (19) 

 
2 4

2 4
0 ,

p d w d w

z dy dy


   


                                 (20) 

 
The associated boundary conditions are 

 

2 2

2 2
0,    0, 0,  0   at   0,

d u d w
u w y

dy dy
          (21) 

 
2 2

2 2
,    ,  0,  0   at   ,

d u d w
u U w W y h

dy dy
           (22) 

 
Where 
 

0 0  ,       .U V Sin W V Cos     

 
It is again mentioned here that the boundary 

conditions 
2 2 2 2/ 0, / 0d u dy d w dy   at 

y=0 and y=h results from the assumption of 

removing couple stresses at the walls. 

Introducing the non dimensionlized parameters 
 

2
2

,  ,  ,   ,

, ,  ,
( / )

x y z u
x y z u

h h h W

w p h
w p

W W h

   

 

   

  



 

  (23)

 

 

Eqs. (18) (22)  after dropping the asterisk can be 

cast as 
 

2 4

2 2 4

1
0 ,

p d u d u

x dy dy


   

 
                                  (24) 

 
2 4

2 2 4

1
0 ,

p d u d u

x dy dy


   

 
                                  (25) 

 
2 2

2 2
0,    0,  0,  0  at      0,

d u d w
u w y

dy dy
           (26) 

 
2 2

2 2
,    1,  0,  0   at   1,

U d u d w
u w y

W dy dy
           (27) 

4.1. Solution of the Problem 

A solution of Eqs. (24) and (25) subject to 

boundary conditions (26) and (27) turns out to be 
 

2

2

2

1

2

Si ( ) Si
,

Si

p U y y p
u y

x W x

nh y nh y p

nh x

   
    

  

   
   



  

 

                     (28) 
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2

2

1

2

Si ( ) Si
,

Si

p y y p
w y

z z

nh y nh y p

nh z

   
    

  

   
   



  

 

                             (29)  

4.2. Velocity in the direction of the axis of screw 

The velocity in the direction of the axis of the 

screw at any depth in the channel can be computed 

from (28) and (29) as 
 

sin cos ,s w u                                                (30) 

 
2

2

2

1

2

Si ( ) Si
sin

Si

p y y p
s y

z z

nh y nh y p

nh z

    
     

   

   
    



  


 

 

 
2

2

2

1

2

Si ( ) Si
cos .

Si

p U y y p
y

x W x

nh y nh y p

nh x

    
    

   

   
    



  


 

               (31) 

 
which show the resultant velocity of the flow. 

4.3. Volumetric flow rates 

Volumetric flow rate in x-direction per unit width 

is  
1

0
 ,xQ u dy                                                          (32) 

 

where /xQ Q WhL   is dimensionless volumetric 

flow rate in the x -direction. Using equation (28) in 

the above equation gives  
 

2

2 3

tan1 1
2 ,

2 12
x

U p p
Q

W x x

    
    

  



 
            (33) 

 
Similarly, volumetric flow rate in z-direction per 

unit width is 
 

1

0
 ,zQ w dy                                                         (34) 

 

where /zQ Q WhL   is dimensionless volumetric 

flow rate in the z -direction. Using equation (29) in 

the above equation gives 
 

2

2 3

tan1 1 1
2 .

2 12
z

p p
Q

z z

    
    

  



 
                (35) 

 
The resultant volumetric flow rate forward in the 

screw channel, which is the product of the resultant 

velocity and cross-sectional area integrated from 

the root of the screw to the barrel surface is 
 

1

0
,

sin

n
Q sdy  

                                               (36) 

 

where /Q Q WhL  dimensionless volumetric is 

flow rate in the direction of the screw and n  is the 

number of parallel flights in a multiflight screw. 

From Eq. (31) and (36), we get 
 

3 2

2

2 2

6 ( 12 ) cos
12 sin

6 ( 12 ) sin

n p
Q U W

W x

p
W

z

   
      

 
    

 

   
 

   

 

 

24 cos sin tan
2

p p
W

x z

   
      


                    (37) 

5. Results and discussion 

In this section, the solution obtained for the steady 

flow of an incompressible and homogenous couple 

stress fluid in helical screw rheometer (HSR) is 

analyzed for various emerging parameters. Here we 

discussed the effect of dimensionless couple stress 

parameter  and pressure gradients /p x   and 

/ ,p z   on the velocity profile with the help of 

graphical representations. From Figs. 3–5, we can 

observe that the velocity profiles u(y), w(y) and s(y) 

show an increasing trend with an increase in the 

value of couple stress parameter  . It is also 

observed that both u and w component of velocity 

show linear behavior for small values of  . 

Moreover, the maximum in u component of 

velocity occurs near the screw while it occurs near 

the barrel for w component of velocity. Figure 6 

shows that the resultant velocity s is parabolic and 

and increases by increasing   thereby indicating a 

decrease in the extrusion process for small value of 

 . From Figs. 7 and 8, we observe that an increase 

in pressure gradient (either of /p x   or /p z  ) 

causes an increase in the magnitude of velocity 

profiles u(y) and w(y). Further, an increase in 

pressure gradient /p x   pushes the fluid toward 
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screw while for higher values of /p z  , the fluid 

is pushed toward the barrel. Figure 9 depicts that 

resultant velocity increases by increasing the value 

of pressure gradient. The effects of /p x 
 
and 

/p z   on resultant volume flow rate Q are shown 

in Figs. 10 and 11. It is interesting to note that 

volumetric flow rate Q increases by increasing 

pressure gradient. However, it decreases by 

increasing the couple stress parameter   and 

asymptotically approaches to a constant Newtonian 

value. Figure 12 depicts the effects of flight angle 

  on s. This figure shows that resultant velocity s 

increases by increasing the flight angle  . 

 

 
 

Fig. 3. Velocity profile ( )u y  for various values of   

with 4 and 45    p x  

 

 
 

Fig. 4. Velocity profile ( )w y  for various values of   

with 4 and 45    p z  

 

 
 

Fig. 5. Velocity profile ( )s y  for various values of   

with 4 and 45      p x p z  

 

 
 

Fig. 6. Velocity profile ( )u y  for different values of 

 p x  with 4, 4 and 45      p z  

 

 
 

Fig. 7. Velocity profile ( )u y  for different values of 

 p z  with 4, 4 and 45      p x  

 

 
 

Fig. 8. Velocity profile ( )s y  for different values of 

 p x  with 4, 4 and 45      p z  
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Fig. 9. Velocity profile ( )s y  for different values of 

 p z  with 4 4 and 45      p x  

 

 
 
Fig. 10. Volumetric flow Q for different values of 

 p x  with 4, 2, 1and 45       p z n  

 

 
 
Fig. 11. Volumetric flow Q for different values of 

 p z  with 4, 2, 1and 45       p x n  

 

 
 

Fig. 12. Velocity profile ( )s y  for different values of   

with 4,and z 4.      p x p  

6. Concluding remarks 

The steady flow of the incompressible, 

homogenous couple stress fluid is investigated in 

helical screw rheometer (HSR). By performing a 

one-dimensional flow analysis a transcendental 

equation is presented for calculating the value 

couple stress parameter experimentally. For two-

dimensional problem the exact expression of 

velocity profiles, flow rate and average velocity of 

the problem are calculated. We observed that the 

velocity field depends strongly on the involved 

parameter and pressure gradient. By increasing the 

value of non-dimensional parameter   the resultant 

velocity increases. It is also noted that flow rate 

decreasing by increases the values of  . The 

present analysis is performed with the hope that it 

might shed some light on extrusion of fluid food 

suspensions. 
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