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Abstract 

A polynomial 1 2( , , , )nf X X X
 
is called multilinear if it is homogeneous and linear in every one of its 

variables. In the present paper our objective is to prove the following result: Let R  be a prime K -algebra over a 

commutative ring K  with unity and let 1 2( , , , )nf X X X  be a multilinear polynomial over K . Suppose 

that d  is a nonzero derivation on R  such that 1 2 1 2( , , , ) ( , , , )s t

n ndf x x x f x x x  for all 

1 2, , , nx x x R , where ,s t  are fixed positive integers. Then 1 2( , , , )nf X X X  is central-valued on 

R . We also examine the case R  which is a semiprime K -algebra.  
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1. Introduction 

In all that follows R  will be a K -algebra over a 

commutative ring K  with unity, U  its Utumi 

quotient ring and the center of U , denoted by C , 

is called the extended centroid of R  (Beidar et al., 

1996) and 1 2( , , , )nf X X X  will be a 

multilinear polynomial over K  with some 

coefficients invertible in K . Without loss of 

generality, we may write 
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where the sum is taken over all permutations in nS  

except 1. For any ,x y R , the symbols [ , ]x y  

and x y stand for the commutator xy yx  and 

anti-commutator xy yx . Recall that a ring R  is 

prime if for any , , 0a b R aRb   implies that 

0a   or 0b  , and is semiprime if for any 

, 0a R aRa  implies that 0a  . An additive 

mapping :d R R  
is called a derivation if 

( ) ( ) ( )d xy d x y xd y   holds for all ,x y R , 
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in particular d  is called an inner derivation 

induced by an element a R , if ( ) [ , ]d x a x  

for all .x R We denote by 1 2( , , , )d

nf X X X  

the polynomial obtained from 1 2( , , , )nf X X X  

by replacing each coefficient by d(α.1). 
Ashraf and Rehman (2002) proved that if R  is a 

prime ring, I  a nonzero ideal of R , and d  a 

derivation of R  such that ( )d x y x y  for all 

,x y I , then R  is commutative. Argac and 

Inceboz (2009) generalized the above result as 

following: Let R  be a prime ring, I  a nonzero 

ideal of R  and n  a fixed positive integer, if R  

admits a derivation d  with the property 

( ( ))nd x y x y  for all ,x y I , then R  is 

commutative. On the other hand, Wong (1996) 

obtained the following result: Let R  be a prime 

ring, d  a nonzero derivation of R  and 

1 2( , , , )tf X X X  be a multilinear polynomial not 

vanishing on R . Suppose that 1 2( , , , ) 0n

tdf x x x   

for all 1 2, , , tx x x R , where n  is a fixed 

integer. Then f  is central-valued on R . Chuang 

and Lee (1996) proved that if R  is a ring without 

nonzero nil right ideals and 1 2( , , , )tf X X X  is 
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a multilinear polynomial over K  which is nil in 

R , then f  vanishes on R . The present paper is 

motivated by the previous results and we examine 

what happens in a prime K -algebra R  satisfying 

the identity 
 

1 2 1 2( , , , ) ( , , , ) ,s t

n ndf x x x f x x x
 

 

for all 1 2, , , nx x x R , where ,s t  are fixed 

positive integers. 

2. Main result 

We begin with the simplest case when R  is the 

matrix ring ( )mM F  over a field F and d  is an 

inner derivation on R . 

 

Lemma 2.1. Let F  be a field and ( )mR M F , 

the m m  matrix ring over F. Suppose that 

a R  and that 1 2( , , , )nf X X X is a 

multilinear polynomial over F such that  
 

1 2 1 2[ , ( , , , )] ( , , , )s t

n na f x x x f x x x
  

 

for all 1 2, , , nx x x R , where ,s t  are fixed 

positive integers. Then either ( )a Z R , the 

center of R , or 1 2( , , , )nf X X X is central-

valued on R . 

 

Proof: If 1m , then R  is a field and there is 

nothing to prove; so we assume that 2m  and 

proceed to show that ( )a Z R
 

if 

1 2( , , , )nf X X X  is not central-valued on R . 

Denote by ije  the usual matrix unit with 1 in 

the ( , )i j -entry and zero elsewhere. Write 

ij ija e  where ij F  . We claim first that 

a  is a diagonal matrix, namely, 0kh   for h k . 

Since 1 2( , , , )nf X X X  is assumed to be non-

central on R , by Lee (1993) and Leron (1975), there 

exists an odd sequence
 1 2( , , , )nr r r r  from R  

such that 1 20 ( ) ( , , , )n pqf r f r r r e  
 
for some 

0, p q   . For distinct ,h k , let   be a 

permutation in the symmetric group nS  such that 

( ) , ( )p h q k   , and let   be the 

automorphism of R  defined by 

( ) ( )( ) .ij ij ij i je e
     

Then 1 2( ) ( , , , )n hkf r f r r r e       and 

[ , ( )] ( )ih ik kj hja f r e e      . 

By hypothesis,[ , ( )] ( ) .s ta f r f r   Note that 

[ , ( )]a f r  has zero ( , )i j -entries for ,i h j k  , 

and so does any power [ , ( )]sa f r . Also, the ( , )k k -

entry of [ , ( )]a f r  is hke  and that of [ , ( )]sa f r  

is ( )s

hke  . On the other hand, if 1t   then 

( )t

hkf r e  and if 2t   then ( ) 0tf r  , in 

both cases the ( , )k k -entry of ( )tf r is zero. It 

follows from [ , ( )] ( )s ta f r f r   that 

( ) 0s

hke   , whence the fact 0hke   follows. Next 

we show that ii iia e  is a scalar matrix, that is, 

hh kk   for distinct ,h k . For any automorphism 

  of R , a
 enjoys the same property as a does, 

namely, [ , ( )] ( )s ta f x f x    for all x R . It is 

easy to check that 
 

  (1 ) (1 )hk hkx e x e      

 

is an automorphism of R  and hence 

( )hh kk hka a e      is a diagonal matrix, 

which implies that hh kk  . Hence a  is a scalar 

matrix, proving the lemma. 

We are now in a position to prove our main 

theorem. 

 

Theorem 2.2. Let R  be a prime K -algebra over a 

commutative ring K  with unity and let 

1 2( , , , )nf X X X  be a multilinear polynomial 

over K . Suppose that d  is a nonzero derivation 

on R  such that  
 

1 2 1 2( , , , ) ( , , , )s t

n ndf x x x f x x x
 

 

for all 1 2, , , nx x x R , where ,s t  are fixed 

positive integers.  

Then
 1 2( , , , )nf X X X  is central-valued on R . 

 

Proof: Using Kharchenko's result (1978), we can 

divide the proof into two cases. 

 

Case 1. If d  is Q -inner, that is, ( ) [ , ]d x a x  

for all x R , where a  is a non-central element in 
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the symmetric quotient ring Q  (Beidar et al., 

1996), then 
 

1 2 1 2[ , ( , , , )] ( , , , )s t

n na f x x x f x x x
 

 

for all 1 2, , , nx x x R . By a theorem due to 

Chuang (1988), this generalized polynomial 

identity is also satisfied by
 
Q . In case the center 

C  of Q  is infinite, we have 

 

1 2 1 2[ , ( , , , )] ( , , , )s t

n na f x x x f x x x
 

 

for all 1 2, , , n Cx x x Q C  , where C  is the 

algebraic closure of C . Since both Q  and 

CQ C are prime and centrally closed (Erickson 

et al., 1975), we may replace R  by Q  or 

CQ C  according to whether C  is finite or 

infinite. Thus we may assume that R  is centrally 

closed over C  (i.e., RC R ) which is either 

finite or algebraically closed and  
 

1 2 1 2[ , ( , , , )] ( , , , )s t

n na f x x x f x x x
 

 

for all 1 2, , , nx x x R . From Martindale's result 

(1969), RC  (and so R ) is a primitive ring having 

nonzero socle H  with C  as the associated 

division ring. In view of Jacobson (1969), R  is 

isomorphic to a dense ring of linear transformations 

of some vector space V  over C  and H  consists 

of the finite rank linear transformations in R . If V  

is finite-dimensional over C , then ( )mR M C , 

where dim Cm V , and so 1 2( , , , )nf X X X  

is central-valued on R  by Lemma 2.1. Suppose 

that V  is infinite-dimensional over C , we claim 

that ,v av  are linearly C -dependent for all v V . 

Since if 0av   then ,v av  are C -dependent. 

Suppose that 0av  . Assume that v  and av  are 

C-independent, since dim CV  , then there 

exist 3, , nw w V  such that 

 

1 2 3, , , nv w av w w w    

 

are also C -independent. By density of R , there 

exist 1, , nr r R  such that  

 

1 1 1 2 1 3 3 3; ; ,nrw w r w w r w w  
 1i i irw w   

 

for all 4 1i n    and 0i jrw   for all other 

possible choices of ,i j , and 2 1.n nr w w   

Therefore, we obtain the contradiction 
 

1 2

1 2

( 1) [ , ( , , , )]

( , , , ) 0.

s s

n

t

n

v a f x x x v

f x x x v

 

   

 
So we conclude that v  and av  are linearly C -

dependent for all v V . Our next goal is to show 

that there exists C  such that av v for all 

v V . In fact, ,v w V  is chosen to be linearly 

independent. Since dim CV  , then there exists 

u V  such that , ,u v w are linearly independent, 

and so there exists 

, ,u v w C     such that uau u  and also 

,v wav v aw w   , that is,  

( ) u v wa u v w u v w       . Moreover 

( ) ( ) u v wa u v w u v w         for a suitable 

u v w C    . Then we have  

 

( ) ( )

( ) 0

u v w u u v w v

u v w w

u v

w

   

 
   

 

  

  
 

 
and because , ,u v w are linearly independent, 

u v w u v w        , that is,  does not 

depend on the choice of v . Hence we have 

av v for all v V . Now for ,r R v V  , we 

have  
 

( ) ( ) ( ) ( ) ( )ra v r av r v rv a rv     , 

 

that is, [ , ] 0a R V  . Since V  is a left faithful 

irreducible R -module, [ , ] 0a R  , i.e., 

( )a Z R  and so 0d  , contradicting the 

hypothesis. 

 

Case 2. If d  is Q -outer, then we have 

1 2

1 2 1

1 2

( , , , )

( ( , , , ) ( , , ( ) , ))

( , , , ) .

s

n

d s

n i n

t

n

df x x x

f x x x f x d x x

f x x x

 





Applying Kharchenko technique (1978), we arrive 

at  
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1 2 1

1 2
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( , , , ) ,

d s

n i n

t

n

f x x x f x y x

f x x x






  

 

for all 1 2 1 2, , , ; , , ,n nx x x y y y R . In 

particular, 1 2( , , , ) 0s

nf y y y   for all 

1 2, , , ny y y R  by setting 1 0x  . Thus, 

1 2( , , , )nf X X X  vanishes on R  by Leron 

(1975) and so f  is central-valued on R . This 

completes the proof. 

Our next goal is to prove the same result is also 

valid for a semiprime K -algebra. 

 

Theorem 2.3. Let R  be a semiprime K -algebra 

over a commutative ring K  with unity and let 

1 2( , , , )nf X X X
 
be a multilinear polynomial 

over K . Suppose that d  is a derivation on R  

such that 
 

1 2 1 2( , , , ) ( , , , )s t

n ndf x x x f x x x
 

 

for all 1 2, , , nx x x R , where ,s t  are fixed 

positive integers. Then there exists a central 

idempotent e  of U  such that d  vanishes 

identically on eU  and 1 2( , , , )nf X X X  is a 

central polynomial for (1 )e U . 

 

Proof: By a result of Beidar et al. (1996), the 

derivation d  can be uniquely extended to U . 

Since U  and R  satisfy the same differential 

identities (Lee, 1992), then 
 

1 2 1 2( , , , ) ( , , , )s t

n ndf x x x f x x x   

 

for all 1 2, , , nx x x U . Let B  be the complete 

boolean algebra of idempotents in C  and M  be 

any maximal ideal of B . Since U  is an orthogonal 

complete B -algebra (Chuang, 1994) and MU  is a 

prime ideal of U , which is d -invariant, denote 

UU
MU

  and d  the derivation induced by d  

on U , i.e., ( ) ( )d u d u  for all .u U  Then d  

is satisfied in U  the same property of d  on U . In 

particular, U  is prime and so, by Theorem 2.2, one 

has 1 2 1 2( , , , ) ( , , , )s t

n ndf x x x f x x x  for 

all 1 2, , , nx x x U . For all maximal ideals M  

of B  we obtain that either d  is the zero derivation 

on U , that is, ( )d U MU , or 1 2( , , , )nf X X X  

is central-valued on U , that is, 

1 2[ ( , , , ), ]nf x x x x MU  for all 

1 2, , , nx x x U . In any case we have  

 

1 2[ ( , , , ), ] ( ) ,nf x x x x d U MU
 

 
and hence

 
 

1 2[ ( , , , ), ] ( ) 0nf x x x x d U MU  . 

 
Now using the theory of orthogonal completion 

for semiprime rings  

(Beidar et al., 1996), there exists a central 

idempotent e  of U  such that (1 )U eU e U    

with 0d   on eU  and 1 2( , , , )nf X X X  is 

central-valued on
 

(1 )e U . This completes the 

proof of the theorem. 
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