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Abstract 

A neural network is developed for the determination of leaky confined aquifer parameters. Leakage into the 

aquifer takes place from the storage in the confining aquitard. The network is trained for the well function of leaky 

confined aquifers by the back propagation technique and adopting the Levenberg–Marquardt optimization 

algorithm. By applying the principal component analysis (PCA) on the adopted training input data and through a 

trial and error procedure the optimum structure of the network is fixed with the topology of [2×10×2]. The 

network generates the optimal match point coordinates for any individual real pumping test data set which are 

incorporated with Hantush’s analytical solution and the aquifer parameter values are determined. The performance 

of the network is evaluated by real field data and its accuracy is compared with that of the type curve matching 

technique. The network eliminates graphical error inherent in the type curve matching technique and is 

recommended as a simple and reliable alternative to the type-curve matching technique.  
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1. Introduction 

Figure 1 shows a well penetrating an artesian 

aquifer overlain by an aquitard and underlain by an 

aquiclude. Overlying the aquitard are permeable 

deposits (source bed) in which there is a water 

table. The aquifer is homogeneous, isotropic, 

infinite in areal extent and is of the same thickness 

throughout. The well completely penetrates the 

aquifer, and flow in the aquifer is radial throughout. 

Flow in the aquifer is augmented by vertical 

leakage through the aquitard. The flow lines are 

assumed to be refracted a full right angle as they 

cross the aquitard-aquifer interface. The discharge 

of water from a well in such an aquifer is supplied 

from storage within the aquifer and aquitard, as 

well as from leakage through the aquitard. Because 

of the presence of recharge in the form of leakage, 

water levels will stabilize when the entire discharge 

of the well is derived from leakage within the 

aquitard.  

Assuming that water is released from storage 

instantaneously with a decline in head, the 

differential equation governing the unsteady-state 

flow in the leaky artesian aquifer in polar-

coordinate notation is (Hantush, 1960): 
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where 𝑠 is the drawdown measured at time 𝑡 (T) in 

an observation well located at the distance r (L) 

from the pumping well, 𝑇 (L
2
T

-1
) is transmissibility, 

𝑆 is aquifer storage coefficient, 𝐾′ (LT
-1

) is the 

hydraulic conductivity of the aquitard. Note that the 

third term in the left hand side of Equation (1) 

represents leakage into the aquifer through the 

aquitard. Hantush (1960) solved Equation (1) with 

appropriate boundary and initial conditions and 

derived an analytical solution for the drawdown due 

to the pumping of a fully penetrating well:  
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Fig. 1. Leaky confined aquifer with fully penetrating 

pumping well 
 

𝑆′ and 𝑏′ are the storativity and thickness of the 

aquitard, respectively and erfc (𝑥) is the 

complementary error function defined by: 
 

erfc(x) =  1 − erf(x) =  
2

√𝜋
∫ exp(−𝑦2) dy 

∞

𝑥
     (6) 

 
Hantush (1961) tabulated values of well function 

𝑊(𝑢, 𝜓) that is plotted against 1 𝑢⁄ . Fig. 2 shows 

the resulting family of type curves, with each curve 

having its own 𝜓 value. 
 

 
 
Fig. 2. Family of Hantush’s type curves (1961), W(u, ψ) 

versus 1/u for different values of ψ 
 

To determine the leaky confined aquifer 

parameter values (𝑇, 𝑆, 𝐾′, 𝑆′), time-drawdown 

data recorded in a pumping test are plotted on 

logarithmic paper of the same scale as for the 

Hantush’s type curves. The time-drawdown field 

data curve is superimposed on the type curves, 

keeping the coordinate axes of the two plots parallel 

and adjusted until plotted points of observed data 

match on one of the type curves. A match point is 

selected and its coordinates on both plots is 

recorded [1 ⁄ 𝑢m, 𝑊(𝑢, 𝜓)m, 𝑠m, 𝑡m]. With values 

of match point coordinates thus determined, aquifer 

parameters are obtained from Equations (2-5).  

The aquifer parameters obtained by the type-

curve graphical method are rather subjective due to 

graphical and personal errors and the accurate 

results are usually not obtained. In recent years, 

some suitable approaches based on artificial neural 

networks (ANNs) have been developed as an 

alternative approach to model the well functions 

and remove the errors resulted from graphical type 

curve matching techniques (Lin and Chen, 2005; 

2006; Samani et al., 2007; Lin et al., 2010).  

The idea of ANN was first proposed in the 1940s 

(McCulloch and Pitts, 1943). An ANN is an 

interconnected group of simple processing elements 

(artificial neuron or nodes) analogous to the 

network of neurons in the human brain. ANN is a 

parallel processor that uses a mathematical model 

for information processing based on a connectionist 

approach to computation. This method can model 

complex non-linear relationships between inputs 

and desired outputs through a training process to 

find patterns in data that are not easily analyzed 

using conventional methods. Because of this 

property ANNs have been successfully used in 

hydrological problems. The ASCE Task Committee 

on Application of Artificial Neural Networks in 

Hydrology (2000a; 2000b) described various 

aspects of ANNs and reviewed many articles on 

ANN applications in various branches of 

hydrology. In Groundwater hydrology, Lin and 

Chen (2005) proposed an ANN approach to 

estimate aquifer parameters of leaky confined 

aquifers based on a combination of a Radial Basis 

Function Network (RBFN) and Hantush and Jacob 

(1955) analytical solution. Lin and Chen (2006) 

also suggested the combination of an ANN and the 

Theis (1935) analytical solution in confined 

aquifers. The drawback of Lin and Chen networks 

is that as the number of time-drawdown data 

increases, the dimensionality of networks becomes 

larger and they also have to be trained and tested 

for each individual set of pumping test data 

(Samani et al., 2007) Accordingly, Samani et al. 

(2007) proposed a simple ANN by replacing the 

gradient descent algorithm with the faster 

Levenberg-Marquardt (LM) training algorithm and 

applying Principal Component Analysis (PCA) on 

the training data set to estimate confined aquifer 

parameters without the aforementioned limitations. 

Later Lin et al. (2010) applied the PCA on the 

training and testing data patterns in the 

development of an ANN for the parameter 

estimation of anisotropic aquifers. 

The objective of this paper is to construct an 

ANN that is trained to model the Hantush’s well 

function (Equation (5)) and predict the coordinates 

of match point from which the aquifer parameters 

are determined. The developed network is a single-

hidden-layer feed-forward neural network with 2, 

10 and 2 neurons in the input, hidden and output 

layers, respectively. The model development 

processes consist of a six step protocol similar to 

that suggested by Wu et al. (2014) and the 

methodology used in each step is documented. The 

accuracy of network was tested by 100000 

synthetic error-free time-drawdown data sets. The 
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applicability, adequacy and validity of the 

developed network is evaluated using one set of 

real pumping test data and results are compared 

with that of type curve matching technique. The 

developed network is written in Matlab program 

called (ANN4LAPE, Artificial Neural Network for 

Leaky Aquifer Parameter Estimation) and is 

available from the corresponding author upon 

request. The program receives pumping test data 

and provides the user with the aquifer parameter 

values, i.e. S, T, 𝐾′ and 𝑆′. The network appears to 

be an efficient, accurate and easily used alternative 

tool to the type-curve graphical method in the hand 

of practitioners for the determination of parameters 

of leaky confined aquifers with water released from 

storage in the aquitard.  

2. Modeling Strategy 

For the development of an ANN model for a 

hydrological system, by reviewing over 81 papers 

published from 2000 to 2012 in the field of 

drinking water quality Wu et al. (2014) argue 

“despite the recognition of the importance of the 

adoption and articulation of rational ANN model 

development procedures, there is no comprehensive 

protocol for the development of ANN models” and 

suggest the following six main steps extracted from 

ten steps proposed by Maier et al. (2010). These 

are: input selection, data splitting, selection of 

model architecture, determination of model 

structure, model calibration/training (optimization 

of model parameters) and model validation. By 

tracing two decades of neural network rainfall-

runoff and stream flow modeling, Abrahart et al. 

(2012) similarly state that more objective and 

consistent protocol is needed for the development 

of ANNs. While these steps logically establish 

modeling procedure, depending on the nature of 

system that is to be modeled and the modeling 

objectives (i.e. forecasting, classification, function 

approximation, etc.) one or more steps may be 

combined or not carried out. In this paper we tried 

to follow the above logical steps with some minor 

modifications to design an ANN based on the 

combination of a feed-forward neural network and 

the exact Hantush’s analytical solution for the 

determination of leaky confined aquifer parameters. 

The developed network generates the match points 

coordinates  ŷ1 = log (
1

𝑢m
) and ŷ2 = (𝜓)m as 

output for any individual real (field) pumping test 

data set received as input.  

2.1. Generation and Selection of Input Data 

Patterns 

To generate (to select) the training data patterns 

for the network design, first a logical range of 

log(1 𝑢m)⁄  (from -0.5 to 7.0), and of (𝜓)m (from 

0.0 to 10.0) according to the type curve presented 

by Hantush (1961) and as inferred from Fig. 2 are 

selected as the ANN output targets that represent 

the aquifer behavior. Using interval values of 

0.0073 and 0.2041 for log(1 𝑢m)⁄  and (𝜓)𝑚, 

respectively, 51200 sets of training input pattern 

each of which constitutes N-1 elements (N is the 

number of drawdown-time records) were generated 

as illustrated in Fig. 3. Therefore, the size of the 

input data matrix is [(N-1) × 51200]. Then for all 

these sets of [log(1 𝑢m)⁄ , (𝜓)𝑚], well function 

𝑊(𝑢, 𝜓) is calculated by Equation (5) and then the 

training input patterns 𝑋i are generated by the 

following equation as illustrated in Fig. 3: 
 

𝑋i = log [
𝑊(𝑢m𝑡1 𝑡i+1, (𝜓)m)⁄

𝑊(𝑢m,   (𝜓)m)
]                                  (7) 

 
Subscript m denotes the match point, i=1, 2,…, 

N-1 and N is the number of time-drawdown 

records. 
 

 
 

Fig. 3. Graphical presentation of input vectors and target 

outputs generation for the training of the ANN 
 

Before using the generated training data patterns 

as input vector to the ANN, their significance and 

the independence needs to be examined (Maier et 

al., 2010). Therefore, the training data patterns are 

normalized and subjected to PCA to reduce their 

dimensionality and eliminate redundant data. PCA 

transforms the data to a new coordinate system such 

that the greatest variance by any projection of the 

data comes to lie on the first coordinate (called the 

first PC), and the second PC explains the maximum 

variances of the residual data set and so on. When 

the analysis is complete, the resulting components 

will display varying degrees of correlation with the 

observed variables, but are completely uncorrelated 
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with one another. One of the parameters in PCA 

method is minimum fraction variance. By 

specifying a minimum fraction variance one can 

eliminate those principal components that 

contribute less than this value to the total variation 

in the data set and hence the dimensionality of the 

data set is reduced with no information lost (Davis, 

2002). Samani et al. (2007) applied PCA 

successfully to reduce the dimension of the input 

vector of the original data and develop a network 

with fixed structure for accurate determination of 

confined aquifer parameters. 

Table 1 provides PCA parameters for the training 

patterns Xi (generated by Equation (7)). The 

principal components were extracted by 

considering minimum fraction variance of 0.005 

(0.5%). The result of PCA given in Table 1 shows 

that the first and second principle components 

together describe 99.996% of the variance of the 

training data sets. Because the variance accounted 

by the third component is smaller than minimum 

fraction variance (i.e., 0.0044 < 0.5%) it is ignored. 

Moreover, the results of the Scree test, Cattell 

(1966), as shown in Fig. 4, confirm that only the 

two first principle components should be 

considered as input vectors. This means that the 

elements of training input vector reduces to 2 and 

the number of neurons in the input-layer of the 

network to be designed can be fixed to 2 neurons 

instead of number of records in drawdown-time 

data which varies from one pumping test to another. 
 
Table 1. The principal component parameters of the 

training set for the leaky confined aquifer 
 
Principal 

component 
Eigenvalue 

Variance 

(%) 

Cumulative 

variance (%) 

PC1 35.5746 98.81833 98.81833 
PC2 0.4238 1.177222 99.99556 

PC3 0.0016 0.004444 100 

PC4 2.4506e-06 0 100 

 

 
 

Fig. 4. The scree plot of the training patterns 

2.2. Selection of the Network Architecture  

A typical ANN consists of an input layer, a 

number of hidden layers and an output layer each 

having a number of processing neurons (nodes). 

The number of neurons in input and output layers is 

determined by the number of input and output 

variables, respectively. The number of hidden 

layers and their neurons are determined in the 

process of model training (calibration) usually by a 

trial-and-error procedure. The pattern of connection 

between nodes, the method of determining the 

connection weights, and the activation function 

characterizes the architectures of the network 

(Fausett, 1994; ASCE Task Committee on 

Application of Artificial Neural Networks in 

Hydrology, 2000a). ANNs are also categorized 

based on the direction of information flow and 

processing (Maier et al., 2010). For instance, in a 

feed-forward neural network (Hornik et al., 1989), 

also known as multi-layer perceptrons (MLP) 

information passes from the input nodes to the 

output nodes only. This is in contrast to a recurrent 

ANN in which information flows through the nodes 

in both directions, from the input to the output 

nodes and vice versa (Karamouz et al., 2008). Feed 

forward neural networks are the most commonly 

used ANN architecture (ASCE Task Committee on 

Application of Artificial Neural Networks in 

Hydrology, 2000a; Maier et al., 2010; Razavi and 

Tolson, 2011; Wu et al., 2014). A single-hidden-

layer feed forward neural network is sufficient to 

approximate any continuous mapping from the 

input patterns to the outputs mainly because they 

are less susceptible to poor local minima (Razavi 

and Tolson, 2011). Therefore, we started with a 

single-hidden-layer feed forward neural network. 

The number of nodes in input and output layers was 

already determined in step 2.1 based on the two 

principal components of the training input data and 

the two variables in the Hantush’s well function of 

leaky confined aquifers (i.e. the coordinates of 

match point, Log (
1

𝑢m
) and (𝜓)m). The inputs are 

fed through the input layer and, after being 

multiplied by synaptic weights, are delivered to the 

hidden layer. In the hidden and output layer an 

activation function such as threshold, sigmoid, 

hyperbolic tangent, Gaussian and linear are used for 

converting the weighted summation input to the 

output (Haykin, 1999). Based on our previous 

experience (Samani et al., 2007), the hyperbolic 

tangent function (tansig): 𝑓(𝑥) = (1 − 𝑒−2𝑥)/(1 +
𝑒−2𝑥) for the hidden layer and the linear transfer 

function (purelin): [𝑓(𝑥) = 𝑥 , for all 𝑥] for the 

output-layer are used. Figure 5 illustrates the 

architecture of our single-hidden-layer network 

before and after conducting PCA on the input data 

sets. The optimum number of neurons in the 

hidden-layer is determined in the process of 

network training (calibration) in the next sections 

where the optimum structure of the network is also 

determined. 
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Fig. 5. Structure of the single-hidden-layer network 

before and after conducting PCA on the input training 

data sets 

2.3. Network Training (Calibration)  

Among various methods for neural network 

training or calibration, the classic back-propagation 

(BP) method developed by Rumelhart et al. (1986) 

among others is the most popular for it can learn the 

mapping of any linear and nonlinear relationship 

between the inputs and outputs (ASCE Task 

Committee on Application of Artificial Neural 

Networks in Hydrology, 2000a; Maier and Dandy, 

1999; 2000) by finding the optimum set of weights 

with the use of an optimization algorithm.  

In the BP method, the inputs are delivered to the 

hidden-layer after being multiplied by synaptic 

weights. The output of the hidden-layer (ℎ𝑙) can be 

obtained from: 

 

𝑍𝑙 =  𝑏𝑙+ ∑ 𝑋i
n
i=1  𝑤i𝑙                                            (8) 

 

ℎ𝑙 =  𝑓(𝑍𝑙)                                                            (9) 

 

where 𝑋i is the input to the processing nodes 

(determined in Equation (7) and subjected to PCA); 

𝑏𝑙 is the bias representing the threshold value 

associated with node 𝑙; 𝑤i𝑙  is the connection weight 

from the ith node in the preceding layer to node l 

for imitating the biological synapse strength; 𝑛 is 

the total number of inputs applied to nodes 𝑖 in the 

input layer and 𝑓 is the activation function for 

converting the weighted summation input to the 

output.  

Different implementations of the conjugate 

gradient approach and various quasi-Newton 

implementations have been incorporated into the 

BP algorithm to enhance the convergence speed of 

this algorithm. The Levenberg–Marquardt (LM) 

algorithm is probably the most efficient 

optimization method, which is the approximated 

Newton algorithm. 

In this paper, the network training and the 

weights adjustment are implemented by the 

deterministic LM optimization method which is 

probably the most efficient optimization method for 

small and medium sized neural networks (Razavi 

and Tolson, 2011). Many researchers have 

successfully used this methodology for hydrology 

problems (Samani, 1990; Maier and Dandy, 1999; 

2000; Toth et al., 2000; Coulibaly et al., 2001; 

Daliakopoulos et al., 2005; Samani et al., 2007). In 

the LM algorithm, the updated function of the 

weights 𝑤(𝑘 + 1) is estimated using: 

 

𝑤(𝑘 + 1) =  𝑤(𝑘) − [𝐽T ×  𝐽 +  𝜇𝐼]−1  ×   𝐽T  × 𝑒          (10) 

 

where 𝐽 is the Jacobin matrix of the performance 

(error) criteria to be minimized, 𝜇 is the learning 

rate, 𝑘 is the iteration during the optimization 

process, 𝑒 is the vector of the residual value and 𝐼 is 

the identity unit matrix. 

Afterwards, the weights and biases are adjusted 

for all the interconnection neurons in different 

layers and the convergence criterion is reached (e.g. 

10
-6

), network training is complete. Our single-

hidden-layer network was calibrated (trained) with 

ten nodes in its hidden-layer through a trial and 

error process. Therefore, the structure of the trained 

network gained the topology of [2×10×2], Fig. 6. 2, 

10 and 2 refer to the number of neurons in the 

input, hidden and output layers, respectively. The 

parameters applied during the training process are 

shown in Table 2. 

 

 
 
Fig. 6. Structure of the developed ANN in the training 

stage 

 
Table 2. The ANN parameters applied during training for 

the leaky confined aquifers 

 
Parameter  Value 

Learning rate 0.5 

Convergence criterion 1e-6 

Maximum training cycle 10000 

Number of training patterns 51200 

2.4. Determination of Network Optimum Structure 

To make sure that the network structure designed in 

the calibration section is the optimum structure of the 

network, a sensitivity analysis is conducted to 

determine the optimum number of hidden layers and 

nodes. This will put further confidence on 

generalization of the trained network (structural 

validity, Wu et al. (2014)) in predicting the match 
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point coordinates (network target). In the sensitivity 

analysis the following two efficiency criteria are used: 

a) The relative root mean square error (RRMSE) of 

the calculated target: 

 

RRMSE = 100 × √
1

n
∑ (

ŷj −𝑦j 

𝑦j 
)2n

j=1                     (11) 

 

where ŷj is the simulated target calculated by the 

network, 𝑦j is the actual target and n is the number of 

data patterns. The accuracy of prediction increases as 

the value of RRMSE decreases. RRSME=0 indicates 

100% precision. 

b) The determination coefficient,  R2: 

 

R2 = 1 −  
∑(𝑦j−ŷj)2

∑ 𝑦j
2− 

∑ ŷj

n

                                             (12) 

 

R
2
=1 indicates 100% fit between network output 

values and expected target values.  

Figure 7 shows variations of the error criteria (i.e. 

R
2
 and RRMSE) with respect to number of hidden 

layers and number of nodes for the predicted the two 

network targets. The four plots in Fig. 7 collectively 

indicate that a single-hidden-layer feed forward 

network with the topology of [2×10×2] is the best 

and optimum ANN that efficiently model the well 

function of leaky confined aquifers and accurately 

predict the match point coordinates. The values of 

the above two criteria for the developed optimum 

network are also indicated on Fig. 7. 

 

 
 

 
 

 
 

 
 

Fig. 7. Sensitivity plots for the model structure 
 
Figure 8 is a plot of convergence of BP indicating 

that the network with the topology of [2×10×2] is 

trained smoothly and quickly without falling to 

local optima compare to networks with simpler and 

complicated topologies, i.e. [2×4×2], [2×8×2], 

[2×9×2], [2×11×2] and [2×12×2]. In Figure 8, the 

y-axis is the mean squared error (MSE) that is the 

difference between the network output and the 

actual target. 
 

 
 
Fig. 8. Convergence plot of networks with different 

topology 

2.5. Testing the Developed Network 

Having developed the network with the optimum 

topology the test patterns are used to assess its 

performance in determining the match point 

coordinate and hence the aquifer parameters. The 

best result of network performance is obtained 

when the trained network produces the smallest 

prediction error on the test data sets which are 

different from the training sets.  

The performance of the trained network was 

assessed by 100000 sets of synthetic error-free 

drawdown data. The synthetic data are generated by 

Hantush’s analytical solution [Equations (2-5)] for 

the leaky confined aquifer from combinations of 

idealized 𝑇, 𝑆 and 𝜓 values ranging from 10
2
 to 10

6
 

m
2
/day, 10

-2
 to 10

-6
 and 0.0 to 10, respectively by 

selecting a number of time steps as in Fig. 3. These 

synthetic error-free data (they are error-free because 

Equations (2-5) are exact analytical solution of 

leaky confined aquifers response to pumping) were 

converted to drawdown ratios (Lin and Chen, 2005) 

using Equation (13) which forms the input testing 

vectors (𝑋i ) to the developed ANN. 
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𝑋i = log(𝑠i+1 ) − log(𝑠1 ) = log (
𝑠i+1 

𝑠1 
)             (13) 

 
where si is the drawdown recorded at time ti, s1 is 

the first drawdown record and i=1, 2,…N-1. 

Applying the PCA to the input vectors (𝑋i ), the 

reduced drawdown ratios PCA [log (
𝑠i+1 

𝑠1 
)] are 

generated. Figure 9 illustrates the structure of the 

developed network at the testing stage. The 

developed network receives the reduced drawdown 

ratios (drawdown ratios subjected to PCA) and 

calculates log(1 𝑢𝑚)⁄ , and (𝜓)𝑚 which are 

converted to 𝑇, 𝑆, 𝐾′ and 𝐾′𝑆′ by Equations (2-5). 
 

 
 
Fig. 9. Structure of the developed ANN in the testing 

stage 
 

Figure 10 shows the scatter plots and the best-

fitted line as well as the QQ (normal distribution) 

plot of residuals (Bennett et al., 2013) for the 

idealized and estimated aquifer parameters (𝑇 and 

𝑆) by the proposed ANN for the leaky confined 

aquifer, respectively. As shown in these figures, the 

developed network can accurately estimate aquifer 

parameters over a wide tested range. In all plots the 

value of R
2
 is equal to unity and RRMSE values are 

very close to zero (summarized in Table 3) 

indicating a high prediction precision of the 

developed network in simulating the exact 

theoretical response of the real system (Equation 

(2)) and hence its replicative validity (Wu et al., 

2014). 

2.6. Validation of the developed Network 

The main goal of model validation is establishing 

greater confidence in the model in 

producing/predicting system actual response. In 

other words the model should be physically 

plausible as well as being predictive. Therefore, in 

this step, a set of real pumping test (time-

drawdown) data adapted from Neuman and 

Witherspoon (1972) was used to evaluate the 

applicability and reliability of the developed ANN.  
 
Table 3. R2 and RRMSE (%) values of the estimated 

parameter values by the developed network during the 

testing process 
 

RRMSE 

T S (𝜓) 

1.86 e-4 1.62 e-4 1.95 e-3 

R2=1 for the three estimated parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 10. a) Idealized versus calculated aquifer parameter values, b) QQ plot of residuals 

 (a) (b) 

 (a) (b) 



 

 
IJST (2015) 39A4: 463-472                                                                                                                                                                             470 
 

 

In this test, a fully penetrating well discharges a 

leaky confined aquifer with a uniform pumping rate 

of 1000 gpm. The time-drawdown data are 

measured in a piezometer at 100 ft from the 

pumping well as given in Table S1 (supplementary 

materials). The aquitard releases water from storage 

(𝑆′>0.0). The data set is subjected to the PCA and 

the reduced set is used as an input to the developed 

network and allowed the network to determine the 

match point coordinates values [(1/𝑢)m, (𝜓)m].  
 
Table S1. Time-drawdown data in the real pumping test 

(Neuman and Witherspoon, 1972) 
 
Time 
(min) 

Drawdown 
(ft) 

Time 
(min) 

Drawdown 
(ft) 

Time 
(min) 

Drawdown 
(ft) 

 

10 

 

6.30 

 

130 

 

8.53 

 

1800 

 

10.68 

13 6.51 180 8.66 2000 10.80 

18 6.72 220 8.84 2400 10.97 

22 6.83 250 8.97 2900 11.14 

26 7.01 300 9.13 3500 11.27 

30 7.16 350 9.33 4000 11.41 

38 7.29 430 9.47 4900 11.60 
43 7.40 500 9.67 5900 11.78 

53 7.65 600 9.88 6900 11.96 

63 7.79 750 10.10 8100 12.14 

73 8.08 880 10.19 10000 12.32 

83 8.26 1100 10.35   

110 8.37 1400 10.51   

3. Determination of aquifer parameter values 

Having determined the match point coordinates of 

the pumping test data by the developed network, 

they are adjusted and extended for all time-drawn 

records as illustrated in Fig. 3: 
 

ŷ1 = log (
1

𝑢j
) = log (

1

𝑢m

𝑡j

𝑡1
) , j = 1, 2, … , N        (14) 

 

(
1

𝑢j
) =  (

1

𝑢m

𝑡j

𝑡1
) =  10ŷ1                                       (15) 

 

𝑊[𝑢j, (𝜓)m ] = 𝑊 (
1

10ŷ1
, ŷ2)                             (16) 

 
𝑠m =  𝑠j                                                               (17) 
 
𝑡m =  𝑡j                                                                (18) 
 

Substituting these values into the well functions 

[Equations (2-5)] the aquifer parameter values are 

determined. The drawdown record point [1/𝑢j, 𝑊𝑗, 

𝑠j, 𝑡j] that yields the minimum RRMSE of the 

estimated drawdown is selected as the optimal 

match point which yields the aquifer parameter 

values with the greatest possible accuracy. The 

aquifer parameters values (𝑇, 𝑆 and 𝐾′𝑆′) are 

determined by the developed network and 

compared with that of the type curve matching 

technique in Table 4 which shows a much lower 

value for RRMSE (i.e. 0.05% compared to 9.4%). 

In this pumping test the thirty first time-drawdown 

record was found to be the optimal point (Fig. 11). 

In Fig. 11 we also plotted the accuracy of each 

drawdown record relative to that of the optimum 

record in estimating the match point coordinates. 

The results in Table 4 demonstrate the predictive 

validity of the developed network as it has been 

able to simulate the response of the real system 

very accurately (Gass, 1983; Wu et al., 2014). 
 

 
 
Fig. 11. RRMSE and accuracy plot locating the optimum 

drawdown-time record for a set of real pumping test data 

 

 
Table 4. The estimated aquifer parameters and RRMSE (%) of the estimated drawdown  

using the developed ANN and the type-curve graphical method 
 

Method 
Aquifer parameters 

RRMSE 

T (gpd/ft) S 𝜓 K'S' (gpd/ft2) 

Type-curve graphical 

Method (Neuman and Witherspoon, 1972) 

130000 1.11×10-4 0.005 1.73×10-5 9.4 

Developed ANN 130620 4.85×10-5 0.006 1.09×10-5 0.05 

4. Summary and Conclusions 

In this paper, a single-hidden-layer feed forward 

neural network with the Levenberg-Marquardt 

(LM) training algorithm was developed to imitate 

Hantush’s well function for the determination of 

leaky confined aquifer parameters. Inspired by Wu 

et al. (2014) we followed a six step protocol to 

develop the network and documented the 

methodology used in each step. In the first step 

(input data selection), N-1 sets of input data 

patterns were generated using the exact analytical 

Hantush’s solution of flow in leaky confined 

aquifers by considering a wide range of logical 

values for the network output targets namely, 
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Log (
1

𝑢
)m and (𝜓)m (Fig. 3 and Equation (7)). 

These two variables form neurons in the output-

layer. Before designing the network structure the 

PCA was also applied on the training data sets to 

reduce the dimension of input training data patterns 

and eliminate the redundant data by considering a 

minimum fraction variance of 0.005%. It was found 

that the first two principle components together 

explain 99.996% of the variance of the training 

data. As a result the dimension of the input patterns 

and hence the number of neurons in the input-layer 

is reduced and fixed to 2. In the second step 

(selection of network architecture), we started with 

a single-hidden-layer network that is probably the 

most commonly used neural network in engineering 

applications. In this step activation functions were 

selected and an arbitrary number of neurons were 

set for the hidden-layer. In the third step (network 

calibration), the network training and weights 

adjustment were implemented by employing the 

classical BP training method and using the 

deterministic LM optimization algorithm. The 

network was trained with 10 neurons in the hidden-

layer and gained the topology of [2×10×2] by 

maintaining the desired convergence criterion of 10
-6 

through a trial
 
and error process. In the fourth step 

(determining the network optimum structure), a 

sensitivity analysis was conducted to determine the 

optimum topology of the trained network by 

evaluating the ability of networks to generate the 

target output using the two efficiency criteria of 

RRMSE and R
2
. It was found that both increasing 

and decreasing number of nodes in the hidden-layer 

and also increasing number of hidden-layers reduce 

the accuracy of the network to estimate the 

expected target. As a consequence the optimum 

topology of the developed network was fixed to 

[2×10×2], regardless of the number of drawdown 

measurements. In the fifth step (testing the 

network), the accuracy of the developed network 

was tested by 100000 synthetic error-free 

drawdown-time data sets. The scatter diagram of 

output targets (estimated target values versus actual 

target values) and the QQ plot of residuals indicated 

the network replicative validity. In the last step 

(network validation) , the performance of the 

network in generating the match point coordinates 

is compared with the type curve matching 

technique using a set of real pumping test data. The 

comparison evaluated by efficiency indices, i.e. 

RRMSE and R
2
 showed the predictive validity of 

the network structure.  

In brief, the developed network receives the 

reduced drawdown ratios as inputs and provides the 

match point coordinates of the first record as the 

outputs. The outputs are incorporated with 

Hantush’s analytical solution for each individual 

time-drawdown records and aquifer parameters are 

calculated. Using each set of aquifer parameters, 

drawdown records are generated and compared 

with the real drawdown records, in terms of the 

RRMSE. The parameter values that give the lowest 

RRSME value are selected as the most accurate 

estimate of aquifer parameter values. 

The developed network is recommended as an 

efficient, accurate and easily used alternative tool to 

the graphical type-curve matching methods for the 

determination of leaky confined aquifer parameters. 

The developed network eliminates the graphical 

error resulted from type curve matching and greatly 

improves the accuracy of aquifer parameter values. 

The applied modeling procedure in this paper may 

be used to design ANN models for other well 

functions in groundwater hydrology. 
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